Basic numerical processing in genetic syndromes: The role of visuo-spatial processing and working memory.

Laurence Rousselle Lucie Attout Line Vossius Marie-Pascale Noël

1. Approximate Number System

- ≅ Early sensitivity to numerosities
 - Approximate: increasing imprecision with numerosity
 - Innate/precocious : Independent of learning : babies could discriminate numerosities
 - Basis of subsequent learning :
 - Connection with verbal number words
 - Connection with arabic numbers

- 2. Object-file mecanism: pre-attentional process for keeping track of the location of about 4 stimuli in parallel, without serial displacement of attention
 - Subitizing

- 2. Object-file mecanism: pre-attentional process for keeping track of the location of about 4 stimuli in parallel, without serial displacement of attention
 - Subitizing
 - Fast and precise
 - Innate/precocious: Independent of learning
 - Basis of the learning of number word cardinal meaning in young children

A central magnitude system

Walsh (2003):

Simon (2008, 22q11 deletion syndrome): Spatiotemporal processing form the basis of numerical and mathematical competence: Spatiotemporal processing deficit create "suboptimal foundation for the subsequent development of numerical and mathematical competence, thereby "cascading" impairments into those more academic domains"

Mathematic learning disabilities

- Specific developmental disorder occurring in children with IQ in the normal range
- Difficulty in
 - learning or comprehending arithmetic
 - in understanding and manipulating numbers
 - and learning arithmetic facts (3x4, 2+3)
- Frequent co-morbidities with reading learning disorders and ADHD
- Multi-determined learning disorder

Mathematic learning disabilities

Functional origins of MLD?

- Non numerical factors:
 - working memory (calculation and arithmetic fact)
 - sensitivity to interference (arithmetic fact)
 - finger agnosia (calculation and learning arithmetic fact)
- Numerical factors:
 - Basic inability to represent quantities (number sense)
 - Basic impairment of the ability to connect symbolic numbers to their meaning

Genetic influences

- Familly studies (including 1 child with poor math competence): Higher prevalence of poor math competence in father, mother and siblings (Shalev et al., 2001)
- Twin studies: Concordance rate of math learning disability reach 58% in monozygotic twins and 39% in dizygotic twins (Light & Defries, 1995)
- Higher prevalence of MLD in patients with Turner,
 X-Fragile, Williams or 22Q11 deletion syndrome.

Ex: 42-79 % prevalence of MLD in girls with Turner

⇒ interindividual ≠ in math partially accounted for by the genotype

Mathematical development in genetic syndromes

- Genetic syndromesWhy?
 - Better understand genotype-phenotype relationships
 - Opportunity to track early the origin of their math learning disorders
 - → Model of Mathematics learning difficulties (MLD):
 - Distinguishing different trajectories leading to MLD
 - Examing how their particular cognitive profile can contribute to number processing difficulties (working memory impairment, visuo-spatial disorders)

Cross syndrome studies

- Three genetic syndromes
 - **→** Turner, 22q11.2 and Williams
- Associated with MLD
- Divergent IQ
- Similar cognitive profile

Overall description

Turner 22q11.2 Williams Deletion of 30 à 40 genes on Deletion of one of the two X Deletion of 20 à 30 genes on the long arm (q) of the the long arm (q) of the chromosome X : Complete chromosome 7, region 11.23 (45X0), Partial (45X∧), Mosaïc chromosome 22, region 11.2 (45X0/46XX)1900 à 4500 1:4000 à 6000 -1:7500■ IQ: in the average range ■ IQ~70:[average IQ-moderate ■QI~60:[limited to severe intellectual disability] intellectual disability → most: IQ limited to -mild → Most: mild intellectual intellectual disability disability ■ Verbal IQ > non verbal IQ Verbal IQ > non verbal IQ ■ Verbal IQ > non verbal IQ

Cognitive phenotype

Turner	22q11.2	Williams
■visuo-spatial impairments	■visuo-spatial impairments	■visuo-spatial impairments
■ Working memory :	■Working memory :	■Working memory :
Verbal component OKVSSP component :	Verbal component OK	Verbal component relatively preserved
inconsistent	VSSP component : KO	VSSP component : KO
Executive component : KO	Executive component : KO	Executive component : KO
Executive control impairment: inhibition, switching, planification	Executive control restriction: inhibition and switching	Executive control impairment

