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Abstract: Zero and finite temperature contributions of ground state correlations to the nuclear mean
field are studied in nuclear matter at normal density. The framework is the nonrelativistic hole line
expansion with the Paris potential as the bare NN interaction. For different temperatures we
calculate single particle properties including correlation contributions in the self-consistent determi-
nation of the single-particle energies. We evaluate the nucleon effective mass and the energy mass.
Their temperature dependence is studied and related to that of the level density parameter. We
also calculate the momentum distribution of nucleons and discuss its behaviour at large momenta.
In the present approach the spectral function and the lifetime of hole state can be obtained directly.
We present our first results and analyze them briefly. Finally, we examine the important aspects
of the conserving character of the approximations made in the course of this study.

1. Introduction

The knowledge of the single-particle properties is of basic importance in nuclear
physics for the understanding of nuclear structure and nuclear dynamics. Quantities
like the mean field, the nucleon mean free path, the effective mass, enter in the
description of static as well as dynamic properties of nuclei. Important progress
has been accomplished during the past ten years in the calculation of single-particle
quantities from first principles, after the work of ref. 1), based on nonrelativistic
Brueckner theory. Recently, another important step has been made with the calcula-
tion of these quantities in the frame of a relativistic many-body theory %) of nuclear
matter, constructed in the spirit of Brueckner theory. Despite the widely different
mechanisms leading to the building up of the nuclear mean field in the two theories,
the depth of this mean field surprisingly comes up with the same value in the two
approaches, when both are limited to the first order in Brueckner renormalized
interaction (the g-matrix). Other properties, like the energy or momentum depen-
dence of the mean field are also qualitatively similar in the two approaches.

* Work supported by the NATO research grant no. 025.81.
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Here, we want to go one step further and calculate the mean field inside nuclear
matter, up to second order in the nonrelativistic g-matrix (a relativistic calculation
is probably not feasible for the time being), at zero and finite temperature, so
extending our recent work’). In particular we want to calculate the so-called
correlation graph contribution to the nucleon self-energy, for a realistic interaction.
We study the energy and temperature dependence of the optical-model potential,
calculated at this level of approximation. Furthermore, we pay particular attention
to the temperature dependence of the effective mass, a feature which could-play an
important role in the dynamics of nuclear excitations and in heavy ion reactions.
We also discuss the level density parameter, the momentum distribution, the lifetime
of hole states and other related quantities.

The present work is organized as follows. Sect. 2 is a reminder of Green’s function
formalism and establishes our notation. Sect. 3 is devoted to the correlation graph
for the mass operator. We discuss successively the self-consistency requirement for
the auxiliary potential and the evaluation of the real and imaginary parts of the
optical-model potential. Sect. 4 is devoted to the nucleon effective mass and its
temperature dependence, to the so-called E-mass and to the level density parameter.
In sect. 5, we calculate the momentum distribution in nuclear matter. Sect. 6 is
devoted to a short discussion of the spectral function and of the lifetime of hole
states. In sect. 7, we present a discussion of the binding energy and of the Hugenholtz-
Van Hove theorem always at the light of the second-order approximation. Finally,
sect. § contains our conclusion.

2. The nucleon self-energy in nuclear matter

2.1. DEFINITION

The real time Green function G for a nucleon travelling inside uniform infinite
symmetric nuclear matter at temperature T = 8" and at chemical potential w, is
defined, with the notation of ref. %), as

G(r, 1) =—i(T{y(r, D'(0,0)}), (2.1)

where T is the chronological operator and where ¢ 'and ¢ are the Heisenberg
creation and destruction field operators. The brackets indicate the average over a
grand canonical ensemble.

As is well known, the Green function (2.1) describes at the same time the
propagation of a particle added and the propagation of a hole punched in the
medium. The Fourier transformed Green function,*

Gk, ) =J d&*r j dee NGy 1), (2.2)

* The invariance under translation removes the dependence upon the orientation of &.



P. Grange et al. | Nuclear mean field 367

can be written as the following integral (the Lehmann representation):

(—}(k,cu):‘J %(:?’S(k,w'){ +imé(w—w’) tanh%Bw'} s (2.3)

!
o - w

where & denotes the principal value integral and where S(k, w) is generally called
the strength function. It has a complicated structure in terms of the eigenstates of
the hamiltonian
H=YT+i1 V, (2.4)
i istj

of the nuclear system. The detailed form of S(k, w) is not very useful for our purpose,
but can be found in refs. ).

The real and imaginary parts of the Green function are linked by a dispersion
relation

~ de' P Im Gk ')
Re Gk, w)= — ’ . 2.5
¢ Gk @) J_m 27 w—o' tanh3ifew’ 25
Important properties of the Green functions are
S(k,w)=0, (2.6)
+o g
J LSk w)=1, (2.7)
o 271
sgn (Im G(k, w)) = —sgn w, ’ (2.8)
= 1
Gk, w)>—, lw]—co. (2.9)
w
The momentum distribution p(k), normalized to unity, defined by
p(k)=(aia), (2.10)
is related to the Green function by
“+00 _ ) d
p(k)‘-‘-ilimJ Gk, w) e =2 (2.11)
10 —co 277
One has:
&k
——plk)=1. 2.12

These formulae are those written down in all textbooks, but in the following, we
will use the Green function G(k, E) related to G(k, w) by

Gk, E)=G(k,w—pn), (2.13)
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in order to keep on with the usual definition at zero temperature '). Below, we will
frequently refer to the mass operator M (k, E) or self-energy defined by

1
E-k*/2m—-M(k E)’

Gk E)= (2.14)
The mass operator is complex and its analytical properties are similar to those of
the Green function itself.

2.2. PERTURBATION SERIES

The most usual approach is to calculate the Green function by perturbation series.
At nonzero temperature, the Green functions described above are not very suitable,
since the perturbation series are not the same as at zero temperature. We already
comment on this point in our previous work *). The reason is that Wick’s theorem
is not directly applicable at T # 0, which leads to many more diagrams: Let us notice
that the differences come at the second order in the bare (or renormalized) interaction
only. It is possible to remove all these additional diagrams by the introduction of
the Matsubara Green functions °). They have different analytical properties -'°) and
are not defined for all w. This last feature is rather disturbing since many quantities
we are interested in are defined for any w and have at T =0 particular properties
linked to the continuous variation with . Hence, we choose to work with real time
Green functions. As we will concentrate on general properties at low temperatures,
the additional diagrams may be expected to be rather small. We will comment more
specifically on some of them in the course of this work.

