Volume 91B, number 2

PHYSICS LETTERS

7 April 1980

THE PARTICLE-VIBRATION COUPLING FORM FACTOR

J. CUGNON'!

Kellog Radiation Laboratory, California Institute of Technology,

Pasadena, CA 91125, USA
and

0. HAROUNA

Universite de Liege, Institut de Physique, B4000 Liege 1, Belgium

Received 4 December 1979
Revised manuscript received 7 February 1980

In the framework of a simple model, it is shown that the particle —vibration coupling form factor is intermediate betwee
the so-called surface and volume forms. A simple parametrization of our results is also given.

The coupling of a valence {or incoming) nucleon
with the vibrations of the core (or of the whole nu-
cleus) has been studied extensively. This coupling
plays an important role in many nuclear phenomena,
like the contraction of the valence orbits, which has
recently received attention [1], and the radiative cap-
ture of 10—20 MeV nucleons, which is also of current
interest. The theoretical approach to this coupling has
nowadays reached a high level of sophistication,
where both the valence nucleon motion and the vibra-
tion are treated microscopically [2,3]. However, for
many purposes, the vibration can be treated macro-
scopically as a phonon field. This is especially true for
the investigation of the radiative capture, and also of
the deep inelastic collisions within the model elabo-
rated by Broglia et al. [4]. In this simplified picture-of
the particle—vibration interaction, one has o define a
form factor, which in a sense describes how vibration
is excited when the distance between the nucleon and
the core is varied. For E1, T'= 1 vibration, this form
factor is in general taken as the derivative of the core
density. One then speaks of a surface peaked form fac-
tor. This choice relies on a simple hydrodynamical or
macroscopic model [5,6]. However, it has recently

! On feave of absence from University of Liege, Belgium.

been argued [7,8], in relation with the semi-direct
model of the fast neutron capture, that a volume form
factor would be preferable. The experimental test of
the two forms is obscured by the introduction of an
imaginary particle—vibration coupling, whose theoreti.
cal foundation is not yet established. It is our purpose
to investigate this form factor in the frame of a simple
model which had been introduced in ref. [5]. The ide:
is to write the interaction in a microscopic and in a
macroscopic form and to identify the matrix elements
of the two forms between the ground state and the
giant resonance state, the latter being interpreted asa
one-phonon state.

To be more precise, the particle—vibration interac-
tion has the following microscopic form:

Hy .= /T/v(x,xl-), )

where x represents the coordinates, including spin and
isospin, of the valence (or incoming nucleon}, and x;
those of the core nucleon i. For simplicity, we assume
a static, zero-range interaction:

ux,x)=6(r —r;)
@)

X (Py +Pgo-0; + Pp7e7; + Prgoe0; 7°1;).
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The interaction hamiltonian H,, is a scalar product of
irreducible tensors relative to the valence nucleon, C??Z
and of irreducible tensors relative to the core, 4 (r):

H. = 25

int

PEA (M, (3a)
w=LMTM7SMs

where
My = Y30 (D) © £y © Mg (3b)
Esug =nmp= 1 for§=0,T=0, (3¢
ESMS = Oprgs for§=1

(3d)

T?TMT = TMT forT=1

The quantity P* depends only on the indices S, Mg, T,
My of the set ,u and 4,,(r) is given by:

4,0 = E

We assume that for a given multipole p, we can relate

the giant resonance state |G, and the ground state by
- ; 1/2

G, = Q,100/(010] 0,107, &)

where Qu is a one-body operator of multipolarity u:

ESMS@ ) WTMT(I ) YL M(Q ) 4

04 = ZaF0)Esg @y Y 1ap(h). ©)

Approximation (5) amounts to assuming that the state
1G,) exhausts the non-energy-weighted sum rule for
the operator J,,.

The macroscopic form of &, is

Hiy Ek B ()M, )

where o, is the collective coordinate associated with
the vibration of the core, and where &, isa coupling
constant. We make the assumption that the zero-phe-
nion state is the ground state and the one-phonon state
| 1u) can be identified with the giant resonance state
[G,). Then, we require that

(G, 1 Hjy 100 = (1ulfF, ntIO) (8)
or for the multipole u

PG, 4,0 = kb (1) (Lafoy, [O). {9)
The next step is to assume that o and 0, have the

same matrix elements. If we choose k, equal to P¥,
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we then get the following expression for the form fac-
tor:

1, () = (G, 14,()10)/(G,10,10), (10)
or, using eq. {5):
7, () = <010 T4, (110501010, 0. (11)

Noting that, according to eq. (4)

[r5®)4,6) dr=0,, (12)

we have the following normalization:

J@)h, @) r2dr=1. (13)

