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Abstract: A relativistic Monte Carlo calculation of the nucleus-nucleus interaction in the GeV range is

presented. The interaction process is described as a sequence of classical, binary, on-shell baryon-
baryon collisions. Pion production is introduced via the formation of d-resonances. The latter are
given a definite mass and a lifetime against pion emission larger than the collision time. They are,
however, assumed to scatter or disappear in collisions with nucleons. At the end of the collision
process, they are allowed to decay. The model is used to study the equilibration during a head-on
collision between two *°Ca nuclei. The system is found to be compressed up to a time 6=8 fm/c and
to decompress very rapidly. The final nucleon and pion momentum distributions are not completely
thermalized. They are, however, tentatively described by effective temperatures. The rapidity
distributions show larger temperatures than the perpendicular momentum distributions. Also,
nucleon temperatures are generally larger than pion temperatures. The theoretical transverse
temperatures and the pion multiplicities agree fairly well with the experimental data. The role of the
delta particles is investigated. It is shown that the delta production quickens the equilibration
process by transforming longitudinal kinetic energy into mass energy. Furthermore, it favours high
compression of the system. Non-central collisions are studied. The results are consistent with the
concept of geometrical separation between participant and spectator nucleons. However, our model
predicts more transparency than the so-called fireball model. The participant part is shown to
decompress very rapidly, while the spectator parts are slightly kicked off for intermedxate impact
parameters Finally, some results are shown for the case of a head-on collision of a “°Ne projectile by
a *°Ni target. A strong shock wave propagates into the target for several fm/c, after whxch all the
--matter is dispersed.

1. Introduction

Since its birth a few years ago, relativistic heavy-ion physics has had to deal with

some basic questions which have been asked on every occasion: Does the colliding
system (at least in a head-on collision) eventually reach some type of thermal
equilibrium during a certain period of the collision process? If this is (or is nearly) so,
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what are the typical temperature and matter density associated with that equili-
brium? By merely looking at the inclusive spectra, it would be very difficult to answer
these questions as, for example, very different models like the fireball Y and the
single knock-on %) can explain the gross features of the proton cross sections
presently available.

In view of the situation mentioned above, we think it worthwhile to study the
evolution of a relativistic heavy-ion collision toward equilibrium in a simple, reliable
model. In this paper, we report on such a study in the framework of a Monte Carlo
model, which simulates the reaction mechanism as a succession of relativistic, binary,
classical, on-shell baryon-baryon collisions. A short and preliminary account of this
approach has been given previously %)

Our Monte Carlo approach incorporates several important aspects: (i) relativistic -
kinematics is used throughout; (i) the energy and angular dependence of the
elementary nucleon-nucleon cross sections is taken into account; (iii) pion produc-
tion is assumed to take place in inelastic nucleon-nucleon scattering via the forma-
tion of the 4(1232) resonance; (iv) the effects of 4 absorption process N+ 4->N+N
and elastic A-N scattering are taken into account.

We believe the model is suitable for the study of the equilibration process for two
reasons. First, there is no assumption about the density or the number of binary
collisions, in contrast to many other models. The time variation of these quantities is
determined by the dynamics of the model itself. Second, the model has been shown to
be very successful in reproducing without any adjustable parameter the inclusive
cross sections and the two-proton correlation data at a beam energy of 800 MeV per
particle *). One has to keep in mind, however, that this success is not strictly a
sufficient condition for the appropriateness of the model, as explained above.
Rather, the reliability of the model rests on the assumption that the two-baryon
collision regime is attained in the energy range we are investigating here. If this
assumption is correct, our model is probably the most appropriate description of the
relativistic heavy-ion interaction, since this is its basic premise.

Many models have been devised to explain the observable inclusive properties of
relativistic heavy-ion collisions. However, only a few investigations have been
devoted to the study of the equilibration process: the time evolution of the matter
density and of momentum distribution. For the purpose of studying compressional
effects, Bondorf ef al. °) developed a model which has some similarity to ours but is
more schematic as it neglects inelastic processes. The eveolution of the momentum
distribution has been investigated first by Hiifner and Knoll %) and with refined
methods by Knoll and Randrup ") in the frame of what is usually called the linear
cascade model. At the same time, Randrup °) has studied the equilibration in infinite
homogeneous nuclear matter. Although the works of refs. *#) are based upon
idealized geometrical assumptions, many of their features are confirmed by our
calculation. Extensive studies similar to ours have been performed in the framework
of the so-called classical equations of motion 91y Our work completes these studies
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inthe sense that we introduce relativistic kinematics and pion production. Let us also
mention, among others, the interesting work of Montvay and Ziményi 12y who
investigate chemical equilibration. Also, several papers have dealt with hydro-
dynamical calculations of the time evolution of the matter density 1313y Although
the validity of the hydrodynamical picture can be questioned, they introduce directly
the important concept of the nuclear matter equation of state.

Let us finally mention that other three-dimensional cascade codes ) have been
developed. However, they have not been used to study the evolution of the
equilibration process [ the main differences between these codes and ours is discussed
in ref. 9]

The organization of this work is as follows. In sect. 2 we give a brief description of
the model. Sect. 3 is devoted to the study of the head-on collision of two *°Ca nuclei
(strictly speaking the collision of two *°Ca-like nuclei since we assume complete
isospin degeneracy of the nucleons) at several incident energies. There we follow
closely the time evolution of various quantities: baryon density, momentum (rapid-
ity) distribution of baryons and number of 4-particles. As will be shown, the final
rapidity and transverse momentum distributions of both nucleons and pions, are not
completely thermal. However, we try to extract some “temperatures” from them in
order to characterize them in a simple way. Sect. 4 deals with non-zero impact
parameter collision of the same system. We discuss the validity of the concept of
spectators—participants separation. In sect. 5 we briefly study‘the head-on collision of
an asymmetric system: “°Ne +*’Ni. Finally, we draw some conclusions in sect. 6.

16,17

2. The model

Here, we shall describe briefly the main features of our Monte Carlo calculation.

(i) Initially, the two colliding nuclei are considered as spheres of radius
1.12AY3 tm (A: mass number) in their respective rest frames. In each nucleus,
constituent nucleons are given their positions and momenta randomly, according to a
uniform distribution and the Fermi gas law, respectively, the Fermi momentum being
270 MeV/c.

(ii) For simplicity, we assume the complete isospin degeneracy of the nucleons,
making no distinction between protons and neutrons. This applies also to pions and
deltas which are discussed below. This assumption is not a very drastic one in view of
the nucleon-nucleon scattering properties and the fact that we deal here with
self-conjugate nuclei.