3. The mass operator

3.1. INTRODUCTION

Here we evaluate the mass operator M(k, E) on the energy shell by means of
Brueckner theory in the second order in the renormalized interaction. This leads us
to a different definition of the self-consistency for the average field, as explained in
sect. 3.2. In sect. 3.3, we describe our approximation scheme. We present our results
for the calculation of the real and imaginary parts of the optical-model potential
in sects 3.4 and 3.5, respectively. We compare our results with previous works in
sect. 3.6. All the calculations below are performed at normal density p = py=
0.17 fm™>.

3.2. THE BRUECKNER SCHEME

For a detailed account of this scheme, we refer to review articles ''*'?). Here we
just sketch the main points and elaborate on the new aspects of our work. As is
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well known, the cornerstone of Brueckner approach is the resummation of the ladder
diagrams to take account of the fact that the nuclear interaction is so strong that
repeated interaction between two nucleons should be considered as the basic
dynamical input of the theory. This is realized by rewriting the perturbation series
in terms of bare interaction v as a series in terms of a renormalized interaction, the
g-matrix, solution of the Bethe-Goldstone equation

Q(a, b)
w—e(a)—e(b)+ie

glw)=v+v %!ab} (ablg(w). (3.1)

The Pauli operator Q is given by
Q(a, b)=(1-n(a))(1—n(b)), (3.2)

where n(k) is the occupation probability of level k in the non-interacting case (the
Boltzmann constant kg is set equal to one)

n(k)=|:1+exp (E(—kl:ﬁ)y . (3.3)
T
The single-particle energy (A=1)
e(k) =2+ U(k) (3.4)
2m

includes an average field, which is usually determined by a self-consistency condition
(see below).

In the Brueckner approach, one usually recasts the perturbation series into an
expansion in terms of the number of hole lines in Goldstone diagrams ). For the
mass operator (eq. (2.14)), this expansion may be written

M(k, E)=M(k, E)+ My(k, E)+ M;(k, E)+ Mk, E)+- -, (3.5)

with
My(k E) =% n(j)(kjlgLE +e(NKT) , (3.6)
Mk E) =323 n(n(D1 = n(@) Jlsle) el L e

and
M(k E) =5 n(j)(lglE+ e(NIkHLp ()11, (3.8)

where p,(j) is an approximate value of p(j) (eq. (2.10)), whose exact expression
is defined later.

It is generally accepted nowadays that the auxiliary potential U(k) is not merely
a parameter, supposed to improve the convergence rate of (3.5), but should be
chosen as to preserve the general analytic properties of M(k, E) at any level of
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approximation *) and to represent the physical properties of the mean field '*). The
so-called continuous choice fulfills these requirements and reads

2

e(k)=—2—k—m—+Re M (k, e(k)). 3.9

Since in this paper we want to go further in the perturbation series, we extend (3.9)
to include the second-order term in eq. (3.5), i.e.

5

e(k) =%+ Re [M,(k, e(k))+ My(k, e(k))]. (3.109)

This choice, already made in ref. ), is not simply guided by symmetry reasons, but
is more satisfactory from the physical point of view. Indeed, as we will see in sect.
3.5, it allows at T =0 to treat the mean field of particle and hole states on the same
footing.

Furthermore, it is expected that the single-particle energy, i.e. the pole of the
propagator (2.14) will be better approximated by solving eq. (3.10) rather than a
similar equation, obtained by replacing e(k) on the rh.s. by any lower order
approximation.

The mass operator is a complex quantity

M(k, Ey=V(k, E)+iW(k, E). (3.11)

When evaluated on the energy shell (E = e(k)), this quantity can be considered as
the optical-model potential. Its real and imaginary parts can be written

Vik)= V(k e(k))= Vi(k)+ Vo(k)+ Va(k)+- - -, (3.12a)

W(k)=Wi(k, e(k))= Wi(k)+ Wy(k)+ Wa(k)+- - -, (3.12b)

which reminds of the original perturbation series. Below, we will adopt the following

notation

Vpo: Vln Wpo: Wla Vco: V2, Wco: W2 . (313)

According to the usual terminology V,, is called the polarization potential and V,
the correlation potential.

3.3. APPROXIMATION SCHEME

In principle, the g-matrix and the series (3.5) have to be calculated, starting from
given values of temperature T and chemical potential u. However, as indicated in
our previous work?), the iterative procedure for solving the Bethe-Goldstone
equation may then become unstable. For this reason, we use the baryon density p
as an input and the unperturbed occupation probabilities are taken as

1
T i+exp[Ble(k)—@)]

n(k) (3.14)
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The normalization condition
%n(k)zp (3.15)

determines the parameter (. The latter is an approximate value of the chemical
potential, since eq. (3.15) cannot be true in general. The presence of the single-particle
spectrum (3.10) in relation (3.14) forces a double seif-consistency procedure in
solving the Bethe-Goldstone equation.

The quantities M, and M, (egs. (3.6), (3.7)) are calculated explicitly. The detail
of the calculation of M, is contained in appendix A. The results shown below refer
to the Paris potential ).

3.4. REAL PART OF THE OPTICAL-MODEL POTENTIAL

We present in fig. 1 the value of the real part of the optical-model potential in
nuclear matter calculated at the second order in the g-matrix, i.e.

V(k) = Violk)+ Veo(k) (3.16)
at zero temperature. We compare with the result (short-dashed curve) corresponding
to the usual self-consistency requirement.

V(k)=V(k)=Re M,(k, e V(k)), (3.17)

VpoVeo In nuclear matter at T=0
7 T T

{MeV)

Fig. 1. Polarization ( V,,), correlation (V,,) and total (V) single-particle potentials in cold nuclear matter
at normal density, as calculated with the Paris potential and the self-consistency condition (3.10). The
short-dashed line V;?)) gives the polarization potential when the usual continuous choice (3.9) is used.
The short-dashed line V' represents the first iteration of the correlation potential. See text for detail.
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where ¢'®(k) is solution of the eq. (3.9). Several interesting features arise from our
results; (i) the polarization potential V,, deepens considerably below kg, and
especially at small k, when one goes from self-consistency condition (3.9) to condi-
tion (3.10); (ii) the correlation potential V_, is repulsive and essentially applies to
states within the Fermi sea; (iii) the total potential V(k) is less attractive when the
correlation term is included ~ the reduction is of the order of 15 MeV.

