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The importance of the dispersion relation linking the real and the imaginary parts of 
the mean field in many fermion systems is pointed out. General models are built for 
the imaginary part. The properties of the real part close to the Fermi level are discussed 
in relation with these models. Its analytical behaviour is determined by the analytical 
behaviour of the imaginary part in the same domain, but the numerical values can 
be strongly influenced by the large energy behaviour of the same quantity. The sensitivity 
upon the behaviour in the intermediate domain is described semiquantitatively. The 
nuclear matter case is briefly discussed. The generality of our results is pointed out. 

PACS: 21.65 

1. Introduction 

The fact that the energy dependence of the mean field 
in a Fermi liquid could show some particular behav- 
iour near the Fermi level has retained the attention 
for a long time [1-3]. Recently, the interest was re- 
vived by the observation underlined by several au- 
thors that the nuclear shell-model does indeed display 
a kind of plateau close to the Fermi level in contrast 
to a general decrease in the energy dependence [4-7]. 
For a long time, it has been recognized that the real 
part and the imaginary part of the nuclear mean field 
are linked through a dispersion relation [3, 8]. Re- 
cently, it was shown that our knowledge of the im- 
aginary part at low energy is more or less sufficient 
to predict the gross properties of the real part near 
the Fermi level through the dispersion relation [6, 
7, 9]. However, the precise relationship between the 
global properties of the two functions has not really 
been clarified. For instance, it is not known whether 
the size of the effective mass (roughly the derivative 
of the shell-model potential) depends upon the local 
behaviour of the imaginary part of the optical-model 
potential only, or whether it depends upon this quan- 
tity for remote values of the energy. We propose here 
to study this problem for the case of an infinite Fermi 

liquid, for which the situation is simpler because of 
translational invariance. Our idea is to study model 
functions for the imaginary part, for which the disper- 
sion integral can be done analytically. We will study 
models for which the dispersion integral converges 
as well as those for which subtracted relations have 
to be employed. Furthermore, we will consider very 
general forms of the imaginary part, some of them 
are quite unrealistic for nuclear matter. However, we 
think that our results may be of some help for other 
problems of physics, in which similar dispersion rela- 
tions are employed. 

2. Theoretical Background 

The propagation of a particle of momentum k and 
energy E in a uniform Fermi system can be described 
by the Green function G(k, E) or by the mass operator 
M(k, E), the two being related by [10] 

[ h2k2 ]-1 
G(k, E)= E 2m M(k, E) . (2.1) 

The mass operator, which can be considered as the 
mean field experienced by the particle, contains a real 
and an imaginary parts [2] 

M(k, E)= -- V(k, E ) - iW(k ,  E), (2.2) 
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which are related by the dispersion relation 

V ( k , E ) = -  f(k)+ P- +~ __W(k'E') dE', (2.3) 
rc -oo E'--E 

where f(k) is an undetermined function, and where 
P denotes the principal value integral. The integral 
represents the Hilbert transform of W considered as 
a function of E [11]. Relation (2.3) is totally general 
and derives from causality only. The function W(k, E) 
is positive definite. A related quantity is the (energy) 
effective mass rfi, defined as 

rh = 1 + ~ V(k, E). (2.4) 

The quantities (2.2)-(2.4) have no direct physical 
meaning. For  a fixed value of k, the physical counter- 
parts are obtained by replacing E by e(k), the physical 
single-particle energy, i.e. the value of E where the 
Green function (2.1) has a pole. Alternatively for a 
given value e of E, the physical quantities can be ob- 
tained by replacing k by k(e), the inverse of the func- 
tion e(k). Let us denote them by V(e), W(e) and nq(e). 
Strictly speaking, the physical quantities V(e) and 
W(e) are linked by a dispersion relation similar to 
(2.3) if and only if W(k, E) are independent of k. In 
practice, the k-dependence is very smooth, except for 
special unrealistic models [12], and relation (2.3) can 
be used with physical quantities as a first approach 
in the case of nuclear matter. It is even currently used 
[6, 7, 9] in the case of finite nuclei. Furthermore, 
the analytical behaviour in e (which will be important  
for our discussion) is not modified by introducing 
physical quantities. Our results will be nevertheless 
exact for off-shell quantities (k+k(e)) and for many 
cases, where the energy (or an equivalent variable as 
it is the case for dispersion relations used in different 
contexts) is the only relevant variable [7, 13-15]. 
Therefore, in the following, we will disregard the k- 
variable and use E as the running variable. We will 
denote it as the energy, but it may correspond to 
other physical quantities. We will use the following 
notations: 