Mathematics

Turner	22q11.2	Williams
Calculation procedures KOArithmetic facts quite preserved	Calculation procedures KOArithmetic facts OK	 Restriction +++ of math learning Calculation procedure KO some arithmetic facts could be stored in memory
 Number processing OK Symbolic number magnitude (digit comparison): inconsistent results 	 Number processing OK Symbolic number magnitude KO (digit comparison) 	 Number processing: Reading single digit OK but two digits KO S. Down Symbolic number magnitude KO (digit comparison)

What about the origins?

- Up to now: Information about the nature of the difficulties experienced quite late in the development
- But no information about the *origins* of these difficulties, about basic numerical processing (= foundation of math competence)

Magnitude representation Subitizing

	Turner	22q11.2	Williams
Non numerical magnitudes	KO (no control for IQ)	KO (no control for IQ)	No data
Non symbolic number magnitudes	No data	No data	КО
Quantités numériques symboliques	Contradictory results	КО	КО
Subitizing	KO (no control for IQ)	OK	OK

Hypothesis: Basic deficit of magnitude representation

Basic numerical processing in genetic syndromes

Premature conclusion...

→ Only tested with visual stimuli, some of them requiring to process their spatial position

But, all have visuo-spatial processing impairment

- → How do they process numerical and non numerical magnitudes in tasks with no visuo-spatial processing requirement?
- ➡ What is the impact of their cognitive profile (visuo-spatial and working memory deficit) on their ability to process magnitude?

Participants

Turner	22q11.2	Williams
20 patients with TS (mean CA: 18 [7-33 y-o])	 27 patients with 22q11DS (mean CA: 10;7 [5-23 y-o]) 	 21 patients with WS (mean CA : 22;1 [5-52 y-o])
 20 typically developping children and adults matched on chronological age (mean CA: 18 [7-34 y-o]) 	 27 typically developping children matched on verbal mental age (mean CA: 7;10 [3-13 y-o]) 	 21 typically developping children matched on verbal mental age (mean CA: 7;6 [4-11 y-o])
	 27 typically developping children matched on visuo- spatial abilities (mean CA: 7;2 [3-12 y-o]) 	 21 typically developping children matched on visuo- spatial abilities (mean CA: 6;1 [3-10 y-o])

Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

Non numerical magnitudes

Visual	Auditive
« the longest stick ?»	« the longest sounds ?»
	■ Biiiip Biiiiiiiiip

Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

Numerical magnitudes

Visuo-Spatial ++	Visuo-spatial	Auditive
« who has more pieces of puzzle?»	«Who flashed more »	« Who buzzed more ?»

Stimuli

Table 1. Pairs of Magnitudes Presented in the Numerical and Non-Numerical Comparison Tasks.

	Ratios	Ratios						
	1/2	2/3	3/4	5/6	7/8	8/9		
Numerosities	7–14	6–9	6–8	5–6	7–8	8–9		
	8–16	10–15	12–16	10–12	14–16	16–18		
Lengths ^a	70–140	60–90	60-80	50–60	70–80	80-90		
	80–160	100–150	120–160	100–120	140–160	160–180		
Durations ^b	525-1050	450-675	450–600	375–450	525-600	600-675		
	600-1200	750–1125	900-1200	750–900	1050-1200	1200-1350		

Weber fraction:

- Measure < from psychophysics to determine the smallest perceptual difference that could be perceived > acuity
- o index of **numerical acuity**

Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

Subitizing task

200 ms

Predictions: Global magnitude deficit

- All tasks impaired except subitizing
 - Length
 - Duration
 - Collection
 - Sequences of dots and sounds

Predictions: Approximate Number System

- Deficit in non symbolic numerical comparison tasks
 - Collection
 - Sequence of dots
 - Sequence of sounds