The calculation of V,,, and V,, has been performed iteratively in order to achieve
self-consistency (3.10). We start with V;(Z,), calculate V2 (shown by the short dashes
in fig. 1) by eq. (3.7) with the spectrum ¢ (k), recalculate this spectrum e (k) by
adding VI to V0, recalculate V. by (3.6) with e/"(k), recalculate V), etc. In
this procedure, V,,(V,,) becomes gradually more attractive (repulsive). This can be
understood by considering egs. (3.6), (3.7) and the fact that the spectrum e(k) is
changing below the Fermi momentum kg essentially. An average (over k) variation
8V,, induces a variation 8V, which may be written as

M,
9E

5VPO=2< >5Vm, (3.18)
E=e(k)

where the brackets indicate the average over the Fermi sea. One thus have from the
one iteration to the other

oM
sVinty x2<—1 >5V§2> ) (3.19a)
E E=e(k)
Similarly, one has
M.
SV~ <(-——2) >av§;;> : (3.19b)
OE ) p=e(k)

In the average, M,/3E and dM,/JE are negative (see sect. 4), which explains the
observed variations in the numerical calculations. Egs. (3.19) give semi-quantitatively
the numerical values that we have obtained after iteration.

In fig. 2, we show the results for nonzero temperatures. As matter is heated, the
correlation as well as the polarization potential decreases in magnitude. The resulting
potential V(k) is not changing very much and becomes slightly deeper. This may
not be significant however. Indeed we have estimated M, and M, contributions
through the following approximations:

M;(k, E)=M,(k E)(p,(j)—1), (3.20a)
Mk, B}~ M,(k, E)[(Pl(j_))z‘ 1]. (3.20b)

In the first relation, which is an approximation of eq. (3.8) and in the second one,
which is proposed in ref. '), j is the average value of momentum j calculated on
the p, distribution (see sect. 5). Typically, j ~+/0.6ks. When the contributions (3.20)
are added to M, and M,, one obtains a potential V(k) as in fig. 3. It should be
noticed that these contributions are sizeable. For small k, M, and M, are of the
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Vpo'vco in nuclear matter
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Fig. 2. Polarization (V,,), correlation (V,,) and total (V) single-particle potential at T =7 and 10 MeV.

V(k) = V1+V2 +V3 +VL

0 T I I
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Fig. 3. Single-particle potential including third and fourth hole line corrections (see text).

order of 5-10 MeV, with opposite signs. The magnitude of M; and M, may cast
some doubt about the convergence of the series (3.5). However, these approximations
may not be reliable and are shown here for completeness. Even with M, and M,,
we achieve an improvement as compared to the usual M, approximation of the real
part of the optical-model potential. Indeed, the experimental values (in nuclei) are
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closer to 60 MeV than 80 MeV for deep lying states ') (in cold nuclei). A similar
conclusion is obtained in ref. *°).

3.5. IMAGINARY PART OF THE OPTICAL-MODEL POTENTIAL

In fig. 4, we give the imaginary part W,,(k) and V,.(k) (see eq. {(3.12)) of the
optical-model potential, for cold as well as heated nuclear matter. The quantity
Im W,,(k) is negative, while Im W, (k) is positive. The graphs of fig. 5 indicate
that the imaginary part of W, refers to the width (and the lifetime) of a hole state.
Similarly, Im W, corresponds to particle states. As can be seen from fig. 4, the

— T=0
— — T= 7 MeV
=== T=10MeV

‘ (MeV)

-20 -
=

40k -

Fig. 4. Polarization and correlation contributions to the imaginary part of the single-particle energy.

Self-consistency condition (3.10) is used. The dotted curve corresponds to the imaginary part at T=0,

when self-consistency condition (3.9) is adopted. It is explicitly shown wherever it differs from the full
line or the dashed line only.

o /- L -

¥ ¥ ¥

My Mo M3

Fig. 5. First order contributions to particle (upper row) and to hole {lower row) self-energy.
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imaginary part of the correlation potential is quite important in the bottom of the
Fermi sea. Fig. 4 also shows that when going from the ordinary self-consistency
requirement (3.9) to requirement (3.10), the absorptive potential increases somewhat.
The temperature dependence of W, (k) is similar to the one obtained in our previous
work ). The quantity W, (k) does show a stronger temperature dependence. We
also see that the tail extends above kr, which is a trivially expected effect. It is
interesting to note that W(k) exhibits a zero close to kg for the two temperatures
shown in fig. 4. This is consistent with egs. (2.8), (2.13), since the quantity 4 (roughly
the chemical potential) does not change very much between T =0 and 10 MeV (see
table 1).

3.6 COMPARISON WITH PREVIOUS WORKS

The previous calculations of the correlation graph are rather scarce. The oldest
and quite schematic calculations have been done by Brueckner and co-workers 1819y
K&hler *°) has performed a microscopic calculation using the Brueckner-Gammel
potential and the standard choice (U(k)=0 for k> k) for the single-particle
spectrum. More elaborate calculations have been done by Sartor using however the
semi-realistic Hamman-Ho Kim potential, with the self-consistency requirement
(3.9) [ref.?")] as well as with (3.10) [ref. *)]. The correlation graph off the energy
shell (E #e(k)) has been calculated by Sartor and Mahaux **) for the dilute
hard-sphere Fermi gas, by Bernard and Mahaux **) for a model s-wave interaction
and by Orland and Schaeffer °*) using the free scattering matrix and the Fermi-gas
phase space approximation. More recently, Hasse and Schuck %) have looked at
the problem. Yet, they use an effective gaussian interaction. The last four works
also calculate the imaginary part of the correlation graph.

As for the real part V,,, our results are very close to those obtained by Kohler
and by Sartor with the semi-realistic interaction. This could lead us to believe that
the value of V,, (eq. (3.7)) is largely dominated by phase space considerations. This
however partly contradicts our discussion of sect. 3.4, which concludes that the
energy denominators play an important role, and the results of ref. 24}, which yields
a very small value (~4 MeV) for V,,. Furthermore, the value obtained for the hard
sphere gas”’) is almost an order of magnitude smaller than ours. The model
calculation of ref. »®) concentrates on the region k= kg, for which a value of around
half of our prediction is obtained. Finally, the authors of refs. ***°) are able to make
predictions for the value V. (k)— V,(kg) only, since they look for corrections to
the Hartree-Fock field using a subtracted dispersion relation. Concerning this
relative quantity, there is a gross agreement between ref. 2%y and our work and, as
we just said above, a strong disagreement between ref. 2y and our results. The
difference between results of ref.?*) and ref.?) should be due to the effective
interaction. Comparing fig. 1 with ref. *°), we notice that the shape of V,,(k) is not
the same and that the maximum value (at k =0) is ~40% smaller than in our case.
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Also, in ref.?*) as well as in ref. ), V. (kg) = V,o(c0) =0. This indicates that the
correlation potential calculated in ref.*®) is not directly comparable with ours.
Indeed the two calculations are rather different in their premises. Ours is a purely
microscopic calculation based on a realistic two-body interaction, while ref. *°) aims
at calculating a correction to the Hartree-Fock field with the help of a phenomeno-
logical interaction, which, alone, cannot lead to saturation, and which reproduces,
in the Hartree-Fock picture, quantities like binding energy, radii, separation ener-
gies, etc....,that already contain some correlation effects while the latter are
precisely the aim of the calculation. Furthermore, our caleunlation incorporates a
fully self-consistent single-particle spectrum. In addition it seems that results of
ref. >°) are quite sensitive to the range of the effective interaction. This comparison
deserves to be cleared up. In conclusion, all the ambiguities linked with the use of
an effective interaction are removed in our approach.