We have evaluated (11) with a Slater determinant
for the ground state wave function. As usual, we have
taken 0, proportional to the electric multipole opera-
tor f(r) =L We give the final result only, the details
of the calculation being of less interest:

rlp(r) — Fr(r)
B(r) = ——————— 14
%0 Ar2Ly)ar — Hy (1)

Here, p(r) is the nucleon density of the core, 4 is the
number of nucleons in the core and (r2L) is the 2 Lth
moment of the density distribution. The function /7
is given by:

1
Fri =22 E B agr s (D) 7

[a]{b]

X (20, + 1Y(Q2h + D27, + D2y + 1) (15)
(G L 7p)? L L2
X
1210, 1000
where
rL)ab = le rL+2¢a(r)¢b(r) dr. (16)
0

The sum [a] runs over the occupied orbitals, neglecting
their magnetic quantum number and ¢, (r) is the radial
function in state a. The quantity H; is defined by
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Fig. 1. Form factor for the L = 1, T = 1 multipoles. The full curve corresponds to our calculation. The long dashed curve is the vo
ume form factor of ref. [6], while the short dashed curve is the surface form factor.
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This formula isvalid for L=1(T=1),L=2(T=0,1)},

L odd = 3(T =0, 1) multipoles; for all of these, s = 0.

It can be easily checked that (14) is normalized as (13).

We note that the volume form of ref. [6] is obtained
by dropping the terms F; and H; .

In figs. 1 and 2 we show numerical results for the
dipole and quadrupole operators, respectively, in the
case of several magic nuclel, The single particle wave
functions are calculated in a Woods—Saxon potential
well whose parameters are taken from ref. [9]. We
have neglected the energy dependence of the well
depth for simplicity. We compare our calculated h(r)
with the volume form /4, of Longo and Saporetti {71
as well as with a surface form g proportional to pL-1

X dp/dr. All the forms are normalized in the same way.

One can see that our model yields curves which are in
between the volume and the surface form factors. For
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Fig. 2. Same as fig. 1 for the L = 2 (T = 0 or 1) multipole.

the lightest nuclei (40Ca, 48Ca, S6Ni) our result lies
closer to the surface form factor. This is even more
true for 160 (not shown). We observed that when ha
monic oscillator wave functions are used for nuclei
from 160 to 56Ni, one obtains A(r) = A () for E1 mu
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tipolarity. This property follows from the fact that in
this case (E1, f(r) = r), the sum rule is exhausted by a
single oscillator state. In other words, the state !Gu)
(eq. (5)) is essentially a Op state in the collective vari-
able.

For the quadrupole operators, the situation is the
same, the quantity A(r) lying a little bit closer to Ag.
This trend is even more pronounced for the L = 3 mul-
tipoles (results not shown).

It is interesting to parametrize our results in a man-
ner simple enough to be introduced in the existing
codes for calculating semi-direct capture cross sections.
Since A(r) enters in a matrix element weighted by 72,
we have sought an overall fit covering all the nuclei,
the L = 1 and L = 2 operators and the domain where »
is larger than one half of the half-density radius. We
found that a good fit is provided by the arithmetic
mean

h(r) =0.5hg +0.5h,. (18)

For the L = 3 multipole, the surface form factor should
be weighted by a factor 0.5.

We have examined the question of knowing wheth-
er our results are tied to the zero range forces. In fig. 3,
we show the result of a calculation based on a Yukawa-
type of interaction. We see that even a small range pa-
rameter 4 = 2 fm~! (corresponding to a mass of ~200
MeV) does not change the shape of A(r) drastically
(the normalization (13) is not valid for a Yukawa
force). The appropriate range parameter is probably
much larger. Indeed, for the nucleon—nucleon force,
the pions do not contribute to the 7-7; on purely
scalar parts. For the 77; part, the light boson that con-
tributes is the p meson with a range parameter of y
=3.83 fm~1. This range is likely to remain roughly the
same for the effective nucleon—nucleon interactions
in a nucleus. Fig. 3 shows that for such a value of ,
the delta interaction gives a sufficiently-good approxi-
mation-of-A{r): : ~ . :

In some cases, especially for L = 2 transitions, a sub-
stantial part of the non-energy-weighted sum rule lies
outside the giant resonance state and hence, other states
can be excited in the semi-direct capture. To take this
into account, we propose to include a coupling of the
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Fig. 3. Form factor for the L = 1, 7= 1 multipole using a
Yukawa-type interaction. The parameter u is the inverse of
the range. The full curve corresponds to the delta interaction

(1 = =),

form (7) for all the states and multiply the coupling
constant by a factor v/x, where x is the fraction of
non-energy-weighted sum rule contained in the corre-
sponding state. This approximation is reasonable but
has a classical nature and some phases are neglected.
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