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A simple model for calculating the particle-vibration form factor is studied. Explicit 
expressions of the latter quantity are worked out for various kinds of vibrations, 
assuming a static, zero range effective interaction. Numerical results for (T=0)  and (T 
= 1) octupole vibrations, for Fermi and Gamow-Teller vibrations are given. The influ- 
ence of the range of the effective interaction is discussed in relation with the nature of 
the vibration. 

I. Introduction 

The interaction between a valence (or incoming) nu- 
cleon and a nuclear core seems to play an important 
role in various phenomena like the compression of 
the single-particle levels near the Fermi sea [1-3], 
the contraction of nuclear valence orbitals [1, 4] and 
the radiative capture of nucleons by atomic nuclei. 
The description of this coupling has gone in two 
main directions. On the one hand, one adopts a 
phenomenological view, assuming that the core 
can vibrate and that these vibrations can be de- 
scribed by a phonon field. An important quantity 
entering into this picture is the so-called form factor 
which essentially describes the probability of excit- 
ing the one-phonon state as a function of the po- 
sition of the valence nucleon, it is usually thought 
that the form factor peaks at the nuclear surface, an 
argument based on some hydrodynamical models 
[5]. 
On the other hand, in the recent years, the micro- 
scopic description of the particle-vibration coupling 
has made substantial progress. In this approach, the 
vibrational state is viewed as a superposition of par- 
ticle-hole excitations of the Hartree-Fock ground 
state. The probability of exciting the vibration is 
related to the matrix element of some effective in- 
teraction between the one-particle and the one-par- 
ticle plus vibration states. This approach is very 
promising. In particular, it shows that the particle- 

vibration coupling compresses the density of the 
single-particle states near the Fermi surface [3]. 
However, it requires an important computational 
effort, that must be repeated for every nucleus. For 
the analysis of the radiative capture of nucleons or 
of the deep inelastic collisions between heavy ions, 
processes which are already quite complex, the 
microscopic description of the vibration is prohib- 
ited for practical reasons and one has to rely upon 
the phenomenological description. A good knowl- 
edge of the form factor is then desirable. We are, 
however, far from this goal, since at least some of 
the radiative capture data are analyzed (in the frame 
of the direct-semi-direct model) with a volume form 
factor [6, 7]. 
We would like to clarify the issue by a kind of 
intermediate approach. What we do essentially is to 
assume that the vibrational (giant) state exhausts the 
non energy weighted sum rule relative to some oper- 
ator with the same quantum numbers. This permits 
us to construct this state in a simple manner. The 
next step is to write the interaction hamiltonian in a 
microscopic manner (i.e., with an effective nucleon- 
nucleon interaction) and in a macroscopic form (in- 
volving the amplitude of the vibration). A compari- 
son of the matrix elements yield the expression of 
the form factor. The same arguments have been ad- 
vanced in [6, 8], but have not been developped. 
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In I-9], we have briefly reported on the results of the 
calculations we made for the dipole and quadrupole 
vibrations. We showed that the shape of the form 
factor lies in between the surface and volume forms. 
Our purpose here is threefold. Firstly, we want to 
give the derivation of the expression of the form 
factor, for many different vibrations, using a static 
zero-range interaction. We study center of mass cor- 
rections (this point was overlooked in [9]). Secondly, 
we report on numerical results for octupole, Fermi 
and Gamow-Teller vibrations. Finally, we discuss 
the importance of the effective interaction and in- 
dicate how our conclusions may change if one goes 
to more complicated effective interactions. 

II. The Model  

The interaction between an incident valence nucleon 
and the core can be given under the microscopic 
form 

Hi,,,t = ~" v(x, xi), (2.1) 
i 

where x represents the space, spin and isospin coor- 
dinates for the valence nucleon and where x~ stands 
for the same coordinates of the ith nucleon of the 
core. For simplicity, we will consider first a static 
contact interaction: 

v(x, xi) = 6 ( r -  ri) 

�9 [Po + Ps o.  o i + Pr ~" zi + Prs a" o i z. ri]. (2.2) 

The interaction hamiltonian can also be written as a 
scalar product of the irreductible tensors relative to 
the nucleon (J//,) and to the core (Au(r)): 