Concerning the imaginary part W, our results are very close to Sartor’s calcula-
tion. Qur calculation shows that this quantity possesses a strong temperature depen-
dence. Let us finally note that comparing our results with those of Bernard and
Mahaux 2} (for W,,(kg, E)) reveals that off-shell effects are quite important.

4. The effective mass

4.1. INTRODUCTION

The effective mass appears as an important quantity in relation with various
phenomena like the density of states close to the Fermi level *°), the imaginary
potential %’), the coupling to surface vibrations ****°), the giant resonances them-
selves *°), and even nuclear transport theory in general *'"*). It is defined by (m =1)

R (41)
m* = .
de(k)/dk
Physically, it represents the ratio of the momentum of the particle to the (group)
velocity of its wave packet and is related to the mass operator through the relation

—1
m*z[l—i—%(—ﬁ;}{e M(k, e(k)):} | (4.2)
and to the k- and E-dependences of the mass operator by >*")
m* = mm, (4.3)
where
m=1—é%RehﬂkE)Eqw) (4.4)
and

1 0
=] 14— — k E
77 [ kakReM(’ )

:!— . (4.5)
E=e(k)
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4.2. RESULTS

We report in fig. 6 on our calculation of m*, when the mass operator is calculated
to the second order (in g) and with the self-consistency requirement (3.10). The
most important feature is the peak located close to kg at zero temperature. Histori-
cally, the existence of such a peak was conjectured in ref. %) and verified on an
explicit calculation with a semi-realistic interaction in ref. 3). This property was
also checked on model calculations *>?*). Finally, it was deduced in ref.>*) from
the phenomenology of the optical-model potential for finite nuclei. For the latter
case, the peak may have another origin from the one in nuclear matter. In our
calculation, the effective mass peaks to a value of around 1.15%,, close to values
quoted in refs. ***). The width of the peak is also consistent with what is suggested
in ref. %), with model calculation predictions ***’) and with the phenomenology of
finite nuclei **).

Effective mass m’ in nuclear matter

elkl-elkg) (Mev)
-40 -20 D 20 40 60 80
’ Tetkr Tmevyt T T
-60 -40 -20 0 20 40 60
i i i l T 1 H
1.2 =
— Tz 0
— — T= 7MeV
- = = T=10 MeV
1.0 — mpO,Tzo 1
08 = 4 S N\me____- B
7
0.6 i W i t | i
0.5 1.0 15 2.0 25
kifm™

Fig. 6. Nucleon effective mass eq. (4.6) at various temperatures. The curve with double dots and dashes
indicates the effective mass calculated with the polarization potential only.

When only the core-polarization contribution (M) is taken into account, with
either the ordinary self-consistency condition (3.9) (see ref. %)) or condition (3.10)
(see fig. 6), the enhancement of m™ lies above the Fermi level. The correlation
contribution drives the enhancement toward kr. To our knowledge, there is no
theoretical indication for having this maximum at precisely kg, nor for having a
symmetrical peak.

When the effective mass is calculated with the polarization field only, with the
self-consistency condition (3.9) (see ref. %)) or with condition (3.10) (see fig. 6), it

* The calculation of m* involving a numerical derivative of the spectrum e(k) (see eq. (4.1)), it has
a limited accuracy, which we estimate to be of the order of 0.05.
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exhibits a peak which is due to the wiggle appearing in the V,, curve around kg.
Physically, this peak arises from the excitation of the so-called core-polarization
states, whose density sharply increases above the Fermi energy. When the matter
is heated up these core-polarization states are more and more spread out and the
wiggle disappears. With the help of egs. (4.2), (3.11) and (3.16), one has, up to

second order
1 /dV,, dV. -t
Pl | 2 . :
" {1 k(dk dk)] (4.6)

Around kg, the derivative V,,,/dk rapidly decreases as T goes up. This, alone, would
make m™(~kg) strongly decreasing. The quantity d V., 4 is, on the contrary, fairly
constant around kg, when T increases. As a consequence, m™(~kg) decreases much
more slowly than it does when the correlation graph is left out>).

The value of m* for k < kg is largely dominated by the roughly parabolic behaviour
of V,, and V,, in this region. Grossly speaking, V,, and V,,, remain quadratic for
k<1fm™ as T increases. Taking the curvatures of potential curves (see figs. 1 and
2), one gets by this rough estimate m™ =~ 0.8 for T=0 and m*=0.95 for T =7 MeV.
Such a modification of V,,(k) for small k was not observed in our previous work,
where we used condition (3.9). This led us to believe that the broad shoulder in m*
is largely an effect of the self-consistency. Therefore, it is hard to ascribe it a precise
physical nature.

Our value for m*(k = kg) at zero temperature (~1.15, in the M, + M, approxima-
tion) is notably larger than the values (~0.8) quoted in refs. >>*>*¢) and than the
“experimental” value (~0.85) at the centre of the Pb nucleus®’). This difference
may come from the self-consistency scheme and/or from the interaction used. Eqgs.
(4.1) and (2.14) suggest that calculating the mass operator with the self-consistency
{3.10) should be favoured for the calculation of the effective mass. Doing so, one
increases (with respect to the usual condition (3.9)) the wound integral « (see sect.
5 and fig. 9), probably worsening at the same time the convergence of the hole line
series *°). It is then not surprising that including the M, and M, contributions makes
m*(kg) closer to the value of ref. >®). Anticipating on sect. 4.3, one can realize from
egs. (3.20) that inclusion of M; and M, decreases the quantities /, and ,, and
henceforth m (in eq. (4.7a)). Since  is largely independent of any self-consistency
scheme, m™ will be decreased, owing to eq. (4.3), when M; and M, are taken into
account. With our numerical values, we find that m(ky) becomes =~1.45 and,
consequently, m*(kg) becomes =0.95. The remaining difference between this value
and the one of ref. >*) can most probably be attributed to the specificity of the Paris
potential (this appears consistent with our earlier result of ref.*) where we already
found a maximum value of 0.9 for m™, considering the polarization contribution
only). This question need however be clarified and is presently under investigation.
Taking account of this possible interaction effect, one can reasonably conclude,
that, to a large extent, the hole line expansion up to M, is in fair agreement with
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the so-called CBF theory *°), at least for “‘hard” potentials, i.e. those giving a large
x-value.