(ili) The nuclei are given their initial momenta by Lorentz boosting. Their shapes
are accordingly Lorentz contracted.

{(iv) The actual calculation begins when these Lorentz contracted spheres touch
each other. The scattering process is described by a succession of binary scatterings
among the constituent particles. To be more specific, we let all the nucleons move
freely (e.g., along straight lines) with their respective momenta until the relative
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distance for one of the pairs has reached a minimum. When this minimum distance is
smaller than {o-m(\/ s)/ 71", where oo is the total cross section for the pair under
consideration at its c.m. energy s, the pair nucleons are allowed to scatter. Once the
scattering does take place, whether it is elastic or inelastic is determined randomly
according to the relative ratio of the associated cross sections. The momenta of the
colliding particles are determined randomly according to the angular distribution of
the reaction considered and in a way that conserves energy and momentum (angular
momentum is not conserved in this procedure). After the first nucleon—nucleon
(N-N) collision has been completed, straight-line motion is resumed and the next
possible collision is followed in a similar manner, and so on.

(v) As mentioned in the introduction, inelastic N-N scattering, which is almost
entirely dominated by single-pion production in the-energy range-of our-present
interest, is assumed to proceed via the formation of the 4(1232) resonance, which is
assumed to have a definite mass (see discussion of point vii). In other words, we
specifically consider the following reactions:

(a) N+N->N+N (¢) N+4->N+4
(&) A+4-4+4.

(b) N+N->N+4 (d) N+4->N+N 2.1

The cross section for reaction (a) is taken from the experimental data. More
precisely, we use the curve shown in fig. 1, which is a smooth interpolation of the
proton-proton data '*). Cross section (b) is taken as the inelastic proton-proton cross
section. Cross section (d) is obtained from (b) by detailed balance. Cross sections (c)
and (e) are not known experimentally, and so have been taken as equal to the cross
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Fig. 1. Cross sections used in the calculation.
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section (a) for the same c.m. energy or put equal to zero (see below). For the sake of
simplicity, we neglect all the other reactions involving nucleons and 4-resonances,
not listed above. The only one which could play a significant role is N+ 4 4 + 4.
However, we do not expect its role to be very important below 2 GeV per particle
incident kinetic energy in the lab system.

(vi) For the elastically scattered nucleons, the angular distribution is taken as

doe A
—~ 2.2
a0 ¢ (2.2)
where ¢ is minus the squared momentum transfer and
3.65(Vs—1.8766)]°
As) =6 E:530s )] 2.3)

1+[3.65(Vs—1.8766)]°

This form, where Vs is the c.m. energy in GeV and A is measured in (GeV/c¢)™>
provides a good fit from pu, =~ 0.8 GeV/¢, where the cross section is fairly isotropic
up to prap =4-5 GeV/c, where it is strongly forward peaked ). The same form has
been taken for the other elastic cross sections in eq. (2.1). The N+N-> N+ 4 process
and its inverse are given an isotropic differential cross section. This choice is due
partly to our wish to keep the calculation as simple as possible and partly to our lack
of experimental information. However, as a first approximation, this turns out to be
all right: for example, a simple calculation of do/df2 (NN—NA4) in terms of the
lowest-order one-pion exchange contribution [e.g., ref.*°)] (see fig. 2a), which
certainly is the dominant contribution *"*?), gives no eminent maximum or mini-
mum. Also, knowing that this production process at high energies is not dominated
by a Pomeron exchange, the forward peaking of this process is not especially
favoured. In any event, we investigate below the sensitivity of our results to the
A-production angular distribution.

Fig. 2. Elementary diagrams involving A-particles.

(vii) Once the delta resonance is introduced to describe the pion production; it is
necessary to know its behaviour in nuclear matter, especially at the high densities
which may be attained in relativistic heavy-ion collisions. We have already made
some brief account of the quantities necessary to characterize the behaviour of the
A’s inref. %), but here we elaborate on it. Rather than comparing various ‘“‘mean free
paths” as in ref. *°), we would like to look at several partial decay widths, which we
think more appropriate since consideration of the Pauli principle is embodied in the
so-called Pauli width. We thus base our argument upon the isobar-hole calculation of
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the pion-nucleus scattering >>~>°). The most dominant partial width for the A is the

collision broadening which is due to the exchange scattering by the one-pion
exchange (OPE) as shown in fig. 2b. The second dominant one is the width which
comes from the 4-absorption (fig. 2¢) by OPE, whereas the Pauli width is smaller
than both of these. The value of these widths for nuclear matter densities higher than
normal is not well known. But, if the Pauli width is expected to increase with
increasing density, the other widths (at least the one associated with fig. 2¢) are also
expected to do so and the order of dominance could hardly be changed. From the
above argument the following may be rather safely concluded. A 4 can decay into a
nucleon and a pion, which is predominadtly absorbed by another nucleon to form
another 4 (fig. 2b) or, alternatively, is absorbed by another nucleon which stays as
nucleon (fig. 2¢). Thus.it is less likely that the pions produced by 4-decays can escape..
from the nuclear medium. Taking into account the identity of nucleons, the above
picture may be equivalently stated as follows: the produced 4’s mainly undergo
elastic scattering with nucleons through OPE interaction of the type in fig. 2b, where
the exchanged pion may be real, up until the time when nuclear matter density
becomes low enough (in the decompression stage of the heavy-ion collision) at which
point the 4’s can all decay freely. In addition to the OPE elastic scattering, some
fraction of the 4’s can be absorbed by nucleons through the process N4 » NN.

In view of the above discussion, we have assumed that the 4’s produced by NN
collisions survive until the end of the heavy-ion collision process when they decay
into N’s and #’s, and that the 4-survival is governed by the elastic N4 - N4 and the
recombination N4 - NN cross sections. The end of the collision process is assumed
to be reached when the number of baryon-baryon collisions per unit time comes
below a certain limit. Most generally, this happens quite abruptly (see below). In the
cases studied here, this happens less than 14 to 15 fm/c after the nuclei touch each
other.