Hin t = ~ P. Au(r) Jg., (2.3) 

where/~ stands for/~= [ L M T M r S M s ]  and where 

~{. = YL*M(~) ~sMs r/rMT, (2.4a) 

6(r--~) 
Au(r)= ~ ~ ~SMs(i) ~/rMT(i) YLM((2i), (2.4b) 

i 

~SMs = t/rM~- = 1, (2.4 C) 

for S = 0 and T=  0, 

~sM~ = ~ (2.4 d) 

r/rM~ = z~t~, (2.4e) 

for S = 1 and T=  1, respectively. The a and r are the 
usual Pauli matrices in spin and isospin spaces. The 

quantity P, depends upon the indices S and T of the 
set y only, in the case of the interaction (2.2). 
Alternatively, the interaction hamiltonian can be 
written in the following macroscopic form: 

HI. t = ~ k~, h~,(r) jill. ~., (2.5) 
/1 

where % is now the collective coordinate associated 
with the vibration of the core, k, is the coupling 
constant and h.(r) is the form factor. The way we 
calculate h, can be described in the three following 
steps: 

( i )  For a given multipole g, we assume that the 
giant resonance state [G,> is related to the ground 
state 10> by: 

Q,lO> (2.6t 
IG,> = <0IQ~- Q.I 0> '/2' 

where Q, is a one-body operator of multipolarity #: 

Q, = ~ f (rl) ~SMs(i) tlTMT(i) YCM((2,). (2.7) 
i 

Relation (2.6) amounts to assume that the state [G,> 
exhausts the non-energy weighted sum rule for the 
operator Q,. 

( i i )  The vibration is described as a one-phonon 
state. More precisely, we assume that the giant reso- 
nance state is a pure one-phonon state relative to 
the collective variable e, ,  while the ground state is 
the zero-phonon state. Equivalently, we require: 

<G,iHi.,l 0> = (1 giH~ntl 0>, (2.8) 

where the states on the r.h.s, are the one-phonon 
and zero-phonon state respectively. From (2.3), (2.5) 
and (2.8), we get 

Pu(GulAg(r)I 0 > = k ,  hu(r) ( l#l~. l  0>. (2.9) 

( i i i )  We assume that Q. and c~. have the same 
matrix elements between the ground state and the 
giant resonance state. In other words, we assume 
that Q. provides a microscopic description of the 
collective coordinate. With the help of (2.6), we get: 

k.  hu(r)=P (01Q2 A.(r)l 0> (2.10) 
" (01Q2 Q,I0)  " 

Because of (2.4b) and (2.7), Q. can be written as 

Q. = ~ f ( r )  Au(r) r 2 dr. (2.11) 
0 

If we demand that hu(r) satisfies the normalization 
condition 
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S hu(r) f(r) rZdr= 1, (2.12) 
0 

we get 

k .=P .  (2.13) 

and 

h.(r) = <OIQ+ A.(r)l O> (2.14) 
<OlQ2 Qu[O) " 

III. Results for Different Multipoles 

We will calculate here huff) using the simplest ap- 
proximation, namely the Slater determinant approxi- 
mation for the ground state. We start with the 
most studied case of the isoscalar and isovector 
parts of the electric multipoles. As usual for these 
cases, we will choose f (r)=r L. 

III.1. The Isovector Multipoles 

This case correspond to L=kO, ML=M, S=O, T= 1, 
M s = M r =0. Equations (2.4b) and (2.7) become 

1 
Au(r)=r~ ~i %i a(r-ri) YLM((2i), (3.1) 

Q,= ~ 753i r, L YLM(Q~). (3.2) 
i 

The operators Q+ A u and Q~ Qu entering in (2.10) 
are each composed of a sum of a one-body and a 
two-body operators 

Qu ~ A.=~ O,(i)+�89 ~ 02(i,j), (3.3) 
i i * j  

where 

o, (i) = a ( r -  r~) r~l Y~g~2,)l z (3.4) 
r 2 

02(i,j)= ~ {r~ b(r--rj) Yffi(C2i) YLM(g2j) 

