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The isoentropes of symmetric nuclear matter are calculated in the Hartree—Fock—Skyrme approximation. They suggest
the possibility of a fragmentation instability during the expansion of an excited compressed nuclear fireball. Characteristic

expansion and instability times are discussed quantitatively.

The properties of nuclear matter at finite tempera-
ture have been studied for several years already. It has
been shown for the first time in refs. [1,2],that, in
the Hartree—Fock approximation, the nuclear matter
behaves like a van der Waals fluid. More precisely, cal-
culations assuming a uniform density and using either
phenomenological or more realistic [3] interactions
yield isothermal pressure curves typical of a van der
Waals fluid. The critical point is located around p,
~ 0.3 pg (pg = normal nuclear matter density) and
T, =~ 20 MeV. This question has recently received
much attention since new accelerators are operating
now in this parameter range.

The possibility of a liquid—gas transition in nuclei
has been pointed out recently [4]. We want to discuss
the problem here in relation with the expansion of a
nuclear fireball. We first discuss the main properties
of this expansion. Second, we present the isoentropic
curves of nuclear matter calculated in the Hartree—
Fock—Skyrme approximation. Third, we calculate the
expansion in a simple approximate model. Finally,

we discuss the possibility of the onset of a fragmenta- -

tion instability.

The expansion of a fireball can be viewed as the
transformation of the internal energy to the macro-
scopic outward flow. If this flow is not affected by
friction forces, the internal degrees of freedom and
the macroscopic flow degrees of freedom can be con-
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sidered as two coupled systems which exchange work
but no heat. Therefore the entropy of the (internal)
system is constant. This important property has been
conjectured by Sobel et al. [S] and recently discussed
by Bertsch and Siemens [6]. It is substantiated by the
cascade calculation of ref. [7] (see the remark below,
however). In such a perspective, the isothermal curves
are not relevant: the temperature of the system will
decrease during the expansion. We have calculated the
isoentropes for nuclear matter using the so-called
Skyrme III interaction. The formalism is exactly the
same as in ref. [1] and the same definition of the en-
tropy is used. The results are given in fig. 1. For large
values of the entropy per nucleon S/A4, the isoentrope
are increasing functions of the density. But for §/4

< 2, the curves present a negative slope for some val-
ues of p. In other words, in this region, the (isoentrop
compression modulus is negative. The system may be-
come unstable in this region.

During a nucleus—nucleus collision, the system hoj
fully reaches a state represented by a point in the up-
per part of fig. 1, where the pressure is positive, The
latter makes the system to expand along an isoentrop
For §/A4 larger than 2, the pressure remains positive
and the expansion will proceed unceasingly. The sys-
tem may be viewed as a gas all the time. Occasionally
the nucleons may form composites in this expansion,
just by nuclear reactions as is well understood in the
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Fig. 1. Isotherms (dashed curves) and isoentropes (full curves)
for symmetric nuclear matter in the Hartree—Fock—Skyrme
interaction. They give the pressure p as a function of the
baryon density p. The so-called Skyrme III force is used. For
further detail, see refs. [1,2]. The values of the entropy per
nucleon is indicated for each of the isoentropes. The isotherms
are given for temperatures from T = 2 (bottom) to T = 22
MeV (top) by steps of 2 MeV. The 7 = 0 isotherm coincides
with the §/4 = 0 isoentrope.

dilute gas limit, On the other hand, if §/4 is less than
2 the system may reach the region where the pressure
is negative. The latter develops a force which tends to
reverse the outward motion. If the initial pressure is
not very important the system will oscillate around the
equilibrium point (p = 0). If the initial pressure is suf-
ficiently large, the system may eventually reach the in-
stability zone. What may happen there depends upon
the different characteristic times: equilibration time,
expansion time, typical time for the onset of the in-
stability. We first try to elucidate the question of the
expansion time.