In our preliminary calculations %), we took three different models of the 4-
behaviour: (A) once formed they decay immediately into # and N, and the 7 escapes
from the nuclear medium without interacting, (B) they survive to the end of the
collision process with neither elastic N4 scattering nor recombination into NN, (C)
same as (B) plus elastic scattering of NA4. Our present discussion seems to rule out
model (A). Moreover, in ref. °), we show that a short-lived A-model can hardly yield
the correct 7~ multiplicity. In our present study, we improve models (B)and (C) by
incorporating the recombination process explicitly. Hence, we will call them models
(BR) and (CR) respectively. In order to be consistent with the long lifetime of the 4,
we have taken the inelastic NN cross section to be zero below below M, +1.232 GeV
(see fig. 1).

(viii) The inclusion of relativity in our model calls for some remarks. We have used
relativistic kinematics, as is proper at the energies involved. (We have actually
carried out some calculations with non-relativistic formulations to find that, for
example, the head-on collisions have a tendency to be more explosive.) However, it
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is well known that a Lorentz-invariant many-body theory must necessarily be of
many-time nature even at the classical level: each particle carries its own proper
time. On the other hand, in a conventional cascade calculation, the (three dimen-
sional} variation of spatial distance for every possible pair of particles should be
followed to arrange the ordering of binary collisions taking place in cascades (i.e.,
which pair collides first, which next, etc.). Since the spatial distance separationisnota
Lorentz invariant quantity, the time ordering of collisions can be different from one
reference frame to another. Although this unpleasant feature may not eventually
change the physics, it is inherent to any one-time description. How can we cope with
this inconvenience? Consider the spatial distance r,, between nucleons aand b. If the
minimum of this quantity has some physical relevance, i.e., some connection with the
nature of the mutual interaction (like the interaction radius), it is our physical
intuition that its meaning is the most clearly understood in the c.m. frame of particles
a and b. In other words, the minimum spatial distance in this frame has to be
compared with (o./ 47r)1/ 2. Now, ru, transforms into

=1ty (B raw) (2.4)

in a Lorentz frame moving with velocity 8 relative to the c.m. frame of aand b. For a
relatively high-energy collision, say =1 GeV/A, the NN collisions which must be
considered relativistically are those taking place in the early stages, between
nucleons from the projectile and nucleons from the target. The vector minimum
distance of approach for such colliding pairs, in the total c.m. frame for instance, is
almost perpendicular to the beam direction. This property will be true in any Lorentz
frame moving in the beam direction. By virtue of eq. (2.4), the minimum distance of
approach is almost invariant in any Lorentz transformation along this direction.
Therefore, the dynamics of our calculation is almost invariant under such a Lorentz
transformation, We have actually checked this property by calculating collisions both
in the total c.m. system and in the target rest frame. Results in one frame when
transformed in the other one differ from results directly calculated in the latter by no
more than a few percent, in general.

(ix) Quantum effects are neglected. We disregard three-body collisions, the mean
field and the Pauli principle (except for what is said in item (x)).

We avoid the introduction of a mean field, because this implies off energy shell
scattering, whose cross section is not known and because the explosive nature of the
collisions (at-least the central ones) very likely destroys the coherence of the mean
field soon after the beginning of the process. As a consequence, in our description,
the nuclei are expanding, even in the absence of nucleon-nucleon collisions. The
expansion is, however, negligible in the short time span during which the strong
interaction process takes place °).

The effect of the Pauli principle on the nucleons’ behaviour is neglected for
simplicity. Two important aspects of the high-energy collisions make this procedure
reasonable. First, the nucleons have a very large phase space available. Second the
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system can be characterized, at the end of the process, by high “temperatures,”
which reduces the effect of Fermi~Dirac statistics.

(x) Softnucleon-nucleon collisions are neglected. If the total c.m. energy for a pair
of nucleons is less than 1925 MeV, i.e., twice the nucleon mass plus 50 MeV, they are
not scattered. This procedure mocks up some Pauli principle effects at the early
stages of the process since it partly forbids the collision of two nucleons belonging to
the same moving Fermi sphere: 50 MeV is approximately the average of the relative
kinetic energy within a typical Fermi sphere. Of course, it also forbids soft collisions
between two nucleons, even when the Fermi spheres have disintegrated (say after
~8fm/c, see below). We have, however, checked that the results are not very
sensitive to the precise value of the cut-off. This is intuitively understandable for the
momentum spectra, since soft collisions are likely to make only smalllocal changesin_ .
these spectra.

3. Head-on collision of two A = 40 nuclei

The main body of our calculation is devoted to the collision of two “°Ca-like nuclei
with zero impact parameter. The results are shown in the total c.m. frame. We have
averaged over 40 runs. However, we took advantage of the symmetry to increase the
statistics. For instance, the actual spatial matter distribution is symmetric around the
collision axis. When described on a three-dimensional grid based upon the three
following axes: the collision axis, two axes perpendicular to each other and perpen-
dicular to the first one, it is still symmetric under reflection through any of the planes
defined by these axes. A Monte Carlo generated distribution obviously violates
somewhat this symmetry. We have symmetrized our calculated distribution,
increasing in this way the statistics of the calculation. Typical uncertainties are 7% on
the maximum density, 4% on the spectra at their maximum and 5% on the number of
A-particles.

3.1. DENSITY EVOLUTION

As is well known, the mass density is not a uniquely defined quantity, relativistic-
ally. We thus preferred to consider the baryon number density. For this purpose, we
~have divided the space into cells and counted the number of baryons in each of them
at different stages of the collision process. We have studied the baryon number
density in the cells in the reaction plane defined by the beam direction (z -axis) and, in
this case, any x-axis perpendicular to it. The size of a cell is 1 fm in the z-direction,
0.9 fm in the x-direction and 1 fm in the third direction. In fig. 3a, we show the time
evolution of the density profile for the case of model (CR) at beam kinetic energy per
particle E/A = Eyeam = 1 GeV. The first and third columns give the density profile in
the z-direction, whereas the second and fourth columns show the profile in the
x-direction: the coodinate origin is chosen to coincide with the total c.m. Only one
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40Ca + 40Ca (Epem= 1 GEV)
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Fig. 3. PCa+*°Ca, b =0, Epeamn = 1 GeV: (a) time evolution of the density profile along the lines shown
at the top of the figure (see text also), R is the radius of “0Ca, (b) time evolution of the rapidity and p,
distributions. The arrow indicates the initial rapidity of the nuclei in the c.m. frame.
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half of each profile is shown, as they are symmetric through the origin. We see that (i)
along the beam direction nuclear matter is progressively compressed and reaches a
maximum compression at roughly r~8fm/c (1fm/c~0.33x107*%5). It is then
decompressed rather quickly and becomes explosive towards the last stage of
collision; (ii) from the z- and x-direction profiles one may observe that at the
maximum compression (6 ~9 fm/c) the whole system looks like a pancake with
radius almost equal to that of *°Ca and a thickness of 4 ~6 fm. (ili) There is no
indication of appreciable side-splash up to r ~ 8 fm/c. Afterwards the matter seems
to escape at roughly the same rates in both x- and z-directions. We will come back to
this point later.

