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In this presentation:

B Review of R&D approaches for voltage stability
monitoring (model-free or measurement-based),

B |dentify those with potential to provide predictive
capability,

® Hybrid voltage stability monitoring (model-free +
contingency analysis),

M Faster tracking of network states and uses for
predictive voltage stability monitoring,

B |[dentify some research opportunities.



Reminder: problems, definitions
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B \oltage stability refers to the ability of a power system to maintain steady voltages
at all buses in the system after being subjected to a disturbance from a given

initial operating conditions.

FIDVR is the phenomenon whereby system voltage remains at significantly
reduced level for anywhere between several seconds to several tens of seconds

after a transmission, sub-transmission, or distribution fault has been cleared.



Is voltage (in)stability still important?

B YES, more than ever:

- this phenomenon has contributed to a number
of recent major blackouts/brownouts,

- growing interest from industry for real
applications (accelerated partly by more and
more presence of PMUSs),

- Industry interests focused on: predictive
capability, ease to implement and
interpret,...



Industry: known and expected problems

B Western France (voltage instability, known for
decades),

B Region of Marseille (low voltages, voltage instability),
B Germany (heavy transfer over long distances),

B The Netherlands (heavy transfer over long distances),
B BPA (USA): voltage instability and FIDVR,

B PG&E (USA): voltage instability (heavy transfers over
corridors),

B SCE (USA): FIDVR,
B SDG&E (USA): voltage instability, FIDVR,
B Hydro-Quebec: voltage instability.



Likely development
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Challenges in voltage stability monitoring

B Do better than simple monitoring of voltage
magnitudes:

- some methods detect instability when voltages are
obviously very low.

B Deal with the system evolution after a large
disturbance:

- amajority of voltage instability incidents caused by
sever outages,

- smooth load increase can be dealt with preventive
VSA.



Real-time VS monitoring: general
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B Measurement configuration: should be able to capture all relevant
changes (does not necessarily mean huge number of measurements?).

B Do we have enough measurements: YES but they offer different spatial
and temporal view of the system (SCADA good spatial — limited temporal,
while IEDs and PMUs offer better temporal but local view of the system). 8



A review of existing VS monitoring
approaches (model-free)

voltage stability monitoring
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Some observations on model-free methods

B Most of them useful when limited number of
measurements 1s available,

B Measurement devices should be placed at right
location(s),

B Sort of prediction: early warning signal (as
with Critical Slowing Down (CSD)) or
extrapolation (Thevenin equivalent),

B What Is missing with some of methods (CSD,
SVD of measurement matrix, Lyapunov
exponents) is demonstration on larger and
real-life systems.
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Which type of prediction - 1?

B Most adopted notion of prediction in power
systems is contingency analysis.

B Consequently, combining a model-free
monitoring scheme with contingency analysis
IS promising.

B Core idea: use a model-free approach for
continuous monitoring and if a pre-defined
threshold is reached trigger contingency
analysis.

B On the use of CA and an alternative (next
slide)...
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What type of prediction - 27
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About the use of Machine Learning -1

B Obvious “winner”: Decision Trees (research
considerations exist, evidence with real-life
systems exists, real-life applications ongoing),

M Few considerations (only research) of ANNSs,

B DTs do not necessarily require good temporal
view measurements but indeed make use of
them,

B A major practical issues: the choice of
attributes and setting up representative
learning set... 12



About the use of Machine Learning -2

B Suggested attributes (with PMUSs):
- squares of bus voltages,
- reactive power flows in lines,
- current in lines,
- generator reactive powers,
- combinations of above, ...

B Predictions based on all nodes of the related
path of the DTs (not only on the terminal
nodes)

14



Predictive VSM: hybrid approach (with
dynamic model)

B Full dynamic model
(requires high performances

/ computing architectures).
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B Any appropriate index can be used.
However the preferences go with:

- Simplicity,
- Easiness to implement and interpret.
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Faster than real-time dynamic simulation

B Use of stronger computational architectures
(multi-cores, multi-processors, clusters,...),

M Parallelization (CA is easy to parallelize),

B Many existing tolls upgraded for taking advantage
of stronger computational power,

B Some figures about faster simulations from ULg
follow (next slide).
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Faster than real-time dynamic simulations

(ULg)

Thierry Van Cutsem and Petros Aristidou

* use time-averaging to "filter"
out fast dynamics and concen-
trate on average evolution

» use for long-term dynamics

e use "stiff-decay"” (L-stable)
integration scheme

» use "large" time-steps

& use proper, ex-post, treatment
of discrete events

» use shared-memory parallel processing techniques
to accelerate the solution of the decomposed DAE
system
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* simulation can stop early if all

injectors become latent
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Predictive VSM: hybrid approach with

static models
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Static model able to compute
system state even when the
system is near instability or
unstable (for better accuracy
in prediction).

—> Results

B Target applications:

Predictive
control

- long-term voltage stability,
-  FIDVR,
- promises to use it even for short-term stability.
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Static models for CA

B As with dynamic simulations, use of stronger
computational architectures,

M Parallelization (CA is easy to parallelize),

B Static models able to find solution even for
unstable conditions,

- Power flow with AQ bus type (to avoid Jacobian
singularity at voltage instability point),

- Efficient continuation power flow + boundary
orbiting to compute VS boundary (PNNL),
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State reconstruction, tracking SE - 1
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State reconstruction, tracking SE -2
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What we can do with TSE -1 ?

B Provide a CA tool with initial snapshot,
B Provide a CA tool with updated load parameters,

B Provide a good initial guess for traditional SE
called upon request, and further a snapshot for a
CA tool,

B Anticipate generation limitations (OXL limits),

B Anticipate load response,
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What we can do with TSE -2 ?
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On visualization

PV curve
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Some research questions (personal view)

B How about the use of Statistical Process Control
techniques for monitoring and prediction?

B Why not further check some success stories in
other engineering fields (Online Failure Prediction
Methods)?

B How about some other early warnings of system
transitions methods (again some other fields
might offer good ideas)?

B Why not using temporal DTs (some work done at
ULg some time ago but never completed)?
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Some useful links

B www.pserc.wisc.edu
B www.dsatools.com (PowerTech Labs),

® ei.pnnl.gov (Pacific Northwest National
Laboratory),

M curent.utk.edu (Center for Ultra-wide-area Resilient
ENergy Transmission networks),

B www.naspi.org (North American Synchrophasor
Initiative),

M orbi.ulg.ac.be
| ...
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Thank you for your attention!

mevludin.glavic@ulg.ac.be
www.montefiore.ulg.ac.be/~glavic
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