The expansion of a compressed nuclear system may
be described quantitatively in the following simple mod-
el. We assume the system may be represented by a
sphere of uniform particle density p, which is a func-
tion of time ¢. Let p be the time derivative of p. The
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following velocity field

o) =~ 5(slp) 7 e

guarantees the conservation of mass at any time. One
can thus calculate the kinetic energy associated with
the macroscopic flow (in a non-relativistic approach):

R
M 243, = 201 72
K 2fpu dor 27rpM{v(r)r dr, 2)

where R is the fireball radius. If 4 is the mass number
and M the nucleon mass, we can write

=5 (3/4m)/3MAS/3 520815, ®)

The internal energy U is assumed to come from the
bulk energy only. It can be written as U(S, p) where §
and p are the instantaneous entropy and density. The
time evolution of the system is governed by the con-
servation law:

dK + U)/dr=0. (4)
Along an isoentrope, one has
dUjdt = —pd¥V/de, (5)

where V is the volume. Using eq. (3} and after a little
algebra, one finds the following equation for the evolu-
tion along an isoentrope

P —252/p=—Cp(p)p¥3, (6)
with
C=1/[4 (3/4mY3MA2/3]. N

In eq. (6), p(p) represents the pressure along the iso-
entrope {see fig. 1). This equation clearly shows that at
equilibrium, the pressure vanishes. In this model, the
surface contribution to the energy is left out. In the
actual free isoentropic expansion of a fluid, the density
may be uniform all the time, but not the pressure, nor
the temperature [8]. However, besides these local vari-
ations, the evolution of the average quantities is solely
determined by conservation laws. Therefore, in egs. (5),
(6), p is to be interpreted as the average pressure. We
present in figs. 2 and 3 the results of the integration of
eq. (6) for different values of §/4. We choose 4 = 200
to minimize the effect of the surface energy. At the
initial time the system is compressed and left at rest
[b=0)=0].

For §/A4 = 1, the system oscillates harmonically
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Fig. 2. Time evolution of

the density of an expanding fireball,

according to eq. {(6) and, for different values of the initial den-
sity. At the initial time ¢ = 0, the time derivative of the densi-

ty p vanishes. The system
(fig. 1). The dashes at the

evolves along the iscentrope §/4 = 1
lower left corner indicate the upper

density of the instability zone for the isoentrope.

around the equilibrium density Peq = 0.129 fm—3, pro-
vided the starting density is not far from this value. The
period of oscillation {r & fm/c ~ 0.23 X 10~ 21 5) is, as
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it should, given by
7= 2n/ {Cpezolﬁ (dp/dp)p mpeqj Yz

obtained by making a linear approximation of p(p)

isoentropic expansion
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around the equilibrium point. For larger values of
p(z = 0) the oscillation starts to be anharmonic and
period increases because of the non-linearity of eq.
Finally, for p(¢=0)~ 0.25 fm—3, the system expa:
for ever. For times later than ~0.5 X 10-22 5, it sta
in the instability zone. For §/4 = 1.5 and 2, the evc
tion pattern is qualitatively the same. Smaller value:
o{r =0} are however required to obtain a continuot
expansion of the fireball: ~0.2 fm=3 for §/4 = 1.5
~0.16 fm—3 for §/4 = 2 respectively. Note that fo
S/4 = 1, the system penetrates the instability zone
in the oscillatory regime [see fig. 1 and p(t=0)~ 0
fm—3]. The results of figs. 2, 3 determine the time
scale for the non-oscillatory expansion. This time m
be considered as the time necessary to reach p = 0.
fm=3, for which the interactions do not seem to pl:
role any more. We can consider that 7, ~60 fm/c
(~0.2 X 10~ 2L5) or even smaller. It is smaller than
oscillation period arcund the equilibrium point.