+r~ 5(r--ri) YffM(Oj) YLM(f2i)} 273i g3j" (3.5) 

Similarly, 

Q~- Q u = ~  ~I(i)-F�89 2 ~z(i,J) , 
i i # j  

with 

~1 ( i) = ri 2 q YL2u(G)I 2, 

(2(i,j) = r/L r? { Y~M((2i) YaM(Q j) 
+ YL*M(~j) YLM(G)} %~ % r  

(3.6) 

(3.7a) 

(3.7b) 

By using the standard techniques, we get: 

<olo~1 o> = r  ~ p(r), (3.8) 

where p(r) is the nucleon core density, and 

<OLO21 0>DIR=2 2 rnr mr O{(r) ~ d?2,(q) r~ +2 dr~ 
a b 

F~ (l~ m=�89 too) 2 (lb rn~�89 rob) 2 ( 2 L +  l) 

mflmfl, 

" ( / ;  --lbmt~ L) (~ ',,0 L)(~ 0'b O)" ,3.9) 

For the odd multipoles, this matrix element vanishes 
because of the last two 3j-symbols. As for the even 
multipoles, this property is not true in general, but it 
holds for L = 2 ,  as it can be proven by direct calcu- 
lation using the particular values of the 3j-symbols. 
For the exchange term, we get 

<Ol0210>Ex = - ~ ~ 6m~ ~b G(r) G(r) 
a b 

-j" q~=(r,) gbb(rl) r[ "+2 dq [J((2)] 2, 

with 

L 
o 

(3.10a) 

m ~  m f l  
m;, 

(1<, m~ �89 . m,) fit, m,�89 m,fib mh) 

. /|[a L [b )<__)mr (3.10b) 
\ m: M - mfl / 

Using a well-known relation between the 3j- and 6j- 
symbols [10], we finally get: 

(010210>Ex = - ~  F ~ o  m~ r G(r) 
[a] [b] 

"S q~a(rI) (/)b(r2) rl L+2 d r l  

(2/ ,+ 1) (2/,,+ 1) (2j ,+ 1) (2/b+ 1) 

4;z 

0 ~ l.J" (3.11) 

The symbol [a] means that the summation over the 
magnetic quantum numbers has already been per- 
formed. The matrix elements of (l and (2 can be 
obtained by mere substitution. We gather the results 
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and give the final form of hu(r) 

r L p(r) -  FL(r ) 
hu(r) = 

A ~ < r 2 L } - H  L 
(3.12) 

where (r  zL) is the 2/~ h moment of the density distri- 
bution. The function FL(r ) is given by 

Fdr) = ,y_. y 4'~ 4'.(") 
[al [bl 

1 
4n (2/~+ 1) (21b+ 1) (2ja+ 1) (2jb+ 1) 

. (~  L (3.13) 

where we have used the short hand notation 

r~ = ~ dr 4',(r) 4'b(r) r L + 2 dr. (3.14) 

The value of H L is 

..L ~1 
H L = ~ ~ 6,, ~.~ 'i,h 4n- (2 I, + I) (2 l b + 1) (2j, + 1) 

[a] [bl *" 

With the help of (3.13)-(3.15), it is easy to check that 
h,(r) (3.12) is normalized as (2.12). 
If the quantities F L and H L are neglected, h,(r) re- 
duces to the so-called volume form factor, which has 
been used extensively in the frame of the direct- 
semi-direct model of fast neutron radiative capture. 
In [9], we have calculated h,(r), using (3.12) for the 
dipole and the quadrupole cases and we have shown 

that hu(r) lies in between the so-called surface 

(rL-ld[')] dr ] and volume ( ~ r  Lp) forms. This is also 

the case for the octupole vibrations, as indicated by 
Fig. 1, although our results come closer to the sur- 
face form factor. The single-particle states are calcu- 
lated from the average potential constructed by Bear 
and Hodgson [11]. We have, however, neglected the 
energy dependence of the well depth for simplicity. 

111.2. 7he Isoscalar Multipoles 

For this case (T=S=0) ,  the factors containing the 
m~'s in (3.5) and (3.10) disappear, but it is easy to  
check that the final results (3.12)-(3.15) remain un- 
changed. 