Fig. 4a shows the same type of profiles but for the case of Epeam = 2 GeV collision.
As expected, the compression is higher and the explosive nature at the last stage is
even more prominent. For both 1 and 2 GeV we find quick decompression but no
appreciable side-splashing.

The present result confirms our previous work e by looking at the density
variation around the c.m., we have observed that the compression stage lasts
approximately for 3 fm/c¢ and that the decompression is very fast. Although it is not
clear in figs. 3 and 4, there is a diving phase, during which the two nuclei inter-
penetrate each other almost freely (up to 5 ~6 fm/c at 1 GeV) before the compres-
sion sets in, In order to get some idea about the duration of the various phases, similar
calculations have been performed at 0.4, 0.6, 1.5, 2.5 and 3 GeV, respectively. As
expected intuitively, all the phases (diving, compression and decompression ) are
shortened as the collision energy increases. For example, the diving phase almost
disappears at 3 GeV.

The maximum density reached (in the total c.m. frame) is plotted in fig. 5. For
model (CR) the compressibility (p/po) significantly exceeds the transparency limit 2y
(i.e., the density obtained by simply superposing the two Lorentz-contracted nuclei),
where v is the usual Lorentz factor for the nuclei in the cm. frame.

As we shall see in the next subsection, the two colliding nuclei eventually form
after some time span (~8 fm/c) a system of nucleons, the dominant part of which is
nearly at rest. This system is quite “hot’’: the nucleons have large random velocities,
but on the average the system is at rest. Therefore, the baryon number density p
obtained here does actually represent a property of a (combined) single nuclear
matter-(see, however; remark in sect. 4). e - -

Gur present result may be compared with that of a more simplified Monte Carlo
calculation of Bondorf ef al. *®). Detailed features are certainly different because
input quantities and kinematics are not the same. Yet, the similarity in the two
models with regard to the time evolution in the baryon number density should be
noted. Our results show a higher maximum density than that of model RIHC of
ref. 2°) (the closest to our picture). This difference could be due to our inclusion of

~A-production (see our discussion below).
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40Cq + 40Ca (Epegm = 2 GeV)
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Fig. 4. Same as fig. 3 at Eyeam, =2 GeV.
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Fig. 5. Maximum density attained by the system (*°Ca+%°Ca, b = 0), in the c.m. frame, as a function of
Eyeam- The symbols at the top of the figure correspond to several models for the A-behaviour (see text).
The full line gives the density obtained by superposing the two nuclear densities.

3.2. MOMENTUM DISTRIBUTIONS

Infigs. 3b and 4b we show the time evolution of the rapidity (y) distributions along
the beam axis (the figures give one half of the spectrum only since it is symmetric) and
of the transverse momentum (p,) distributions for the baryons. Here, the model
(CR) is considered for Eveam = 1 and 2 GeV, respectively. As is easily observed, the
region of small rapidity is quickly populated in proportion to the rapid depopulation
of the peak of the initial distribution and reflects the overall longitudinal slowing
down of the nucleons. At the end of the compression stage (t =8 ~9 fm/c) the initial
peak has been fairly reduced. Thus, the compressed stage of the system can be
viewed as a collection of baryons (roughly three-fourths of the system), excited but at
rest, crossed by the remnants of the two initial opposite flows. As a consequence, the
densities in fig. 5, reduced by one-eighth (see sect. 4 and fig. 15) approximately, are
really an intrinsic property of the matter formed and do not result merely by
superposing two nuclei running against each other.

Although the final spectra look very different from the initial ones [see figs. 3b and
4b], they are not fully thermalized: one may observe this in (i) the somewhat
underpopulated spectrum for very small rapidity and (ii) the remnants of the initial
maxima in both the y and p, spectra. Still one may clearly observe that the
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longitudinal slowing down of the matter is rather efficient. The smaller the energy the
more efficient it is, as one could intuitively guess.

We may compare the above result with the one of Randrup '®), who studied the
collision of two distinct infinite pieces of nuclear matter on the basis of the relativistic |
Uehling-Uhlenbeck equation. The matter equilibrates in a time shorter than 8 fm/c.
The reason for a quicker relaxation in ref. '®) compared with ours comes essentially
from the spatial geometry: two incoming nuclei configurations reduces the frequency
of the binary collisions.

Despite the fact that neither the y nor p, distributions show the fully thermal
equilibration of the colliding system, we have tried to fit them with some appropriate
thermal form in order to extract “‘effective” rapidity (or longitudinal) and transverse
temperatures. This is done for various projectile energies as shown in fig. 6. The fits
are made by relativistic Boltzmann distributions which are good approximations to
Fermi-Dirac functions at the temperatures expected. For each projectile energy, we
have also calculated the temperature, Ty, the system would have acquired if it had
thermalized as a classical, non-relativistic gas. (Tqas= %K, K being the available

N{y), N(p;} (arbitrary units)

o)
o
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o
o

0.4 0.8
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Fig. 6. “®Ca+*Ca, b =0. Final nucleon y and p, distribution at various beam energies. Dotted lines are
fits to Boltzmann distributions with the indicated temperatures.
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kinetic energy per nucleon). The sensitivity of the fits is such that the transverse
temperatures T, are determined within an accuracy of 10 MeV, while typical
uncertainties in the longitudinal temperatures (7',) are between 20 and 30 MeV.

It appears from our results that (i) generally T, > T, showirig that the system does
not attain equilibrium (ii) both 7, and 7', are lower than 7g.,, notably for high
incident energy, which demonstrates the fact that A-production efficiently removes
translational energy from the nucleonic system and consequently cools it down (see
fig. 9).

Incidently, we should mention that for Epeam>1.5GeV the longitudinal
temperature exceeds the so-called Hagedorn temperature 2 Tu=~140MeV, ie.,
the pion mass. One might argue this as indicating the limitation of cur model.
However, noting the uncertainty in T, mentioned above and furthermore remem-
bering that the extracted temperatures have only tentative meaning, the model is
probably applicable up t0 Epean=2 GeV. At higher energies, more baryon
resonances must be included in addition to multi-pion production in single NN
scattering.

