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Résumé - Pour un systéme de matiére nucléaire & densité normale, nous étu-
dions la contribution, au champ nucléaire moyen, des corrélations de 1'état
fondamental et ce, pour des températures nulle et finie. Nous travaillons
dans le cadre d'un développement en nombre de lignes trou en utilisant le po-
tentiel nucléon-nucléon de Paris. Nous mettons en exergue la relation exis-
tante avec le terme de collision de l'équation de Landau-Vlassov.

Abstract - Zero and finite temperature contribution of ground state correla-
tions to the nuclear mean field is studied for nuclear matter at normal den-
sity within the framework of the hole line expansion using the Paris poten-
tial. The connection with the collision term of the Landau-Vlassov equation
is exhibited.

I. INTRODUCTION

The knowledge of the nuclear mean field is very important to explain the sta-
tic as well as dynamic properties of nuclear systems. It is then highly desirable
to understand the properties of this mean field from first principles. By this
term, we here mean nuclear forces described by potentials in the frame of nonrela-
tivistic quantum mechanics. A very intensive effort has been devoted to the ground
state nuclear matter mean field in the past. Bul, despite of this effort, the mean
field is known in first order only, not in the bare interaction, but in the renor-
malized interaction which accounts for medium effects. Here, we present the first
microscopic calculation, based on a realistic NN interaction (namely the Paris po-
tential), which goes up to second order in the renormalized interaction and so ta-
kes the ground state correlations into account. The calculation is done for zero
and finite temperatures.

2. THE FORMALISM

The framework is the Brueckrer approach to nuclear matter (see ref. [1] for a
review), extended to finite temperature according to the method of ref. [2]. The
Green function, which describes at the same time the propagation of a particle ad-
ded to the medium and the one of a hole punched into the medium (of momentum kK
and energy E), can be written as (W = 1)

G(k,E) = —-—*2?;L~—n-—~ . (2.1)
Kk .
£ - o M(k,E)

The quantity M{k,E), known as the mass cperator, can be expanded in series of the
Brueckner reaction matrix g . The latter is related to the bare NN potential V
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through the Bethe-Goldstone equation

Yo / Q )
g(w} =V + V m g(w) s (2.2)

f§ being the Pauli operator for the intermediate states. Up to second order in g,
one has :

Mlk,E) = M (GE) + MGk, E) (2.3)
with
M1(k,E) = Ejn(j)<§j§g[g+e<3>]{ﬁ3> , (2.4)
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where e(k) 1is the single-particle energy for state k. It has to be determined
self-consistently as

2
|
e(k) = %ﬁ + Re M{k,e(k)) . (2.6)
In this scheme,
Mlk,e(k)) = V(k) + iW(k) , (2.7)

represents the momentum dependent complex mean field 1n nuclear matter (up to se-
cond order), identified to the optical-model potential. Egs. (2.2)-(2.4) corres-
pond to the diagrams contained in fig. 1. The diagram on the left is called pola-
risation diagram and the other one the correlation diagram.

4 These denominations remind of the physical meaning of the dia-
w”<:> . ﬁiZZ} grams for particle states. The first one describes the reac-
tion of the medium on the propagation of a particle due to the
4

polarisation produced by this particle. The correlation dia-
gram describes the effect of the correlations present in the
medium prior to the interaction of the particle. In Egs.
(2.3)-(2.7), the quantities n(k) are the occupation probabi-
lities in the unperturbed ground state
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First order con- n(k) = {1 + eXD[Eiéingj} ! 5 (2.8)

tributions to par-
ticle {upper row) wher¢ iy and the temperature T are related to the nucleon
and to hole (lower density o by
row) self-energy.
& nlk) . (2.9)
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[Fig. 1] I
3, THE MEAN FIELD

in Fig. 2, we present our results for the real part_of the correlation and, the
polarisation potentials for normal density pn = 0.17 fm™". We also present V(o)
the mean field calculated in the first order approximation. We see that the pola-
risation field deepens when going to second order. However, the addition of the re-
pulsive correlation field makes that globally, the mean field is less attractive
than in first order approximation. This is an interesting result, which brings a
better agreement with experiment, provided the deeplying single-particle states in-
side heavy nuclei can be considered as indicative of nuclear matter properties.

In Fig. 3, we show our results for finite temperature. Both the polarisation
and the correlation fields decrease as the matter is heated up, but the total poten-
tial does present a weak temperature dependence.
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4, THE EFFECTIVE MASS
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This important quantity, defined
as (m - 1) -80./ —:/ k
K Voo Ypo
* = -100F - 4
m de?ki ] 1] :-] 5 i 1
dk 1 2 3 3 2 3

. kifm™h
represents the true inertia of a par- "
ticle embedded in the medium. It is given in Fig. 4 for variocus temperatures. The
most important result is the peak appea-

Effective m - cle t -
N ey aseL ring around kp at zerc temperature. The
=40 =20 02 40 80 80 presence of such a peak in an extended sys-
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1.2k E culations up to second order in a semi-phe-
T Sy nomenological interaction done in ref. [3]
— = - T=10 MeY and of extended model calculations for a

hard sphere Fermi gas [4] and for a s-wave
interaction [5]. The presence of a simi-