4.3. THE E-MASS

It is interesting to look at the energy mass 7, which comes from the genuine
energy dependence of the effective interaction (4.2). It carries the simplest informa-
tion about the off-shell properties of the mass operator. In fig. 7, we give the value
of m calculated at the second order in g:

i = 17y + iy (4.72)
a
1, =1———Re M,(k, E) i (4.7b)
oE E=e(k)
_ d
W, =———Re M,(k E) (4.7¢)
oFE E=e(k)

The quantity @, is positive, as can be checked from eq. (3.7). The same is true !)
for m;—1. These properties are directly responsible for the variations of V,, and

E-mass f in nuclear matter
18F T T T T o8

-40.6

0.4

02

Fig. 7. Energy mass /1, (long dashes), 1, (short dashes) (eq. (4.7)) and their sum m (full curves) for
several temperatures.
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V,o from one iteration of their calculation to the other, as mentioned in sect. 3.4.
Similarly to the results of refs. *'~**), our calculation predicts a peak in i, above
kg and a peak in M, below kg at T = 0. Both m, and i, possess an infinite derivative
at k= kg. Let us notice that /1, has a plateau at k <kg for a value m,~=1.2.

A somewhat unexpected result shows up in the temperature dependence of m,
and m,. At T="7 MeV, the peak in m, has completely disappeared. On the other
hand the plateau below ky has risen a little bit. As a consequence a large bump
appears below kg. The peak of i, below ki has also collapsed and the tail above
ke has transformed into a little bump. At 10 MeV, the tendency is accentuated for
,, but the bump in 7, has decreased.

The collapse of the peak 1, (or ) is not really surprising. For a long time '),
it has been recognized that a sudden rise in the imaginary part W, close to the
threshold of real excitations (ke at T =0) gives a wiggle in V,, and a peak in ;.
The two quantities V,, and W, are linked by the dispersion relation at T=0

ety E—E

kul

dE’. (4.8)

Similarly, the quantity m, shows a maximum below ki because W, increases rapidly
below kg [ref.*)]. When T increases, the sudden rise or the threshold effects in
Im W, and Im W, are rapidly washed out, as indicated by fig. 4 and by fig. 3 of
ref. ?). The only surprising result is in fact the rise in the plateau of #1; below kg.
We are, however, confident in the accuracy of our calculation. Indeed, m™ can be
obtained directly through eq. (4.6) or indirectly through egs. (4.3)~(4.5) and (4.7a).
We did not calculate 77, but this quantity is a smooth function of k [ref. ')]. Therefore
the structure of m* should follow the structure of 7. Observation of figs. 6 and 7
shows they are clearly consistent with each other, despite the independent calculation
of m* and m and despite the lesser numerical accuracy of the calculation shown
in fig. 6.

4.4. THE LEVEL DENSITY PARAMETER

In ref.?), we have already paid some attention to the relationship between the
effective mass and the level density parameter. Strictly speaking, the latter quantity
is the coefficient of T in the low temperature expansion of the internal energy (at
fixed density)

U U a . _,
Z(T):Z(O)+ZT +ee (4.9)

The coeflicient a coming from the expansion of the usual (Brueckner)-Hartree-Fock
approximation

Uil v |7 5 K
Z=;2 ,J dkk n(k)[%*“/(k)] (4.10)

T Jo
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is given by

a 1 m*(m*+1)
._:___kF___._.__.._

4.
A 3p 2 ’ (4.11)

where m* is the effective mass at kg and T=0. This result is readily obtained by
using the Sommerfeld expansion of the Fermi distribution n(k), by taking into
account in lowest order the variation of u with temperature, and by neglecting the
temperature variation of V(k) and the derivative dm™/dk close to ke. Expression
(4.11) differs from eq. (5.9) of ref. %), because therein the variation of the chemical
potential is neglected. The Sommerfeld expansion of n(k) alone would give an
expansion of U of the form:

U U(T) ad) .,
= B Sl A o TN .
—=— T , (4.12)
where*
a(T) 1 [m* om*? }
=— 1 —k{(1+2m™)+ Vik . 4.13
A 3plL2 ( ) k () K=k (u) (@13

In ref. ) this expression is written down incorrectly. Therein, a factor 2 should be
removed from the first term in the r.h.s. of eq. (5.9). The quantity Uy(T) depends
upon T through the chemical potential u and through a possible variation of V(k)
with temperature. Taking account of the first effect (in lowest order only), one may
rewrite the first two terms of eq. (4.12) as

U U a*(T)
—(TY~=— () +———T 4.14
A( ) A( ) " , (4.14)
with
HT) 1 m* (1t m*
aX (1) _ 1 mrd+rm?) . (4.15)
A 3p 2 k= k(1 (T))

An expression like (4.14) has been recently used in experimental studies **Y which
aimed to look at the temperature dependence of the “apparent”™* level density
parameter. The same problem has been studied theoretically in refs. *>*"). Our
numerical values of m*, which decreases with temperature, as well as k(w), are in
favour of the conjecture that the observed decrease of a*(T) with increasing
temperature is due to the decrease of m*(k(u)). Presently, this is only a conjecture,
since surface effects *?) and collective excitations *®) could change the effective mass
sizeably. In our case, the variation of V(k) with temperature makes expressions
(4.14), with (4.15), rather different from the actual values of L(T). In other words,

* Here, a term containing a factor dm™/dk at k= k(u) has been neglected.

*% Such an analysis >®) concentrates on the relationship between U and T and is not directly related
to level density.
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fitting our numerical values of (T with an expression like (4.14) for T =0-10 MeV,
gives an average value of a® quite smaller than the phenomenological value of a
in nuclei and even smaller than the Hartree-Fock value with effective forces.

5. The momentum distribution

The momentum distribution p(k) (eq. (2.10)) can be calculated perturbaiively,
e.g. by introducing the perturbative series (3.5) in egs. (2.14), (2.13) and (2.11). As
explained in ref. *°), the perturbation series can also be obtained by drawing diagrams
for a one-body operator. In the Brueckner approach at T #0, one obtains up to
second order in the g-matrix, the diagrams shown in fig. 8. The first line, which
contains the diagrams present at T =0, may be rewritten as

p(k)=pi(k)+pa(k), (5.1)
with

pilk)=n(k)[2—m ], (5.2)
and

pok)=(1=n(k))ms, (5.3)

where 11, and M, are defined in eq. (4.7). The diagrams of the last line (fig. 8) do
not exist at 7 =0. They are allowed at T # 0, because a level may be occupied and
non-occupied at the same time. They however exactly cancel each other, in contradis-
tinction to the corresponding diagram in the perturbative series of the free energy
[see ref. **), for a discussion]. The contribution of the latter is proportional to T2
and be crudely estimated to be ~0.02-0.03 T°.

