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Charge screening in classical scalar electrodynamics
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We consider the problem of a fixed source of charge Z in a classical electromagnetic interaction
with a scalar field of mass m. We find that partially screened solutions with energy less than the en-

ergy associated with pure Coulomb configurations (with zero scalar field) exist for Z & Zo, where Zo
is the value at which the Klein-Gordon equation for a particle of mass m in the external Coulomb
field of the source has zero-frequency solutions. Our model thus allows for the exact construction of
a classical "charged vacuum. "

We recently studied the (nonlinear) problem of a fixed
source of charge Z in interaction with a charged scalar
field of mass m within the framework of classical electro-
dynamics. ' We found, as expected on general grounds,
that there exists a critical charge Z =Z„such that, for
Z&Z„, the Coulomb solution (i.e., the bare source
configuration with zero scalar field) no longer is the solu-
tion with minimum energy. Indeed, we explicitly con-
structed for Z &Z„partially screened solutions (with
nonzero scalar field} with energy less than the energy Ec
associated with a pure Coulomb solution. The critical
value Z =Z„ in this problem is determined by that value
of Z at which the linear Klein-Gordon equation for a par-
ticle of mass m in an external Coulomb field of charge Z
yields an eigenvalue co = —m.

We were motivated to further study this problem by a
recent paper on the instability of large-Z nuclei with
respect to electron-positron pair creation, a problem of
great current interest. The instability of such superheavy
nuclei is expected to occur at Z =170, i.e., the value at
which the single-particle Dirac equation has eigenstates
with co= —m, eigenvalues (rn, is the electron mass). Ac-
cording to the authors of Ref. 3, electron-positron pair
creation could occur at Z=150, which roughly corre-
sponds to co=0 eigenvalues of the Dirac equation. These
authors further argue that, contrary to current belief,
the ground state of the system is not correctly described
by a "charged vacuum. " In view of the many approxima-
tions used in the quantum-field-theoretic study in Ref. 3,
we have deemed of interest to study in more detail wheth-
er a similar result could be obtained within a simple ex-
actly soluble model such as classical electrodynamics
with an external source. Our main result is the following.
The value of the external charge for which partially
screened solutions, with charge Q &Z, start having a
lower energy than the pure Coulomb solution is indeed
given by Z =Zp Q Z„, where the value Zp is the Z value
at which the Klein-Gordon equation for a particle of
mass m in an external Coulomb field has zero eigenvalues.
However, as discussed in Ref. 2, this does not mean that
the pure Coulomb solutions are unstable for
Zp & Z & Z„. Only for Z & Z„does one expect them to
become unstable, as the Klein-Gordon equation then has
complex eigenvalues.

In order to see this in detail, we start with the equa-
tions of motion for a charged scalar field P in interaction
with the electromagnetic field A" in in the presence of an
external source j„'"':

(8„ieA—„)P+m /=0,
Q A„d„d"A—„+ie(P'd„P 2ie A—„P'P)=j „'"', (2)

where
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Taking, as in Ref. 6,

eZ5(r —ro)1„—,5„p,
T

(4)
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g=0,

r& r
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provided we look for solutions of the form'

P(r) =e'"'
~ 2er

A=O .

The total energy E associated with a given solution is
given by

E =4m f Toor dr,
p

where

(10}

i.e., considering a static charge distribution with density

eZ5(r —ro)
p(r}—=

T

and working in the radiation gauge V A=O, one finds,
from (1), (2), and (4),
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From (5) and (6), we find, in the linear approximation'
(g =k),

d 2
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dr
(12) 0.5-

with
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f(r) = rur+aQ, (15)

In contrast with Ref. 1, we now look for solutions to (5)
and (6) with an arbitrary frequency ro, i.e., with boundary
conditions at in6nity:

Z

FIG. 2. Values of the total energy E (compared to the

Coulomb energy E~) as a function of the external charge Z for

different values of co/m. For the sake of clarity, we do not show

curves for 0& co/m y —1. All of them start to depart from uni-

ty at Zp (Z (Z„, decrease monotonically, and are comprised

between the co=0 and co= —m curves.

g(r) = C exp[ —(m ro )'~—r) . (16)

The boundary conditions at the origin remain unchanged

The quantities f„g„C, and aQ are to be determined.
Equation (6) also requires

f(r) = f&r,r~p
(17) f I,=,,+, f I,=.. .— QZ

rp

g(r) = g, r .
r —+p

charge screening
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There are only two dimensionless parameters within
the model: namely, x —=mrp and co/m. The value of the
total charge Q of the external source as a function of Z is
plotted in Fig. 1, for a typical x value. One can see that
partially screened solutions (Q &Z) exist for any value of
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FIG. l. Values of the total charge Q as a function of the
external charge Z. The indicated numbers give the di6'erent
values of co/m. In particular, the curve labeled —1.0 corre-
sponds to co/m = —1 and starts to depart from unity at
Z =Z„=290, while the curve labeled 0 corresponds to co=0
and Z =Z0 ——190. All the curves shown have been calculated
for the parameter x =mrp =0.567.

rlr,
FIG. 3. Shapes of the fields f and g in configuration space for

Z =400, co=0, and x =0.567. The curve labeled p, gives the
charge density of the condensate for this particular case (scale
on the right-hand side).
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Z. For any value of co, the screened solution exists for
Z & Z, where Z is the value at which the lowest eigen-
value of the linearized Klein-Gordon equation (12) is
equal to co. However, as shown in Fig. 2, only for Z & Zo
[the value at which Eq. (12) has co=0 solutions] do these
solutions have a lower energy than the pure Coulomb
(g =0) solutions. Note that for Z&Z, „, solutions with
co =0 have lower energy and large screening than
colm = —1 solutions. Figure 3 shows how f and g vary
with r for co=0 and Z =400&Z„. Also shown is the
variation with r of the charge density of the condensate

p, . An expression for p, may be derived by integrating
Eq. (6) from zero to infinity, after multiplication by r.
Using (15), one gets

Q =Z+4n f r p, (r)dr (20)
0

with

1 fg'
4m. r

(21)
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As stated above, the fact that the pure Coulomb solu-
tion no longer is the minimum-energy solution for Z & Zo
does not imply that it becomes unstable. Actually, our
model allows for an exact construction of a classical
analogue of the quantum-field-theoretic charged vacuum
discussed in Ref. 5. Although it has been recently ar-
gued that such a charged vacuum should not exist in na-
ture, we did not find any support for this thesis in our
classical model.
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