III.3. The Fermi Multipoles 

So we denote the multipoles for which M L = M ,  S 
=0, Ms=O, T = I ,  MT=I .  Physically, they corre- 
spond to the excitation, through a (p,n) reaction, to 
the isobaric analog state (for L=0)  or to the analog 
giant dipole resonance (for L =  1). For the operator 
~+ z ~, it is straightforward to check that 

h , ( r ) -  N 2 L , 
4n (r ) . - H  L 

(3.16) 

In this formula, p. is the neutron density and (r:L) ,  
is the associated 2/2 u moment. The quantitives F~ 
and HI are given (for L = 2  and L= o d d )  by (3.13) 
and (3.15) respectively, provided the factor 5,,~~ . . . .  
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Fig. 1. Particle-vibration form factor for the (T=0) 
nad (T= 1) octupole vibrations (full curves). For 
comparison, the so-called volume (long dashes) and 
surface (short dashes) shapes are given 
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F i g .  2. S a m e  as  F ig .  l ,  f o r  t h e  L =  1 F e r m i  t r a n s i t i o n s  

is replaced by 6,n~,,l/26,~b, 12' If the operator 

r r+~ is considered, the results are obtained by in- 
terchanging neutrons and protons. 
Let us now compare the results for z+r_ / ,  z = ~ ,  
r z+/ for a given L. For  L = I ,  it is easy to verify 
that if N = Z and if the neutron and proton orbitals 
of identical quantum numbers are the same, all the 
three h,'s are the same. If N ~ Z  and if the orbitals 
are calculated in a charge-dependent mean field as 
usual, the hu's are nearly equal as shown by Fig. 2 
and Fig. 1 of [9]. 
There is an interesting feature of our model. For L 
=0,  direct inspection of Eqs. (3.9) and (3.10) shows 
that the exchange term vanishes while the direct 
term does not. In fact, the L = 0 ,  ~+ r_i Fermi mul- 
tipole corresponds to 

h,(r) = p,(r)- 4 n N pv(r) (3.17) 
N 
- - - N Z  
4n 

N Z 
In the approximation p, = ~  p, pp = ~  p, we get 

h.(r)  = A p(r). (3.18) 

The same result holds for the r=z=~ and r_ r+i terms. 
This quantity is proportional to the density p and 
can be identified to the shape of the v~ term in the 
Lane model [12] (i.e. to the isovector average poten- 
tial), since for these quantum numbers, the interac- 
tion (2.5) has the usual t . T  form. Our calculation 
indicates that Vl should be taken as constant within 
the nuclear volume, as it is usually done [13]. 

111.4. The S= 1 Multipoles 

In this case, the formulae get complicated, and the 
geometrical factor can only be put into a closed 
form if the nucleus is spin-saturated, i.e. if both the j 

=1+�89 and " 1 .1=1- 7 subshells are occupied for any 
value of 1. For S = I ,  Ms=O (the o=cr~ part of the 
interaction), it can be shown that h~(r) has still the 
same structure as in (3.12), with, now: 

[HL~JFL(r)~=,~V ~ ~ (21,,+ 1)(2/b+ 1) 
. o o ~bl,, o~3,. ' 2 r r  

We have implicitly assumed that the radial wave 
function is the same for both the j = l+�89 and j =  1-�89 
states. We have verified that the a+ a as well as the 
a_ o+ parts of the interaction yield the same result 
as (3.19). 
It is interesting to consider the Gamow-Teller mul- 
tipoles in view of the intensive experimental study of 
the corresponding giant resonances [13, 14]. We 
now have T = I ,  M r = 0  or _+1, and S = I .  For the 
r 3 z3i a.a~ part of the interaction, we get (3.12) and 
(3.19), since the %%/  part does not introduce any 
difference in the two-body matrix elements (see Sect. 
III.1). As for the ~+ r ~ a.a~ term, we now get 

r L p~(r) FL(r) 
h (r) - , (3.20 a) 

N (r2L)n__H L 
4 

{F , :}=  ~ H  ,,,, ,,,,~ (2la+ l) (2lh+ l) 

neutrons protons 

0 0 !  " (3.20b) ~i,b ) 