V(E) = - - f  + V> + V<, (2.5) 

where (for convenience, the zero of the energy scale 
is set on the value of the chemical potential) 

P ~ W(E') , ~ ,  

(2.6) 

and where V< denotes the integral form - oo to 0. 

In many perturbation schemes for the function 
W, the lowest order contribution corresponds to V>, 
sometimes named the polarisation contribution. The 
next order contributes to V<, named the correlation 
contribution. 

If E < 0 in (2.6), the principal part loses its meaning 
and the integral reduces to the so-called Stieltjes 
transform. For  the mathematical aspects of these 
transforms, see [16]. 

3. Non-subtracted Dispersion Relations 

3.1. Introduction 

We want here to discuss the following question: how 
is the behaviour of the polarization contribution V> 
close to the Fermi energy influenced by the properties 
of W(E) close to E = 0 ,  close to E =  oo and in the 
intermediate region? We assume that W(E)~O at 
E ~ 0% so that the dispersion relation (2.1) converges. 
This case may not be relevant to nuclear physics, al- 
though we do not know really the asymptotic behav- 
iour of the imaginary part of the optical model poten- 
tial. However, this may nevertheless be important  for 
other physical situations (see our discussion below). 

3.2. Properties of V> 

We are first interested to took at the effect of the 
behaviour of W at small energy. For  this, we may 
consider the following model (E > 0) 

W(E) = W o (E/Eo)" e- Era, (3.1) 

for different values of n. As long as the behaviour 
close to E = 0 is considered, the nuclear matter case, 
which will retain our particular attention (see Sect. 5), 
corresponds to n=2 .  However, we want here to be 
very general and attempt to derive general conclu- 
sions for many fermion systems, some of which may 
qualitatively differ from nuclear matter, because of 
either a different dimensionality of the system or a 
different nature of the interaction. In the case of (3.1), 
V> can be calculated from (2.6). The Hilbert transform 
is given in Appendix A. Using (A.3), one has, close 
to E ~ O  

+27+]-+ ...} (3.2) 

for n=0 ,  where _+ refers to E >  or <0.  Then n = 0  
case may not be an academic one. In the antiproton- 
proton system, the imaginary part is large and contin- 
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Fig. 1. Hilbert transform g(y) (full line), defined 
as in (A.1), of the function x~-~(1 +x)  a-"  (dotted 
line), for various values of the parameters v and 
#. See text for detail 

uous through the threshold. As we show later on, 
this will reflect in a E In E term in the real part of 
the optical potential close to threshold. This might 
be related to the observed structure of the so-called 
p-parameter in the ant iproton-proton scattering [-14]. 

One also has 

1> - 
n Eo E2 4-... 

"(-+7-+'n ( + - ~ ) + ~ +  " " ) ]  (3.3) 

for n = 1, and 

v> = W~ (El) (E)n-1 (n- 1)!+(n-2)! ... + \ ~ )  

)] 
for n >  2. The larger n, the smoother the function is 
around E = 0. 