The relatively weak coupling between longitudinal and transverse motion is
depicted in a more dramatic manner by fig. 7 (upper part), where the final value of the
asymmetry parameter Y is given for different incident energies:

_(pl)

(pi)’
where the bracket stands for the average over momentum distribution. For a
complete thermal equilibrium, Y is equal to 2. Our Y’s are considerably lower, even
for collisions at relatively low energy, which shows that the system is not fully
equilibrated. The lower part of fig. 7 gives a typical time evolution of Y. At the
beginning Y has a value near, but not equal to, zero because of the Fermi motion. It
remains small for some time, presumably because half of the first collisions are
high-energy elastic (and thus very forward-peaked) collisions. When secondary
collisions become dominant, momentum is transferred in the transverse direction
and makes Y grow rapidly. This quantity keeps growing until the fast decompression
of the system abruptly decreases the “luminosity”, i.e., the number of binary
collisions per unit time. This s clearly seen in the lower part of fig. 7, although there
seems to be some shift between the times at which dY/ds and the luminosity
vanish. This is probably due to the fact that the collisions are fairly soft at the end
of the interaction process. From fig. 7, one could guess that, if the system did not
decompress, Y would change from its initial value to a value around 2 in a time
span==10-12 fm/c, which agrees fairly well with the result of Randrup ). It is
interesting to note that the interaction process stops at a time (~10 fm/c) when the
average density of the system returns to nuclear matter density at equilibrium, We
want to stress that in actual systems, the strong interaction {in the sense of the
interaction felt by baryons) is not likely to switch off completely after this time. Most

3.1
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Fig. 7. OCa+ 4OCa, b =0. (a) Final asymmetry of the nucleon momentum distribution as a funétion of the
beam energy. (b) The full curve is the asymmetry parameter Y as a function of time for Epeam =1 GeV.
The dotted curve represents the luminosity.

probably it goes on to manifest itself, not in a pattern of binary collisions as we
describe it here, but in an average nuclear field which will tie nucleons in clusters.
This is, of course, beyond the scope of our model.

3.3. PION MULTIPLICITIES AND PION SPECTRA

As mentioned before, we have assumed that the pions are produced via A-particles
and that the latter decay at the end of the collision process. The decay is assumed to
be isotropic in the A-rest system. In fig. 8 the average multiplicity is given as a
function of the initial collision energy. The curve deviates from zero somewhat below
the A-production threshold for the NN system (~600 MeV) due to Fermi motion
inside the nuclei. After an almost linear increase, the curve is less steep around
FEyeam =2 GeV and flattens around 3 GeV. ~

As noted in refs. 28’29), the A-recombination (N4 » NN) seems important at low
energy. The reason is that the lower the incident energy is, the lower the energy of the
4 is and the higher the recombination cross section is. We checked [see also ref. *)]
that A-recombination reduces the multiplicity by 30% at Epeam = 1 GeV. Atenergies
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Fig. 8. Average pion multiplicity as a function of the energy. The sashed arearepresents the prediction of
the model for the #~ multiplicities in collisions with impact parameter b <2 fm (see text). The experi-
mental data are from ref. 2°).

lower than 500 MeV this effect is likely to be in excess of 50%, while above 2 GeV it
is probably rather small and fairly constant.

Since we have assumed a complete isospin degeneracy of the system and 4-
resonance dominance, the multiplicity of a certain type of pion, say s, should be
understood as one third of the pion multiplicity that we have obtained. We compare
our result with the streamer chamber measurement for the Ar+KCl system >°). At
Epeam = 1.8 GeV for instance, our estimate n,_ =7 is somewhat higher than the
experimental one no> = 5.7 (for an average over impact parameters <2 fm, accord-
ing to the authors). This overestimate was expected from the isobar picture we
adopted. We assumed that the 4-production crosssection is the same for any pairs of
nucleons (nn, pp, np) and is equal to the experimental inelastic cross section.
However, the np pairis halfa 7 = 1 state aﬂdy‘half aT =O state. The Iyatter is not abie
to decay in a N4 configuration because of isospin conservation. Hernce, we over-
estimate the A-production coming from the np pairs. The effect is likely to be of
10-20% and will bring the results of the calculation closer to the experimental data
(from the upper limit to the lower limit of the shaded area in fig. 8). We recall that
model A [see sect. 2 and ref. *)] yields too large pion multiplicities by about a factor 2.

In the same way as for the protons, we have fitted the y and p, pion spectra with
Boltzmann thermal distributions. Once again the spectra (not shown) are not exactly
thermal. Moreover, they have less statistics than the proton spectra, for obvious
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reasons, and the temperatures are determined with less accuracy. Nevertheless they
are quoted in fig. 9 along with the proton temperatures. It turns out that the
y-temperatures seem higher than the transverse temperatures, except at low energy,
and both are lower than the corresponding ones for baryons. Inref. 31), such a feature
has tentatively been ascribed as an indication of a blast wave. However, this feature
can alternatively result from the decoupling between a 4-particle gas and a nucleon
gas which have been in thermal equilibrium for a while. The 4’s then decay and the
produced pions get a “temperature” smaller than the one of the nucleons.

T T T
T (MeV)
———— qus
200 N
3 s 3 Ty
protons { @——=@ T}
. B8 experiment
rd
/ Ko ox Ty
/
150 s pions{ & —a T, N
0 experiment
100 R 8 -
; i }
505 3 z 5
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Fig. 9. Proton and pion longitudinal and transverse temperatures. The squares are the experimental data
of ref. 27}, The dot-dashed curve is the equilibrium temperature for an ideal non-relativistic gas.

We have shown in fig. 9 the “temperatures” extracted from the 90° c.m. inclusive
cross sections >2). The system involved is Ne +NaF, but they are not expected to
differ very much for the system we study. They should be compared with our
transverse temperatures. The agreement is satisfactory in view of the uncertainty on
our values and the fact that experimental temperatures are taken from the high-
energy tail of the inclusive cross section only whereas our are determined by the
whole spectrum.