Figure 3 shows the results of the calculation for 
4~ for which we have used the latter relation and 
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Fig .  3. S a m e  as  F ig .  1, fo r  t he  L = l O a m o w - T e l l e r  t r a n s i t i o n s  
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for 9~ where the full complexity of the expressions 
for F L and HL has been retained�9 Comparison of 
Figs. 2 and 3 shows that the spin operator does not 
practically bring any difference, and that the curves 
of Fig. 2 can be regarded as the Gamow-Teller form 
factor as well. 

where z 0 is the length parameter of the harmonic 
oscillator. It is easy to see that the only term left in 
the 1.h.s. of (4.3) corresponds to p = F + l ,  h=F. 
Hence, we have only to show that 

dp 1 
d~- ~ 2 Or(z) OF +1 (z). (4.5) 

IV. Alternative Expressions 

We start with (2.10) and insert the identity operator 
as a summation over a complete set of particle-hole 
states between Q~+ and A,. As these are one-body 
operators, we may restrict ourselves to the one par- 
ticle-one hole states. Furthermore, in practice, we 
may concentrate on the numerator only, for the 
normalization of h, may be obtained through (2.12)�9 
We thus have: 

h,,~ ~ (hlQ+l p) (plAul h), (4.1) 
p, h 

where the bars indicate that the time reversed state 
should be taken. Of course, this expression leaves 
out angular momentum coupling in the particle-hole 
states. We give the complete formula for the simple 
case of S = 0: 

h . - E  (2jh+I)(2jp+I)(2L+I) (Jh L jp)2 
(p,h) L 4n _1 0 �89 

�9 �89 +(__)lh+l~+L] Op(r ) Oh(r ) 

�9 0p(r') Oh(r') r't'+2 dr'. (4.2) 
0 

Let us mention a very peculiar fact which happens 
when harmonic oscillator wave functions are used. 
We noticed in [9] that such a choice makes h, 

dp for proportional to the surface form factor, i.e. ~ d~-' 

L = 1, and f t ( r )=  r (see (2.7)). We are able to demon- 
strate this relation, but in order to avoid the com- 
plication of the rotational symmetry, we give the 
proof in one dimension only, the three dimensional 
extension being straightforward. We have to show 
that 

dp (4.3) (PlZ3 z'l h> <hlr3 6 (z -  z')l p> - d~-' 
p, h 

where z' is the coordinate. Let us call 41 .. . .  ,Ov the 
occupied orbitals in the ground state and let us 
forget about the z 3 for the moment (we consider 
only one species of nucleons). We will use the prop- 
erty [-16] 

~ 0"(z)= V ~ -  0"+l (z )+  0"-l(Z)'  (4.4) 

Now, 

d p= r dO~ 

dz 2 ,~=1 dz - -  0.(z).  (4.6) 

We use the well-known formula [16] 

d O n -  - 2  0n(Z)-~-]//2n 0n_l(Z), Zo dz (4.7) 

or, using (4.4) 

d O , _  ] n/n++n+l ~22 
Zo dz i/ 2 0 .+i(z)+ 0._l(Z). (4.8) 

Equations (4.8) and (4.6) yield equation (4.5)�9 For  a 
system of neutrons and protons, the r.h.s, of (4.5) 
would contain two terms, one for each species. It is 
interesting to note that similar relations have been 
developped (with an energy weighting factor) by the 
progenitor sum rule method [17]. To our knowl- 
edge, no similar relations exist for other multipole 
than the dipole one. 

V. Center of Mass  Correction for the Dipole  Case 

It is well known that the relevant operator, for this 
case, is not simply the electric dipole operator, be- 
cause it contains a component along the center of 
mass position vector. Rather, we must use: 

Q = 2 g ( . c 3 1 )  z3 i r i Y1M(Qi), (5.1) 
i 

with 

l - - r 3 1  N 1 q-'C3i Z (5.2) 
g(z3i)  = 2 A ~- 2 A" 

This operator reduces to the isovector dipole opera- 
tor (3.2) for a symmetric nucleus (N=Z) .  As far as 
the form factor is concerned, there is no change, due 
to center of mass correction, since the operator (5.1) 
is a linear combination of the isovector and the 
isoscalar operators and since these two give rise to 
the same function h,(r). Note, however, that the nu- 
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merator and the denominator corresponding to the 
operator (5.1) are not the same as for the isovector 
operator (3.2). This remark has some interest which 
is outside the scope of this work. 