As another model case, we chose 

( E~ ~-1 (1 E\i-u 
W(E): Wo \Eo] + ~ )  , (3.5) 

with E~ >0,  # > v > 0 .  Using (A.8) and the properties 
of the hypergeometrie functions, one can show that 
if v is not an integer, the following behaviour holds: 
if v < 1, V> will be divergent at E = 0 as y~- ~. If 1 < v 
< 2, V> will be finite and continuous at E = 0, with 
an infinite slope as y ~ 0- ,  but not necessarily above. 
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Fig. 2. Same as Fig. 1 
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If v > 2, V> is finite, continuous and linear at E = 0. 
For  integer values of v, one can summarize the situa- 
tion as follows. If v = 1, there is a logarithmic diver- 
gence at E = 0 .  If v=2 ,  the dominant terms are in 
y and y In y. For  v > 3, the log term is in y2 In y. These 
properties are illustrated by Figs. 1 and 2. As one 
can see from the comparison of the two cases (3.1) 
and (3.5) for v being an integer, the leading power 
of W(E) will govern the analytic properties of V> close 
to E = 0 .  

Now we inquire about  the importance of the large 
E properties of W(E). For  simplicity, we consider 
forms of W(E) which start as  E 2 or E. One possibility 
is provided by (3.1), for which one has expressions 
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(3.3) and (3.4) for the linear and the quadratic forms, 
respectively. Alternatively, we can consider 

+E-7) ' (3.6) 

where ~ > 0. For n = 1, one obtains 

t1> WoE1 1 [  E 
~- E0 ~ 1--r E~ 

§  1) (~-l) 2 (if(2+ 0+~;--  1) 

E E 2 .], 
- { ~ - l l n ~ + { ( ~ + l ) ( ~ - l )  In ~--7+. .  

(3.7) 

where ~ is the Digamma function, while 

Wo(Eq2 2 [ 1+r EW 

( 0 ( 2 + 0 + ~ )  
2 

2 ( ~ k ( 2 + 0 + 7 -  1) 

2 

2 (~ + 2) In + . . .  (3.8) 

stands for n = 2. It is evident, by comparing (3.7) and 
(3.8) with (3.3) and (3.4) respectively, that the fall-off 
of W(E) at infinity does influence the behaviour of 
V> at E,~0, although the analytic properties in that 
neighbourhood are still determined by the dominant 
power of E in W(E) close to E ~ 0. 

An alternative way to investigate the importance 
of the fall-off at infinity is to look at the Hilbert trans- 
form of a function W(E) of the form (Ez, E~ > 0): 

W(E) = 0 for E < E2 

= Wz exp [ -- (E -- E2)/E J for E > E z . (3.9) 

From (A.3) and the elementary properties of the Hil- 
bert transforms, one can write the Hilbert transform 
H(W, E) as 

H(W,E)=WEexp[ E-E2]  E [Ez-E~ 
rc E~ J 1\  E~ ] '  (3.10) 

where E1 is the exponential integral. Close to E = 0  
and for E 2 > E~, one can write 

H(W, E ) -  14/2 E~ 1--E~ E +  . . . .  (3.11) 
7c E z 

One can see that, in the limit E2/E~--+ o% a perturba- 
tion in W will induce a small contribution to V> (E) 
close to E = 0 (even a smaller one to rfi), but one has 
to keep in mind that this contribution will no longer 
be negligible if E~,~ E2, even if E2 is very large. 

The sensitivity of V> (E ~ 0) upon a modification 
of W(E) in the intermediate domain can best be stud- 
ied by considering the function 

W(E)=0 for E < E a ,  or E2<E ( 0 < E I < E 2 )  

= Wo c (p, 0.) (E  - E 1) p -  1 (E2 - E)  ~ -  1, 

for E1 < E < E 2  (3.12) 

where C(p, 0.) is a normalization constant 

C(p, o-) = [ ( E  2 - El) p+a- 1B(p, 0.)]  - 1, ( 3 . 1 3 )  