0.8- ] e - lar peak in finite nuclei was already con-
. ) jectured in ref. [6]. It was demonstrated
ask 4 1 by Mahaux and Ngd [7] and lengly analysed
: : 74 ; : ' in subsequent works (see ref. [8] for a
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i list of references).‘ It is also predlcted
. . by semi-phenomenological calculations
Nucleon effective mass gt various tem- In nuclear matter, the pesk appears
peratures. The curve with double dots .. o ke , if only the polarisation con-

and dashes indicates the effective mass iy tion is retained (see Fig. 5). The
cglculated with the polarisation poten- correlation contribution drives the peak
tial only. [Fig. 4] to the Fermi level (approximately). Phy-
sically, this peak is due to the excita-

tion of core-polarized (1p-1h) states by a travelling patticle (or hele). These
states are characteristic of the bulk matter. On the contrary, the origin of the
peak in the finite nuclei is perhaps due to the excitation of surface vibrations [11]
although the coexistence of the two effects is more probable [121.

As the temperature increases, the peak collapses, but not as quickly as when
the polarisation is solely taken into account or as indicated by semi-phenomenologi-
cal calculations [10].



5. THE MOMENTUM DISTRIBUTION

An expansion similar to eq. (2.3) exists for the momentum distribution

which writes

p(k) ,

plk) = p (k) + pylk) (5.1)
with

0,(k) = n(k)[z-rm , (5.2)

p, (k) = (1-nli))m, (5.3)
and -
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M, = == M.(k,E) , i=1,2 (5.4)

1 3 i E-e(k)

The results of our calculation at T =
ke is due to the polarisation term and
the population above kr is due to the
correlation term. One can notice that
the depletion of the Fermi sea is guite
important. To illustrate this point,

we quote that the parameter w = 1-p(k),
where the bar indicates an average over
the Fermi sea, is ~ (.25 in our calcu-
lation. In Fig. 6, this value is com-
compared with other predictions for

p = Pg It turns cut that the Paris
potential should be classified as a
hard" potential. This property ob-
viously comes from the momentum de-
pendence of the potential.

0 are given in Fig. 5.
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various NN potentials : HT (Haftel and
Tabakin), HH {(Hamman-Ho Kim), RSC (Reid
Soft Core), vq4 (Pandharipande), RHC
(Reid Hard Core). The full dots refer to
the standard choice of the Brueckner-
Hartree-Fock approximation, the open dots
to the continuous choice, the open sgua-
res to egs. (2.3)-(2.6) and the lozenge
refers to variational calculations.

[Fig. 6]
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6. CONNECTION WITH THE LANDAU-VLASSOV EQUATION

It is generally believed that the off-equilibrium behaviour of nuclear sys-
tems should be governed by a Landau-Vlassov type of equation :
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where f(?,ﬁ,t) is the one-body Wigner distribution function and where f =
f(¥,%;,t). It has been shown recently [13] that both the mean field U and the
transition matrix W have to be calculated from Brueckner g-matrix. Of course, in
a non-quilibrium process, the g-matrix should be calculated with the instantaneocus
phase space occupation, but eguilibrium calculations can be taken as giving the
gross properties of U and W

Concerning U we have indicated that this field is nonlocal and depends upon
the momentum. In first approximation (in W), a ¥-dependence of the mean field U
would introduce the effective mass in the l.h.s. of eq. (6.1) which then would read

-
9 [4
l.h.s. = {5{ el
Fig. 4 indicates that this effect is non negligible. It has been studied phenomenc-
logically in ref. [14].
As for the structure of the collision term, there is an interesting relation-
ship with the mass operator. Indeed, one can write [1] from eq. (2.3)

+

V-0V (6.2)

In M, (k,e(k)) = 2 252 n(§)(1-n(a)) (1-n(b)) | & |ale(k)e (1) 1]EB>] “6(e (k) +e( 1) -
Jeb
e(a)-e(b)) (6.3)

and from eq. (2.4)

I M, (k,e(k)) = - % 22 n(§)n(2) (1-n(a)) |<IE [ gle(§)+e(2)1)Ea> |26 (e (k)+e(g)-
e
e(jr-e(8)) . (6.4)

Assuming that the transition probability W can be identified to the g-ma-
trix [13], one can write the collision term as

r.h.s. = - % [f Im Mq(k,e(k))+(1—f)lm Mz(k,e(k))] . (6.5)

Strictly speaking, eq. (6.5) holds in a uniform medium, but it is expected to be
correct locally in more general situations. The loss term is thus connected to the
imaginary part of the polarisation potential and the gain term to the imaginary part
of the correlation potential. At equilibrium, one should havé

Ay
Im Mz(k,e(k;> £

T W, (IGe(k)) = T-F - (6.6)

This relation is meaningful for T # 0 only. for our case, these two ratios are gi-
ven in Fig. 7 at two temperatures. We recall that M; and M4 are calculated
independently. Ffig. 7 shows that the relation (6.6) is very well fulfilled. The
observation that the collision term has the structure (6.5) will help to have a
better determination of the input data to be introduced in the collision term.
Furthermore, it can be a good starting point for the estimation of equilibrium ti-
mes and transport properties.

We want to thank C. Mahaux for his interesting comments.
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