VI. Influence of the Effective Interaction 

We would like first to discuss briefly the sensitivity 
of the results under a variation of the range of the 
interaction. We have repeated some of the calcu- 
lations (essentially for the dipole and the quadrupole 
cases) with a gaussian radial dependence of the effec- 
tive interaction, keeping the same spin-isospin struc- 
ture. We have verified that the results are practically 
unchanged for a range up to 0.5 fm. Beyond that, 
the function hu(r) keeps the same form, but its 
magnitude decreases (normalization (2.12) no longer 
applies for non-zero range forces). 
The importance of the range is different from mul- 
tipole to multipole and can be discussed in terms of 
the mass of the bosons which are thought to mediate 
the nuclear force. The z .z  part of the force comes 
from the exchange of the p vector meson, whose 
Compton wave length is equal to 0.26 fm, and hence 
the form factor for the corresponding multipoles is 
not affected by the range of the force. This is also 
true for the a . a  term which comes from vector 
mesons exchange, except for the zero-range part of 
the one-pion exchange contribution. For  the mul- 
tipoles associated with the a . a  v.~ term, the situa- 
tion is different. This part of the interaction mainly 
comes from the exchange of pions, whose Compton 
wave length equals 1.4 fm. We have indicated in [9] 
that which such a range, the form factor keeps the 
same shape as given by our simple formula, but is 
renormalized by a factor ~0.8. 
Of course, the properties of the effective interaction 
are not the same as the one of the bare nucleon- 
nucleon force. However, it is hardly conceivable that 
the range of the different parts of the force is consid- 
erably changed when passing from free space into 
the nucleus. On the other hand, it is believed that, 
inside the nucleus, the nucleon-nucleon force is con- 
siderably renormalized at short distances (which is 
embodied by the values of the PF,'s in (2.3)) and 
becomes density-dependent. This feature is nicely de- 
picted by the Skyrme forces whose successes in de- 
scribing static and dynamic properties are numerous 
[18]. Unfortunately, as for our problem, the 
Skyrme forces bring the complication of the velocity 
dependence and the particle-vibration coupling will 
no longer be of the simple form (2.5). If the velocity 
dependence of the force is neglected, it can easily be 

shown that the use of Skyrme force will modify our 
expression of hu(r) by a factor 

14 t3(2x3+l)  p(r), (6.1) 
6t0(2x0 + 1) 

where Xo, x3, to, t3 are the usual parameters of the 
Skyrme forces [18] and where p(r) is the nuclear 
density. Consequently, h, would be reduced in the 
interior more than at the surface and would come 
closer to a surface form. To give an idea, the re- 
duction at the interior would be of ~ 3 0 %  for the 
Sill and of ~20~o for the SIV forces. 

VII. Conclusions 

We have studied a simple model to calculate the 
form factor of the particle-vibration coupling hamil- 
tonian. The model relies on a simple description of 
the vibrational state. This description is very likely 
quite accurate when the strength associated to the 
operator describing the collective variable is con- 
centrated in a narrow resonance. This is certainly 
the case for the dipole operator in medium-heavy 
and heavy nuclei. This seems also to be the case for 
the Gamow-Teller resonance [15]. 
We have worked out simple formula for several in- 
teresting cases of vibrations. For L4=0 multipoles, 
our numerical results indicate that the form factor 
has a shape intermediate between the usual surface 
and volume forms, and this almost independently of 
the spin and isospin structure of the multipole oper- 
ator. For the L = 0  Fermi and Gamow-Teller 
operators, our model gives rise to a form factor 
proportional to the nuclear density. This result 
somehow justifies the form of the isovector term 
in the Lane model [12]. 
Our expressions hold for a static zero-range effective 
interaction, but we have shown that for the ordinary 
surface vibrations, at least, the range of the interac- 
tion does not play any significant role. 
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