which ensures 

Ei 

w(E)  d e  = Wo. 
Eo 

In expression (3.13), B denotes the Beta function. In- 
stead of analyzing the analytical properties of the Hil- 
bert transform (A.10), it is perhaps more convenient 
to look at the numerical illustration of Figs. 3 and 
4, where various p=0. cases are shown. It is then 
clear that a discontinuity of the type ( x - a )  ~- 1 with 
0 <  0.< 1/2 produces locally an infinite discontinuity 
with change of sign. If 1/2 < 0. < 1, the infinite discon- 
tinuity is logarithmic without change of sign. When 
1 _< 0._< 2, the Hilbert transform is finite at y = a, with 
a form which becomes smoother and smoother as 
0. increases, taking the y In y shape close to a and 
b as 0. reaches 2, in agreement with the similar case 
(3.7) that we discussed before. For  0->2, the Hilbert 
transform is finite at y = a and the derivative is linear. 
The Hilbert transform takes characteristic shapes for 
special values of 0.. The conclusion is that special ana- 
lytical behaviours of W(E) have a direct and local 
consequence on the analytical properties of V> (E). 

From the above discussion and observation, we 
can make two statements: (1) the real nuclear mean 
field being likely a smooth function (except perhaps 
at E = 0  for components V> and V<), there should 
be no angular point in any representation of W(E); 
(2) the modification of W(E) at intermediate energy 
does influence the value and the behaviour of V> (E) 
around E = 0. It is however difficult to draw general 
quantitative conclusions. As an illustrative case, one 
may consider the circular (p = 0. = 3/2) and the para- 
bolic (p = 0. = 2) cases. Then the quantity V> (E) corre- 
sponding to (3.12) can be written (close to E=0)  as 

V>~ 2W~ E1 1 (3.14) 
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and 

V~ ~ Wo (E2-  E1) 2 r E 1 / 1 
E 2 + E 2 E ~ + E 2 [ l n E 2 2 - - E ~  

(3.15) 

respectively. This is by no means negligible if E2 
- E l  > E l  for instance. 

3.3. Properties of V< and of V(E) 

It has often been stated that the potential W(E) has 
a symmetrical shape in the nuclear case. As a matter 
of fact the behaviour close to E = 0 should be symmet- 
ric for phase space reasons [12, 171, except for very 

pathological interactions. If W(E)= W ( - E ) ,  then 
V< (E) = -- V> (--E) and therefore 

v(E) = v> (E) -  v> ( -  E) (3.16) 

which means that V(E) is an odd function of E. There- 
fore all the even powers of E in expressions for V> 
are preserved when going to V(E). For  the terms con- 
taining a logarithm (which occurs regularly in the 
model cases above) of the type E" In E, only odd 
values of n will be retained. As a consequence, all 
possible logarithmic singularities in V> and V< are 
cancelling each other, leaving a much smoother E In E 
"singularity" in V(E). 

4. Subtracted Dispersion Relations 

If W(E) goes to zero as a constant (at the least) at 
infinity, one has to use subtracted dispersion relations 
of the type 

A V> = V> (E)-  V> (0) = E P ~ W(E') 
o E ' (E ' -E)  dE'. (4.1) 

The results of Sect. 3 can readily be used to study 
the analytical behaviour of A V>. As a very simple 
example, let us assume that (0 < r < 1) 

W(E) = Wo/~ (E/Eo) 2 (I + E / E , ) -  ' + r (4.2) 

Then (3.6), (3.7) and (4.2) can be used to obtain 

Wo El 
AV> - E~ 

�9 E - ( ~ + 0 ( 1 + 0 )  E I - E ~  . . . .  

(4.3) 

For  a symmetrical function W(E) (from --oo to or), 
the quantity A V=A V> + A V<, will behave like (for 
E ~ 0 )  

W o ~  e 
A V~ 2 (4.4) 

1~ E~ E 1 " 

Another very commonly used example is provided 
by 

E 2 
W(E)= Wo E2 + E ~ '  (4.5) 

for all values of E. The corresponding quantitiy A V 
reads 

E 0 E 
A V= 141o E 2 + E~" (4.6) 
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5. The Nuclear Matter Case 