It is attractive to interpret eq. (5.2) as describing the depopulation due to the M,
term and eq. (5.3) to the population coming from the M, term. At T=0 the
depopulation is restricted below kr and the population above kp only. At finite
temperature, these boundaries are no longer strict.

The results of our calculation for the quantity p(k) (eq. (5.1)) are given by the
full curve in fig. 9, for T=0. We obtain the characteristic shape, with the infinite
derivatives of p(k) when k tends to kr from above and from below. One notices

w0 0 (D)

OO0,

Fig. 8. Lowest order diagrams for the momentum distribution p(k
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occupation probability at T=0
| T | T

ﬂ . p(k)

. plk) {ren)
05~ _ - - plk}, cond.{3.9) ]
| ; &‘“—-:-&\ ;
05 10 20 25

15
kifm™h)

Fig. 9. Momentum distribution p(k) (eq. (5.1)) for cold nuclear matter (full curve). The short-dashed

curve represents p(k) (eq. (5.1)) when the self-consistency condition (3.9) is used. The long-dashed

curve corresponds to the momentum distribution when correction due to the M; and M, contributions
is applied (see text for detail).

that the depletion of the Fermi sea is quite important. To fix the ideas, the parameter
x which can be defined as

k=1-p(k) (5.4)

(where k is defined in sect. 3.4), is ~0.25, which seems to be a typical value for all
very repulsive (hard core) potentials *®) in the Brueckner approximation. The vari-
ational calculation of p(k), made by Fantoni and Pandharipande **), using the vy,
interaction, yields a much smaller value, although it is pointed out that the tensor
correlations may bring « up to ~0.18. It should be noticed that the results are
sensitive to the self-consistency requirement. In fig. 9, we show the quantity (5.1)
when condition (3.9) is used. This effect was already pointed out by Sartor '),
although the sensitivity turns out to be larger for the Hamman-Ho Kim potential.

The discontinuity at kg is related to the E-mass. In our (M, + M,) approximation,
it is easily verified that

p(ke)—p(ke)=1+[1-m(ke) - o(kg)] , (5.5)
which appears as an approximation to the exact relation **)
1
m(ke)

We find p(k7)— p(ki)~0.35, which is half as large as the value found in ref. ),
including tensor correlations. Our value is very close to Sartor’s one %), for the
same self-consistency scheme (eq. (3.10)). With the usual self-consistency (3.9) we
find p(ky) — p(kE)~=0.5 whereas the author of ref. *) finds =0.70, close to the value

of ref. *°). This seems to indicate that the quenching of the discontinuity in p(k) = p, +
p, (eq. (5.1)) is partly due to a self-consistency effect. Therefore, if one uses

p(kg)—p(ki) = (5.6)
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self-consistency (3.10), the contributions of M, and M, become important and
should be included. As fig. 9 shows, the discontinuity then increases up to ~0.60.
If on the other hand, self-consistency (3.9) is used, the discontinuity in p,+p, is
larger (see fig. 9 and ref. °)), and the corresponding contributions of M, and M,
are decreased, due to egs. (3.20). The resulting discontinuity would be about the
same as above. This raises the question of choosing the proper self-consistency
scheme in the expansion series for p(k): the choice which gives the fastest conver-
gence of the expansion of p(k) is not necessarily the one which might be advocated
for the expansion of other quantities like B/ A, M(k, E), ...

We analyse the tail of the momentum distribution in fig. 10. Much interest has
been devoted recently to this quantity, especially in finite nuclei *™*"). We observe
that the distribution p(k) seems to be exponentially decreasing for k=2 fm™', with
the following form

p(k)=0.9123 exp (—k/0.5662 fm ") . (57
However, in the same interval (2<k=<2.8fm™"), one cannot exclude a power law
p(k)yeck™, (5.8)

where « is between 4 and 5. One cannot distinguish easily between the two forms
because the interval is rather narrow. There is no theoretical argument to prefer
one form to the other. The only condition is that p(k) should decrease *?) faster
than k™. To our knowledge, there is no example, even on a model, of an exponential

momentum distribution tail, T=0

i T li T
0= k2P (k) 7
plk)
0.01- —
{ i i 1
ke 2 3
kifm 1

Fig. 10. Tail of the momentum distribution (eq. (5.1)) for cold nuclear matter. Also shown are the curves
obtained after multiplication by k* and k*.
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tail for p(k) in an infinite system. In a finite system of non-interacting fermions,
such a tail seems to come from the analytical properties of the average potential .

Fig. 10 also shows that there is no maximum in k’p(k) in contradiction to a
conjecture by Day *®), nor in k*p(k), which however exhibits a plateau between 2
and 3 fm™". This plateau is indicative of the maximum which would occur around
2.2 fm " if expression (5.7) was correct everywhere above kg.

We believe that an exponential fall-off is more likely than an inverse power law
in our case. Indeed, the normalization of p(k) up to 2.8 fm™' amounts to 0.96. When
expression (5.7) is assumed beyond 2.8 fm ™, the total normalization reaches unity
within less than 1%. If eq. (5.8) is assumed, with @ <5, the total normalization is

occupation probability at T=7 MeV
T i i

T

0.5t

I
05

Fig. 11. Momentum distribution p(k) (eq. (5.1)) for nuclear matter at 7 MeV temperature (long dashes).

The short-dashed curve represents the distribution when correction due to M; and M, is applied. The

full curve corresponds to the unperturbed distribution n(k) (eq. (3.3)). The same quantity at T=0is
displayed for comparison.

occupation probability at T=10 MeV
T ] I

Fig. 12. Same as fig. 11 for T =10 MeV.
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=1.035. We recall that the normalization of p{k) should be one, irrespective of the
g-matrix. This also holds at finite temperature.

In figs. 11 and 12, we report on the calculation of the same quantity p(k) for
finite temperatures. The perhaps surprising feature is the fact that the depopulation
for small values of k is larger at 7 MeV compared to T =0, but this follows
automatically from the properties of the E-masses (see sect. 4.2). The wiggle around
ke comes from the continuous variation of p; and p,. The final distribution p(k)
appears (close to the chemical potential) as a Fermi distribution with a much larger
apparent temperature. We don’t know whether this could have observable con-
sequences. In figs. 11 and 12, we show, for illustrative purpose, the distribution
corrected for the M, and M, contributions.