Let us discuss the conditions for reaching the ins
bility zone. First, one has to build a system with no
too large an entropy (8/4 < 2). Such an instability
seems thus to be ruled out in the composite produc
in the heavy ion collisions around 1 GeV/4, due to
the large entropy production [7,91. A second condi
tion is that the maximum density should be slightly
larger than normal nuclear matter density. Looking
fig. 1, one can find out the corresponding temperatt
of the fireball prior to the expansion. One finally ca
say that these conditions are expectedly encountere
in symmetric collisions around £, /4 ~ 100 MeV.
The precise value cannot be stated without a model
for the compression phase. The developments at hig
energy indicate that too much entropy would be crt
ed by shock waves [10]. This would imply that ave
asymmetric system would be preferable to a symme
ric one,

A second condition is that the (thermal} equilibr
tion time is small compared to z,,. As an estimate w
can consider

foq & puia), {

where v is the average velocity and where (o) is the
average NN cross section corrected {or the Pauli priv
ciple [11]. Using v~ vp and () ~ 20 mb, we find t
foq Slex for a large range of values of p.

Another condition to be met is that the characte

tic time scale ¢, for the growth of the instability
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should be smaller than the time required by the system
to cross the instability, i.e. 7o, for practical purposes.
The time #;;,  may be estimated in the following way.
Let us consider an extended system with uniform den-
sity § and let us investigate the stability against an os-
cillatory modification of the type

p(r)=p +asin{k-r). (10)

Again, at this density modification is associated a veloc-
ity field

v(r) = (&/p) (k/k*) cos(k 1), (11

which guarantees the continuity equation. This intro-
duces a modification in the kinetic energy, which in
lowest order, is

5K = (M[4p) Va2 /k2, (12)

where V is the volume of the system (once again, sur-
face effects are neglected). If H is the bulk energy den-
sity, calculated as for fig. 1, the modification of U is
given by

sU = 1@H/3p)s [p(r) — 5]

+1 @2H/pY)g [p(r) — 512 +... . (13)
Neglecting surface effects, one has in lowest (ie.in
second) order

8U = (1/4p) (dp/op)s a* V. (14)

Egs. (12), (14) provide the basis for a small amplitude
theory. Writing a(¢) = a exp(iwt), one readily sees
that the system is stable against oscillatory perturba-
tions as long as (dp/dp)g is positive. If (dp/dp)g is
negative, the amplitude a(¢) will grow exponentially
[~exp('n)] with

I'=k[-M-1(0p/ap)s] V2. (15)

For typical values (k ~ 0.5 fm~1, 5 ~ 0.05 fm—3, §/A4
~1.5) of the instability zone, one has ;= T'~1
~20 fm/c, smaller than 7., . The long wavelength (k <)
instabilities will set in much slower. The small wave-
length (k >) instabilities are probably very sensitive to
surface energy effects, i.e. to terms in Vp in the energy
density functional H. Consequently, the size of the frag-
ments arising from the instability are sensitive to sur-
face effects and will be treated in a later work.

Still other conditions are required for the existence
of a fragmentation instability. First, the system should
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not evaporate too much nucleons before reaching the
instability zone. Estimates by Curtin et al. [12] indi-
cate that for sufficiently low entropy (or temperature)
the characteristic time of the evaporation is compar-
able with #,,. The question may be more intricate,
however. The gross lines of the scheme proposed here
may be preserved, in the presence of evaporation, pro-
vided the residual system keeps roughly the same den-
sity and the same entropy. A last point concerns the
nuclear viscosity. If the latter is important, the system
does not follow an iscentrope: entropy is produced.
The giant monopole resonance, which may be viewed
as a small oscillation around an equilibrium point (p=0
for small entropy, is damped, indicating a viscous mo-
tion. The damping is not very important however (I'/
#w ~ 0.3) and, in fact, half of the width only may be
attributed to the viscosity, the rest is due to the cou-
pling to the continuum [13].

In conclusion, we have presented a scheme where an
excited compressed system can develop a fragmenta-
tion instability during its isoentropic expansion. The
time scale for the expansion, for the thermal equilibra-
tion and for the onset of the instability are consistent
with this possibility. The entropy per nucleon should
be smaller than 2 units, and probably even smaller, be-
cause of possible viscosity and evaporation effects,
which are not yet well evaluated.

We are very grateful to Professor L. Van Hove for
an interesting discussion and for pointing out an error
in the first version of the manuscript.
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