5.1. The Potential 

The nuclear matter case would correspond to a func- 
tion W(E) which has to fulfill the following require- 
ments: (1)  it is positive everywhere; (2)  it behaves 
like E 2 close to E = 0. Nothing more can be said for 
sure at the present status of our knowledge. Very like- 
ly, W(E) does not go to zero at infinity, but the precise 
behaviour is not known. For  the very crude hard 
sphere model of nuclear matter, it increases like E 1/2 
when E--* oo. (The potentials which contain a strongly 
repulsive core seem to give [18] too large an imagin- 
ary part for intermediate energy, say between 40- 
100 MeV.) On the other hand, there are arguments 
indicating that W(E) ~ a constant when E ~ - co. So, 
very likely, the function W(E) is not symmetrical. 
Therefore a plausible form is 

W(E)= Wo(E/Eo) 2 (1 +E/Eo) -~ -r E > 0  (5.1) 

= Wo(E/Eo) z (1 --E/E'~) -1-r E < 0 ,  (5.2) 

with ~ and 4' lying between 0 and 1. Owing to (4.2) 
and (3.7), we obtain 

A V -  
W o E [[E 1 E'~\ 

0 , , + , , + , .  

' 1 
4 +  2 + ( ~ -  (~,( +4')+~- 1-1n IE'~I) 

+ 4 + 1  
( 0 ( 2 + 4 ) + 7 - - 1  --In lEvi)) E2 

/ 4 + 1  4 '+  1\ E2 .. (5.3) 

The remarkable result here is the mutual cancellation 
of the E z in E terms contained in A V> and A V<. This 
results from the symmetrical behaviour of W(E) in 
E 2 close to E = 0 .  In Fermi liquids, this behaviour, 
in turn, results from the phase space density of 2 parti- 
cle-1 hole and 2 hole-1 particle states close to the 
Fermi level. This argument was already found by 
Migdal [19]. The E 3 in E singularity is thus typical 
of Fermi liquids and is to be compared with the 
T 3 In T singularity of the specific heat in liquid 3He 
[20] where, however, the imaginary potential arises 
from the coupling of the single-particle states with 
collective excitations, the paramagnons. Equa- 
tion (5.3) also displays the influence of the fall-off of 
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W(E). In particular, it shows that a E 2 term arises 
when W(E) is not completely symmetric at large IEI. 

5.2. The Effective Mass 

By differentiating expression (5.3) and using (2.2), one 
can write the (energy) effective mass as 

[E, El\ 2Wo (0 (1+ 4') -- 0 (1+ ~) 
\ 

Once again, the influence of the large (positive and 
negative) energy behaviour of W(E) is evident in the 
leading term of th in the neighbourhood of E = 0. This 
can explain, and this is our most important  conclu- 
sion, why different calculations although giving 
roughly the same imaginary potential at low energy 
can yield nevertheless different values for the effective 
mass [21-23]. 

Let us finally consider, for the sake of illustration, 
the case of the Paris potential, for which Wo/E~ 

8.5 x 10- a MeV - 1. The calculated value of ff~(E = (3) 
is 1.7, according to [21]. If we assume expressions 
(5.1) and (5.2) we obtain from relation (5.3) E1/~ 
+ E'~/4 ~ 630 MeV, which looks as a reasonable value 
for the "decay constant" of the imaginary potential 
at large energy. 

6. Importance of the Dimension 

T h e  E 2 behaviour of W(E) close to E = 0 arises from 
the three-dimensional character of the ordinary 
world. One may speculate on the possibility of other 

j 
Y 

I I 
-0.5 0 0.5 

y 

5. Hilbert transform g(y) of the function [ fxe  -~ Fig. 

I 
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dimensionality for fermion systems. In one dimension, 
the density of 2 p -  I h states on the energy shell (real 
transitions) identically vanishes. For  off-energy shell 
transitions, W(E) will behave like a constant. There- 
fore, the A V potential will contain a E In E singularity. 
For  two dimensional systems W(E) behaves linearly. 
If this is true, the A V potential will contain a E 2 In E 
singularity. 

Some of our considerations may be useful in other 
contexts. Just to give an example, dispersion relations 
of the types (2.3) or (4.1) come into play to describe 
the dispersive shifts of resonance states in reaction 
theory [24]. For  s-wave states, the corresponding 
function W(E) starts like E i/2 at threshold [25]. Ow- 
ing to (A.4)-(A.6), one sees that the corresponding 
function V(E) has a discontinuous derivative [26] at 
E = 0 (see (A.6)), as illustrated in Fig. 5. 