Although this may not be transparent from fig. 9, the asymmetry parameter Y of
the pion momentum distribution is considerably larger than the corresponding final
quantity for the proton (fig. 7). It stays close to 2 up t0 Epcam =1 GeV and then
decreases a little bit.
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3.4, ROLE OF THE A-PARTICLES

Before discussing the role of the A’s, itis interesting to look at the time evolution of
the number of A-particles, as shown in fig. 10. It has the same shape for all energies:
an almost linear increase to a maximum, no change for a short period and then a small
decrease towards the final value. This behaviour can be interpreted qualitatively as
follows. The rate of A-production is roughly given by

dN,
—d?észm(ﬁl)ﬁ —Nupo2(D2)0,

= p[No1(01)01 — Nao2{D2) 021, (3.2)

where N is the number of nucleons in the interaction volume (which involves a large
fraction of the system after a while), o;(o2) is the production (recombination) cross
section and 0;(07) is the average relative nucleon—nucleon (nucleon-4) velocity. At
the beginning the first term overtakes the second one. For some time, say the diving
stage (up to ~6.7fm/c at 1 GeV/A), it stays roughly constant, since most NN
collisions have essentially the same kinematics as the one of the nuclei: #; is then
close to the nucleus—nucleus relative velocity. But, in the compression stage, the
thermalization sets in and the average velocity is diminished accordingly. As a
consequence, o1{7;) is reduced dramatically. On the other hand, the second term in
eq. (3.2) is growing up because N, has increased and because 7, goes down bringing
02(D2)D, to higher values (see fig. 1). One may guess from figs. 10 and 3 [see also
ref. )] that the second term in eq. (3.2) is the dominant one at the end of the
compression stage and is driving the number of deltas down to what would be its
equilibrium value if the density and temperature prevailing around 8 fm/c did not
change any further. This value is possibly not reached, because the decomposition
stage is very fast and the density quickly vanishes. We can guess approximately this
equilibrium number of 4’s from fig. 9. We would have roughly

(;N-i)equL exp ["TA—;:E"E:} . (3.3)

For example, at Eyearm = 1 GeV, we can take T =100 MeV, a value intermediate
between the longitudinal and the transverse temperatures. Hence (N, ). = 12, while
N4 becomes equal to 14 at the end of the interaction process. We can conclude from
these considerations that the pion multiplicities have possibly recorded some pro-
perties of a quasi-equilibrium state of the system before its decompression.

We now want to discuss the role of the 4’s in the interaction process. First we
examine how the compression of the matter is influenced by the 4A-production. For
this purpose we have repeated the calculation by switching off the A-production: the
NN scattering is elastic at all energies with the actual total cross section. The results
for Epeam =1 and 2 GeV are shown in fig. 5 by small triangles. We clearly observe



J. Cugnon et al. | Equilibration 523

7 T T

e—o (CR)
Na(t)

30F

20+

3 10 15

Fig. 10. *°Ca+4°Ca, b =0. Time evolution of the number of A-particles.

that the introduction of 4-particles makes the compression higher. Such a possibility
was predicted a long time ago on the basis of simple arguments ). In terms of
hydrodynamics, the reason for the 4’s playing this role may be clear: the introduction
of an endothermic process into the system generally makes the equation of state
softer, thus higher compression can be attained. Specifically, the creation of 4-
particles slows down the original fast longitudinal motion quite efficiently so that the
piling up of the two slabs of nuclear matter (initially moving fast against each other)
gets easier, resulting in higher compression.

The role of the A-particles in thermalizing nuclear matter seems even more crucial.

‘We may understand this by comparing the final .y and p, distribution of nucleons as. ..

calculated from the model with and without 4’s (figs. 6 and 11, respectively). We find
that A-production makes the y-distribution closer to thermal equlibrium, especially
at 2 GeV. On the other hand, the p, distributions are not very much influenced by
the d-inclusion. The reason is that A-production does not bring more transverse
momentum than NN elastic scattering does. In fact, on the average, it brings less.
Consider, for instance, the initial, most important, collisions, neglecting for a while
the Fermi motion. At Epeam = 1 GeV the incoming nucleons have a (longitudinal)
momentum of 0.69 GeV/c in the c.m. system. If they are scattered elastically at
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Fig. 11. *°Ca+*°Ca, b =0, Epeam =1 GeV. Final nucleon y and p, distributions for various models of
A-behaviour (see text).

Gem = 90°, they can acquire a transverse momentum of that amount. However, this
happens very rarely and if we refer to the actual angular distribution [eq. (2.2)], we
can say that, in the average, they are scattered with a transverse momentum of the
order of 0.30 GeV/c. If a A-particle is produced through the collision, the two
~ outgoing particles will have a momentum of 0.34 GeV/c. As they are produced
. isotropically in our model, their average transverse momentum will be around
0.25 GeV/c¢. Hence, the isotropic angular distribution of the A-production alone
does not help the system to randomize. This statement is supported by the results of a
calculation in which we used an angular distribution for the 4A-production (and
recombination) cross section of the form given by eq. (2.2), A(s) being kept the same.
There is some experimental suport % for such a choice. Note that, in this case, [ is
not minus the squared 3-momentum tranfer any longer. Rather, it is given by

t=2m* ——2[(%2 + mz)(qf2 +mIH+ 2qigs cos @, (3.4)
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-where g;, g; are the initial and final c.m. momentum respectively, m is the nucleon
mass and @ is the scattering angle in the c.m. At the threshold, ¢:—~ 0, and the
A-production becomes isotropic. The calculated final y and p, distributions at
Epeamm = 1 GeV, using such a choice [this model is referred to as (CRU) in the figures],
are shown in fig. 11. They are identical to the results with model CR within the
uncertainties of the calculation. This is equally true for the evolutionof the y and p.
distribution (not shown), for the pion multiplicity (fig. 8), for the final asymmetry
coefficient Y (fig. 7), for the evolution of the number of A-particles (fig. 10) and for
the pion temperatures (not shown). There is, however, a small difference as far as the
maximum density is concerned (fig. 5).

All these arguments lead to the conclusion that A-production mainly acts to slow
down quite efficiently the two incoming fluxes of nucleons along the mean tra-
jectories by transforming longitudinal kinetic energy into mass energy.

Eventually, the A’s may also help in randomizing through the elastic scattering by
the nucleons and through the recombination (and subsequent creation) process. We
have checked that elastic scattering is not important in that respect, as shown in fig.
11, where several results from calculations with model BR are plotted. We recall that
in this model, elastic scattering of the 4’s is neglected, whereas recombination is
taken into account. They are very similar to those obtained with model CR. The same
situation also holds for the compression (fig. 5), the asymmetry of the nucleon
momentum distribution (fig. 7) and the pion multiplicity {fig. 8). This is a fortunate
feature of the model, since the N-4 elastic scattering cross section is not known
experimentally.