6. The spectral function

The spectral function is related to the mass operator at T =0 through egs. (2.3),
(2.13), (2.14), and (3.11):
1 Wk, E)
a[E—k/2m—V(k E)P+[W(k E)]*’

S(k,E)= (6.1)
Roughly speaking, this function describes the spreading of a single-particle state.
The simplest expression which neglects the energy dependence of the mass operator
gives

1 Iy
S(k,E)=;m, (6.2)
with
Io=W(k, e(k)). (6.3)

It has been emphasized in the past **"**) that the energy dependence of V and W
plays an important role. If the latter is restricted to a linear approximation both for
V and W, one obtains

Sk, E)=— 3 6.4
(k. E) m (E—e(k))*m*+[Ty+(E —e(k)) iy ] (64)
where 1 is defined in sect. 4 and where iy is
aw
iy =—(k E . (6.5
w aE( ) e )

Expression (6.4) presents some interest in cases where the full E-dependence cannot
be calculated as in our case (due to the complexity of the calculation). Furthermore,
it displays qualitative effects of the E-dependence.

In fig. 13, we give our calculated values of S(k, E) for a typical case, T=0,p=
Po, k=0.55 kr. The energy dependence of V(k, E), responsible for the difference
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Spectral function,nk =055 kg, T=0
T i

_— ’r‘n‘:1,ﬁW=O m#l
- - —m2] -~ = sc (3.9
eq. (6.4} s.c. {3.10}

-50

Fig. 13. Spectral function S(k, E) for a hole state (k = 0.55 k) in cold nuclear matter (p = p,). Left side:

approximations (6.1) (long dashes), (6.4) without /iy, (short dashes) and with 7y (full curve). All these

curves correspond to the single-particle spectrum e(k) (in eq. (3.10)). Right side: approximation (6.4)
without riy,, and with self-consistency requirements (3.9) (short dashes) and (3.10) (full curve).

between the dashed curve (eq. (6.2)) and the dotted curve (eq. {(6.4), with iy = 0)
on the left, narrows the peak in the spectral function. The introduction of iy, (see
full curve, eq. (6.4)) brings substantial modifications: the peak is shifted towards
larger energies, narrowed and asymmetric. Of course, eq. (6.4) cannot be true for
large |E —e(k)|, since there eq. (2.6) is violated. However, the E-dependence of
W{(k, E) cannot be neglected for the calculation of the lifetime of hole states. In
our case, iy which refers to the correlation contribution only, goes from 0 at the
top of the Fermi sea to ~3 at the bottom.

On the right of fig. 13, we show the effect of the self-consistency, but neglecting
iy in eq. (6.4). The passage from self-consistency (3.9) to self-consistency (3.10)
has two effects: the peak energy is raised from —63 MeV to —51 MeV and the width
is increased. These modifications were already noticed in ref. ).

7. Conserving approximations

We mentioned in ref. ?) and in sect. 3.3, that the so-called Brueckner-Hartree-Fock
approximation is nonconserving. In particular, the so-called Hugenholtz-Van Hove
theorem *°), which for finite temperature can be stated as

prdhnd 7.1
w=, 7.1
where F is the free energy, is badly violated. Expression (7.1) should be considered
at the saturation point. Even though we did not calculate a saturation curve for the
M, + M, approximation with self-consistency (3.10), we can however be sure that
the latter is much better conserving that the M, approximation with (3.9). Indeed
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outside the saturation point, eq. (7.1) should be replaced by

F p
o= A -I—p s (7.2)
where p is the pressure. The latter will not change sizeably when going from one
approximation to the other. At p=p, and T =0 for the Paris potential, we obtained
in ref. *)p =—0.5 MeV - fm . Although the other approximation may change it by
50%, the argument below will be qualitatively valid. Around p=p,, p/p=~
—(4-6) MeV for T=0, and =—(2-3) MeV at T =10 MeV. One can see from table
1 that expression (7.2) is well fulfilled in our approximation, whereas it is badly
violated in the Brueckner-Hartree-Fock approximation. This supports the (approxi-
mate) validity of approximations (3.14)-(3.15). However, it is not known whether
eq. (7.2) would be still fulfilled when going farther in the hole line expansion.
Similarly, eq. (2.12) is automatically fulfilled in the M,+ M, approximation as
we indicated. Using (2.3), (2.13), (2.14), (3.6), (3.7), and eq. (7.3) of ref. '), one can
easily verify that the sum rule (2.7} is fulfilled in the M,+ M, approximation. We
point out that in sect. 6 we did not investigate all the E-dependence of S and for
that reason, eq. (6.4) is not conserving. Finally, egs. (2.8), (2.13), (2.14) imply that

sgnIm M(k,E—p)=—sgn(E—pu). (7.3)

In table 1, we report on the calculated (on shell) values of Im (M, + M,) at the
approximate chemical potential 4&: they turn out to be small compared to the typical
values of Im M(k, E).

In table 1, we indicate also the values of the internal energy per particle in the
M+ M, approximation with self-consistency (3.10) and compare them with the M,
approximation with self-consistency (3.9). We see that this quantity is lowered when

TABLE 1

Numerical values of the approximate chemical potential @ (eq. (3.14)), of the free energy
per nucleon F/A, of the internal energy per nucleon U/A and of the imaginary part of
the mass operator for three temperatures T

T 0 7 10
M+M, approximation I -21.12 —-26.10 —26.80
F/A —16.55 -20.90 —24.57
U/A ~16.55 -15.07 —13.54
ImM 0 -1.0 ~2.0
M, approximation s -26.12 —28.38 —29.38
F/A —13.50 —16.68 -20.29
U/A -13.50 ~12.0 -11.0

The upper part refers to the M;+ M, approximation with self-consistency (3.10). The
lower part corresponds to the M, approximation with self-consistency (3.9). All quantities
are in MeV.
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going to the M+ M, approximation. At this degree of approximation, the saturation
properties are probably worsened. Here, we did not try to improve upon this point.
According to some authors, this can be done by several methods *>*'**) whose
implication and discussion go beyond the scope of this paper.

8. Conclusion

We have concentrated our attention on single-particle properties of nuclear matter
both at zero and finite temperature. We have calculated, within the frame of a
Brueckner approach, the average field, up to second order in the renormalized
interaction. This had never been done before with a fully realistic interaction. [In
ref. *%), a microscopic calculation is performed with the same interaction, however
limited to first order.] Compared to the usual Brueckner-Hartree-Fock approxima-
tion, the so-called correlation contribution itself is introduced to the mean field.
The latter accounts for the influence of possible correlations (of the 2p-2h type)
present in the ground state on the propagation of a particle added to the system
and for the influence of possible creation of 2h-1p excitations on the propagation
of a hole. This addition of the correlation contribution is certainly better from the
physical point of view. Essentially, it is quantitatively important for single-particle
states below kp. We obtain an improvement of the predictions for the real part of
the average field, if one identifies this quantity in nuclear matter with the one felt
by the nucleons in deep-lying states in nuclei.