7. Conc lus ion  

We have analyzed the dispersion relation connecting 
the real and imaginary parts of the mean field in a 
many-fermion system. We looked at several plausible 
models for the imaginary part and calculate accord- 
ingly the real part  V(E). We illustrated the fact that 
the singularity of V(E) close to E = 0  is linked with 
the dominant power of W(E) close to E = 0. We stud- 
ied non-subtracted as well as subtracted dispersion 
relations. We tried to exhibit the effect of the large 
IE[ behaviour of the imaginary part and we showed 
that although it does not affect the analytic behaviour 
of V(E), it can strongly modify the numerical value. 
We particularly examined this point in relation with 
the effective mass and provide an explanation for the 
different values of the effective mass obtained by dif- 
ferent calculations, although giving roughly the same 
mean field at the Fermi level. We also investigated 
semi-quantitatively the sensitivity of the real part of 
the mean field upon the value of the imaginary part 
in the intermediate energy domain. We made our con- 
siderations as general as possible in such a way that 
the conclusions can be applied outside the nuclear 
case which has attracted our attention. 

Appendix :  Hi lbert  T r a n s f o r m s  

We here quote the Hilbert transform 

H(W,y)=P ~ W(x) dx, 
~o  x--y 

(A.1) 
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of several functions W(x) which are of interest for 
our discussion. If 

W(x)=x"e -ax, (A.2) 

one has 

1 1)! a-ry"-r], H(W,Y)=;[--Y"e-"'EI(aY)+ ~=I(r-- 

y > 0  

1 1- . ay 
=~- [y  e -  El(--ay)+ ~ (r-1)'a-'y"-r], 

r = l  

y < 0, (A.3) 

where E i and E~ are the exponential integral func- 
tions, with standard notation [27]. For  v > 0 and 

W(x) = x ~ - i  e -  ax, (A.4) 

H(W, y) = F ( 2 -  v) y l  - VeaY F(1 - -  Y, ay), (A.5) 

where F(a, z) is the incomplete Gamma function. In 
particular, for v = 3/2, 

Y e" u] H(W"y)=l--[(~--Ii/2rck\a] - -~2  e - " ' V Y !  2 ~ d ,  y > 0  

= 1  [ ~ a - ~ - - y e - " ' e r f c ( ~ - - a y ) ] ,  
7~ 

y < 0. (A.6) 

For  the function (a > 0, # > v > 0) 

W (y) =- x v- i (x + a) 1 - u, (A.7) 

one has 

H'W. " -  r ( ~ -  v) r(v) t ,Y)-  F~-~.=71 F ( / l - l , v ; / ~ ;  l+y/a)(-y)  ~-~, 

y<O 

7rye- 1 F(li-- v-- 1) F(v) 
- ( y + a ) U _  1 cotan0z--v)n  (y + a) F(#-  l ) 

-al-U+~F 2 - - / ~ , 1 ; 2 - - # + v ;  , y > 0 ,  

(A.8) 

where F is the Gauss hypergeometric function. We 
also consider (0 < a < b) the function 

W(x)=0  if x < a  or x>b, 
W(x) = (x -- a) v - i (b - x) ~- i for a < x < b, (A.9) 
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with p and a > 0, for which one has 

r(p) r(~) (b -- a) p + ~- 1 
~/(W,y)=.r(p+a) (b-y) 

for y < a  or y>b,  

= (y _ a)p- 1 (b - y y -  1 co tan  (a ~) 

r(p) r (a-  1) (b_a)p+~_ 2 
~F(p + a -  1) 

. F ( 2 - p - a ,  l ; 2 - a ;  bb~Ya), 

Finally, for the funct ion 

F (1, a, P + a; bb--~_ay), 

a<y< b .  

(A.10) 

W(x) = x/(x z + a2), (A. 11) 

one has 

(A.12) 
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