Finally, we can summarize our discussion by saying that the transfer of the initial -
available energy into the perpendicular motion is not very efficient (see the difference
between T, and Ty in fig. 9). The 4 -particles do not play any significant role in that
transfer. They, however, do play a crucial role in thermalizing the system along the
longitudinal direction. They do that mainly in transforming longitudinal kinetic
energy into mass energy, cooling the system in such a way. Fig. 9 substantiates this
statement. If the nucleons equilibrized in the longitudinal direction without inelasti-
city and had transverse temperature shown in the figure, their longitudinal tempera-
ture would be Ty = Taas+ 2(Tgas — T)) (in the non-relativistic approximation), i.e.,
much higher than T, The A-production pushes T, down below Ty More
quantitatively, the inelasticity can be characterized by the ratio of the total energy
contained in the pion system at the end of the process (W,.) to the available kinetic -
energy in the c.m. system (K.). These values are contained in table 1. The inelasticity
increases with energy, as expected, but tends to stabilize around 2 GeV.

4. Non-central collisions of two A =40 nuclei

We now turn to the collision of two 4OCa-like nuclei with a non-zero impact
parameter. Specifically we shall first study the case where b = 3.83 fm, a value equal
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TABLE 1
Inelasticity for the “Ca+*0Ca system, b =0

Epeam (GeV) 0.6 1.0 2.0
W, - CR 0.14 0.23 0.28
K, CRU 0.27

to the radius of each nucleus. In fig. 12, we show some snapshots of the density
distribution given at 7 =8, 11 and 14 fm/c for the case of Fyeam, = 1 GeV. The curves
are equidensity contours of the baryon number density in the reaction plane. The size
of the mesh is twice as small as before and the distribution has been symmetrized by
averaging over the calculated one and its image inverted through the c.m. Curves are
obtained by interpolation from the values at the mesh points. The density is

4 o 20
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O d
60

t=14 fm/c |
i
i3

Fig. 12. *°Ca+“°Ca, b =3.83 fm, Eyeam = 1 GeV. Contour plot of the density in the reaction plane. The
arrows at the bottom of the figure give the geometrical cut between spectator and participant matter. The
dotted arrows indicate the general motion of the spectator parts. The density is given in 15p0 units.
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measured in units of 1spo (po=0.17 fm™>: the normal nuclear matter density). One
can see that the system still achieves a high density in the ¢.m. region at a time around
8 fm/c. The maximum density is smaller than the corresponding one in a central
collision (see fig. 5), as one could have guessed, since less matter can be piled up, but
it is still higher than the transparency limit.

Fig. 12 strikingly supports the participants-spectators picture of high-energy
collisions. We have indicated at the bottom of the figure the cut implied by the
simplest fireball model. One clearly sees two pieces of matter with (asymptotically)
the normal nuclear matter density travelling with almost the initial velocity. The
central part of the system is very excited. There is not, however, a very clean cut
between the participants and the spectators, mainly because the central part is
expanding. Up to 14 fm/c this leads to a kind of “dog’s bone’” shape.

We investigate the validity of the participants-spectators picture a little bit further
by looking at the matter density for later times. This is shown in fig. 13. Here, whatis
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Fig. 13. “°Ca+*Ca, b=3.15fm, Epeam=1GeV. Contour plot of the density integrated along the
direction perpendicular to the reaction plane for later times. Note the change of scale. The density unit is
226%1072,7.7x 107" and 3.85 x 10™* fm 7, respectively, from top to bottom.
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plotted is the baryon density integrated along the direction perpendicular to the
reaction plane. The center keeps expanding, becoming dilute at t= 100 fm/c. The
spectator parts also expand, but at a smaller rate. The latter is a straightforward
consequence of our neglect of an average field. In nature, the average field will keep
the nucleons closer to each other. However, the spectators are frequently frag-
mented. Hence, we do expect that the extension of the spectator parts in our picture
will be close to the physical reality, although the details of the matter density for these
parts are probably wrong.

The successive patterns of the matter density can be fitted rather nicely by a sum of
a central gaussian and of two Lorentz-contracted gaussians,

plr)= Ap exp(_ﬁ> }.(i:_’ép_)l'{ Xp<_(x‘x1)2+)’2+y2(z—zl)2)
(rO\/;)S r% 2 773/2a3 (l2
(x+x1)2+y2+'y2(z+21)2
+eXP (_. az )J R (4.1)

where vy is the Lorentz factor associated with the nuclei in the ¢.m. frame, and A is the
total nucleon number of the system. We have adjusted the parameters A, ry, x1,'2,
and a to reproduce several of the first moments of the distribution. This operation is
repeated for several times. Typical results of the fits are given in fig. 14 for a slightly
different impact parameter (b =3.15 fm). One can see that A, is fairly constant,
except for the earliest times, when the separation between spectators and parti-
cipants is not yet clear. The quantities zi, a, 7, are linear functions of time. In
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Fig. 14. Parameters of the fit to the density as functions of time (see text).
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particular, the rate of increase of z;, which is the velocity of the spectator parts, is
close to but slightly smaller than the velocity of the incoming nuclei. The quantity x;
increases slowly, indicating that the participants are kicked sidewise. In a clear-cut
model, x; would be always very close to the radius of the nuclei, i.e., 3.83 fm. Hence,
fig. 14 indicates a small sidesplash in a direction around 5° off the beam direction. The
angle is probably too small to leave a neat mark in the inclusive cross sections ). The
situation would be more favourable for an asymmetric system like oNe+2°U,
where maxima around 30° have tentatively been interpreted as sidesplash
evidence ).

Whereas our model qualitatively agrees with the spectator-participant picture,
there is a systematic discrepancy, as shown in fig. 15, where the value A, is plotted as
a-function-of 6. It is-always smaller-than-the-prediction-of -a- clear-cut-geometry
picture, as the one used in the fireball and the firestreak models. The difference is
particularly evident in central collisions, for which our model predicts a substantial
amount of transparency (this is, however, expected to decrease for heavier systems).

120} -

& Monte Carlo
e Fireball Model

i H L
2 4 [} 8
b {fm)

Fig. 15. Number of participants as a function of b.

s

Fig. 16 displays the final y and p, distributions for a 3.83 fm impact parameter.
The dashed curves correspond to thermal spectra with the same temperatures as the
ones we extracted for the central collisions and with a normalization corresponding
to the value of A, of fig. 15 (=30 for b = 3.83 fm). As is especially clear from the p,
distribution (less from the y-spectrum), the system is divided into a hot piece of Ay
nucleons (with a temperature apparently indepenent of ) and of a part which is
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Fig. 16. “°Ca+*°Ca, b =3.83 fm. Final nucleon y and p, distributions.

almost cold: its spectrum is almost identical to the orginal spectrum of the system (see
figs. 3 and 4).