In our calculation, the average field can be decomposed into a M, contribution,
which describes the polarization of the medium and a M, contribution, which comes
from the correlations. This physical picture applies to particle states. Our results
show that both contributions to the mean field decrease in absolute value when the
temperature increases, but the temperature dependence is stronger for the polariz-
ation contribution.

One of our main motivations was the study of the nucleon effective mass m™ and
especially its temperature dependence. We confirm that at 7= 0, m™* exhibits a peak
around k. We also found that the peak gradually decreases when the matter is
heated up. The most important results however are the following: (i) the peak
decreases slowly compared to the situation where the correlation graph is neglected;
(ii) the value of m™ below kg is ~0.8 for all the temperatures up to 10 MeV. So,
even at T =0, the situation is different from what it is when the correlation graph
is neglected.

We also investigated the effects of the correlations on the momentum distribution
at large k, which seems to be exponentially decreasing, and on the spectral function,
for which we showed that the energy dependence of the imaginary part of the
correlation graph is important in the description of the spreading of the hole states.

Several problems deserve further attention. The first one is the problem of the
self-consistency requirement. We have included the correlation graph itself in the
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self-consistent determination of the single-particle energies entering in the calcula-
tion of the g-matrix. There is no compelling argument for doing so. One interest of
our choice is that it provides a (quasi)-conserving approximation, as we explained
in sect. 7. Moreover, if the effective mass is to be calculated by relation (4.1), it is
better to use the same choice in the perturbative calculation of the mass operator.
For a potential like the Paris potential, the perturbative series of M is unfortunately
not converging very fast with this choice. On the other hand, it seems that the same
choice (3.10) deteriorates the apparent converging properties for the binding
energy >°) and for the momentum distribution (compared to the more conventional
choice (3.9)). For the latter two quantities, the usual choice (3.9) appears to be
more efficient. In particular, self-consistency (3.10) does not guarantee all the usual
cancellations between graphs containing bubble insertions and those with potential
insertions '), in the expansion of the energy. The same seems to hold for the
expansion of p(k). This raises an important question of knowing whether the
self-consistency should be chosen differently depending upon the quantity under
investigation. This is an important problem which goes however beyond the scope
of this paper.

Other problems are linked with the physical interpretation of our results. For
instance, we still do not know whether the correlation contribution is very much
dependent on the fundamental interaction or whether it is dominated by phase
space. Also, the relation of our results with non-equilibrium methods, like the
Landau-Vlassov equation, should be investigated. For instance, our predictions for
the effective mass should influence the general transport properties of nuclear matter.
Also, the full energy dependence of the spectral function is certainly worthy of study.

Finally, the density dependence of the correlation graph deserves an extensive
study. To our knowledge, this has been investigated in ref. °°) only, where a linear
dependence is quoted.

We are very grateful to the FNRS Belgium, for the opportunity of using a
CRAY-XMP computer. Two of us (A.L. and J.C.) would like to thank the CRN
Strasbourg for the kind hospitality extended to them. We are also very grateful to
Prof. C. Mahaux for helpful discussions and for bringing to our knowledge the
results of ref. ).

Appendix A

EXPLICIT FORMULAE FOR THE CORRELATION CONTRIBUTION
The correlation contribution to the mass operator (3.7) is, with the notation of

sect. 2:

(kalgle(j) +e(D)1] 1>
E+e(a)—e(j)—e(l)—ie’

Mz(k,E)‘—"%; n(j)n()(1-n(a)) (A1)
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Let
g=3Gi-0, g=ik—a), Q=ik+a). (A2)

Using a partial wave decomposition of the g-matrix %) and the usual angle-averaging
procedure '***), one obtains:

My(k, E)= 5 “ dg dQqQ[1-n(V2¢+2Q*~k?)] '( dq' 9”P(q, Q)

7k

T8 " O et 5
X Z (2}+1)(2T+1) |gLL (qsqa Qa €y e—);

— , (A3)
JTSLL' E+e(\/2q2+202—k2)—-e+~e_—ia

where
e.=e([q?+ Q£ 2Viq'QP(q, Q)1 . (A4)

We have still to specify the domain of variation for the variables g, @ and ¢’. For
finite temperature there is no restriction and the quantity P(q’, Q), which represents
the angle-averaged value of n(j)n(l), is given by, in the approximation e(k)=
eo+ bk? (see ref.?)):

, _ 1 1. 1+exp(A-B)
P(q’Q)_I—exp(2A){H—Bml—kexp(A—i—B)}’ (A-3)
with
A=B(eg—p)+Bb¢*+Q%,  B=2Bbg'Q, (A.6)

and, of course B=T""

For T =0, it is more economical to delineate exactly the domain of variation of
the variables. This may be helpful also for numerical integration at T# 0. The
variable ¢’ is restricted to

g’ < kg. (A7)
The quantities ¢ and Q are limited to
Wke—k)<g<i(ketk), VU+ED-g’<Q=<q+k (A.82)
or
g=3k+ks), lg—kl=sQ=sgqg+k (A.8b)

when k<kg, and to
We—k)<qg<iketk), 3(K+ki)-¢’<Q=q+k, (A9a)
or

0<g=3ik—ky, lg—kl=Q=gq+k, (A.9b)
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or

q=3k+ks), |g—kl=Q=g+k, (A.9¢)
when k> kz. The function P(q’, Q) is then given by

(1, forO0<sg'sks—Q,

—g? =02
P(q', Q)= _33_2%_@_ ;

0, form$q’$kporfor0>klz.

for kp— Q<gq'<Vki-Q?, (A.10)

We took advantage of the fact that the g-matrix is known to weakly depend upon
the total c.m. momentum Q and evaluate it only at the average value (,,, which
we define as

f #Q Qn(lq’+ Qhn(lg'~ Q)

o2 (A11)
JfQMW+QWM¢—W)

Taking also Q,, in the energy denominator in eq. (A.3), the remaining integral over
Q is performed once for all.

We first calculate the g-matrix g7 over a set of mesh points in (g, g’) for each
partial wave up to 'Hs. An extension of the matrix inversion technique of ref. %)
is used, which takes proper account of the singularities of the energy denominator
introduced by the continuous single-particle spectrum. Performing the partial wave
summation, we obtain a function (g, ¢") which can be interpolated when necessary.
For a given E, we then search for poles of the denominator in eq. (A.3) and treat
the principal part integral over g’ as in ref.”). The imaginary part of M,(k, E) is
obtained straightforwardly once the poles have been determined. For model inter-
actions of the type used in ref. ?), we checked that at T =0, this procedure fully
agrees with the approach based on dispersion relations. Let us finally notice that
we calculate p(k) by evaluating M,(k, E) and M,(k, E) at the two values E = e(k}+
4 with 4 =4 MeV.
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