As for the pions produced, we find that (i) the multiplicities are decreasing
functions of the impact parameter. For 1 GeV/ A, they closely follow a gaussian law,
exp (—b°/b3), with bo=4.7 fm. Multiplicities for b = 3.83 fm are shown in fig. 8. (ii)
The fit to the pion y and p_ spectra yields essentially the same temperatures as those
extracted in head-on collisions.

5. Central collisions of **Ne on *°Ni

Our last case study is for central (» =0) collisions but in an asymmetric system.
What we have in mind specifically in this respect is to see if we can observe some
features of possible shock waves. We have chosen “°Ne and °°Ni as the projectile and
the target, respectively. The calculation has been carried on in the lab system. The
result for Epeam = 1 GeVisshown in fig. 17‘Whi'ch averages over 40 runs. We plot the
baryon number density along the beam (z) axis, with z = 0 as the center of the target.

Fig. 17 indicates that the projectile penetrates the target nearly freely up to 5 fm/c.
Then a shock wave develops and propagates until about 10 fm/c. By shock wave, we
mean that a strong discontinuity appears in the density profile, with a maximum
higher than the mere superposition of the two original densities. The width of the
disturbance is slightly smaller than the projectile diameter. In our case, the shock
sweeps almost all the matter out, leaving behind it a small residue of matter only. It is
also worthwhile to notice that the shock slightly disturbs the matter up to several fm
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Fig. 17. 20Ne + 5N, b = 0, Epeam = 1 GeV/ A, Density profile along the axis of symmetry in the target rest
frame.

ahead of its forward front. After 10 fm/c, the compressed matter contained in the
shock explodes and disperses all the nucleons.

The matter distribution off the z-axis reveals that, up to ~8 fm/c, the process can
be seen as a projectile travelling almost undisturbed (except for the remarks made
above) through the target. During that period, the majority of the target nucleons hit
by the projectile are ejected sidewise. After £~121fm/c, all the nucleons in the
system are dispersed preferentially in the forward direction. The combined result of -
these two processes is that the angular distribution of the final nucleons does not
show any noticeable enhancement at fup# 0, contrary to the results of some
hydrodynamic calculations 3,

At 2 GeV (not shown), it turns out that the shock front almost passes through the
target before disintegrating. During the travel, it is slowed down cousiderably: its
rapidity goes down from 1.8 to ~0.8.

Finally, we mention that the total pion average multiplicity in this reaction has
been found equal to ~10 at 1 GeV and ~19 at 2 GeV. Those values are lower than
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the corresponding ones in the symmetric system of the same mass (*°Ca + *0Ca). But,
their ratio is constant and close to the ratio of the participant nucleons.

6. Discussion and conclusion

In our present study in relativistic heavy-ion scattering, we have been particularly
interested in how the possible thermal equilibrium in colliding nuclear matter is
approached. We have seen that the real equilibrium is never reached even in the most
favourable case of a collision between two identical nuclei at zero impact parameter.
We have also observed that introducing pion production through the A-production
process helps the system to attain equilibrium, but not enough. The equilibration
process is stopped by a rapid decompression of the system, which- inhibits -baryon=
baryon collisions. Our model relies basically on the assumption that the two-baryon
classical collisions regime is attained. Although this is largely believed to be true at
the energies investigated here (or at least at energies higher than 1 GeV), there is no
real justification available of this assumption. Other assumptions, less critical, can
also be questioned. The model can possibly be improved by carefully studying the
sensitivity of the results to these assumptions. We have already shown that choosing
an isotropic 4-production is not restrictive, since the results are largely independent
of the precise shape of the 4-production within reasonable variation of this shape.
Removing the isospin degeneracy will probably improve the results for the pion
multiplicities, as we explained in sect. 3. An important point is the behaviour of the
A-particles. The description we adopted in this work is a compromise between a
search for a simple model and the present knowledge of this problem. However, it
would be highly desirable to check, even in a simple model, the accuracy of our
picture.

We summarize our other findings in connection with various currently investigated
problems.

(i) A collective sidesplash is confirmed by our calculation. It is, however, quite
small for a symmetric system (*°Ca+ 4°Ca). Preliminary results on *°Ne + **Ni seems
to indicate that the matter is diverted to larger angles for a non-symmetric system,
although the angle is smaller than suggested by the calculation of Nix ef al. '*) and
possibly by the experiment *°). Yet, the two results may not really contradict each
other as the latter deals with relatively low-energy cases (Eveam =250 MeV). (ii) We
have found, in our calculation, that for the case of head-on collision between “°Ne
and *Ni a strong shock wave develops. The possible existence of shock waves in
nuclei is very controversial. Although it has been claimed on very general
arguments °°) that the shock front should be many times as thick as the mean free
path of the nucleons, our results do not have this feature. We have no clear
explanation for this at the moment. It might be the inelastic 4-production process,
which could make the analysis inapplicable. In our calculation, the shock wave
disintegrates in a manner that does not produce any side-peaked distribution of the
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final nucleons. (iii) There is presently some controversy about the possible existence
of blast waves. We definitely observe in our calculation a very rapid decompression,
although it does not take the form of a clear wave front travelling outwards.
Moreover, the lower temperatures for the pions compared to the protons tempera-
tures might not be an indication of a blast wave, as suggested in ref. 1), but might
rather come from the decay of 4-particles which survive to the end of the strong
interaction process. This possibility has already been pointed out in ref. *7y. (iv) Our
Monte Carlo approach in its present construction does not allow for the incorpora-
tion of density isomerism >®), multipion cluster mechanisms *) or pion field
coherence *°). (v) As in (iv) above, our present model is too simple to account for a
detailed description of possible pionic instabilities. One may, of course, use a
simplified picture: introducing some enhancement factor for the nucleon-nucleon
cross section as a function of nuclear matter density *'). Although this does not
describe the interaction of nucleons with the strong pion field, it allows, to some
extent, to search for a possible influence of the instabilities on the nucleon momen-
tum spectrum or angular distribution. The investigation in this direction should be
very challenging and deserves attention in the near future. We would, however,
stress, in connection with points (iv) and (v), that the analysis with the help of the
present model of a large body of experimental data available at Epeam = 800 MeV
leaves little room for exotic phenomena 4.
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