Predictions: Non numerical factors

- Impact of visuo-spatial deficit
 - Lengths
 - Collections

- Impact of working memory impairment
 - Sequence of dots
 - Sequence of sounds

Turner

Williams

Conclusion

None the genetic condition is associated with a global magnitude deficit

None of them presented a specific deficit non symbolic number magnitude

Their deficit in basic numerical processing tasks results from other non-numerical impairment :

- Working memory impairement in Turner syndrome
- Visuo-spatial deficit in 22q11DS syndrome
- A mix of both for Williams syndrome

Thanks

FONDS DE SOUTIEN - STEUNFONDS MARGUERITE-MARIE DELACROIX

Lucie Attout

Prof. M-P Noël

Prof. M-C Nassogne

Dr G Dembour

Table 2. Data and paired t-tests for general measures in TS and C groups.

	TS group		C group			
	Mean	SD	Mean	SD	t	р
Age (months)	219.20	87.09	219.75	91.75	21	.83
IQ measures						
Vocabulary (max. 68)	32.85	11.08	33.90	10.21	-1.57	.13
Similarities (max. 44)	20.15	6.12	20.35	6.11	45	.66
Block design (max. 68)	35.40	11.50	42.45	10.07	-3.45	.003
Picture concepts (max. 28)	17.45	4.32	18.70	2.92	-1.70	.11
Working memory						
Visuo-spatial sketchpad (max. 42)	35.15	7.00	38.75	5.54	-2.52	.02
Phonological loop (max. 16)	7.70	1.63	9.00	2.29	-2.80	.01
Central executive (max. 16)	6.75	1.86	7.25	2.20	85	.41
Mathematical fluency						
Addition (Accuracy) (max. 81)	42.55	23.51	49.95	23.53	-1.90	.07
Subtraction (Accuracy) (max. 81)	33.75	20.19	40.00	18.32	-2.01	.06
Multiplication (Accuracy) (max. 81)	25.05	17.18	34.50	16.21	-2.74	.01
Complex arithmetic (Accuracy) (max. 36)	10.71	5.02	13.65	5.29	-2.53	.02
Counting speed (ms/item)	437.83	151.26	433.20	113.70	.14	.89
Speed processing (ms)	567.62	98.11	565.40	95.28	.08	.94

doi:10.1371/journal.pone.0171454.t002

Table 3 Data and paired t-tests for general measures in 22q11DS, verbal and visuo-spatial control groups.

	22q11DS		$\mathrm{TD}_{\mathrm{VERBAL}}$		TD_{VSSP}	
	Mean	SD	Mean	SD	Mean	SD
Age	127.52	49.69	94.59***	28.38	86.74***	30.44
IQ measures (raw score)						
Vocabulary	22.44	7.78	23.63	8.25	23.00	10.52
Similarities	18	5.88	17.04	5.32	15.63	8.65
Block design	25.19	10.64	29.19	9.64	25.37	10.54
Concept identification	14.48	3.83	15.93	3.32	13.15	4.64
Working memory						
Visuo-spatial sketchpad	4.48	1.67	5.11	1.63	4.19	1.44
Phonological loop	6.04	2.01	6.04	1.43	5.67	1.57
Central executive	5.00	2.22	5.26	1.70	4.96	1.74
Mathematical fluency						
Pictorial additive fluency	8.00	6.13	11.27 ^a	5.71	10.82 ^a	6.29
Pictorial additive fluency (errors)	4.45	3.33	1.00 ^{a*}	1.55	2.00 ^{a*}	1.90
Addition fluency	24.93	13.19	$19.07^{\rm b}$	10.96	20.60^{c}	7.37
Subtraction fluency	19.40	11.35	$16.27^{\rm b}$	9.96	19.60°	6.33
Multiplication fluency	18.80	12.62	12.60 ^b	9.65	16.90 ^c	11.29

Table 2. Mean Chronological Age and Mean Performance in Working Memory, Processing Speed and Counting Speed by Group.

			ws		TDv		TDnv	
		N	Mean	SD	Mean	SD	Mean	SD
Age (months)		20	265.4	139.4	90.4**	22.2	72.8**	21.5
Working Memory	Visuo-spatial span	20	8.1	3.3	11.6**	2.9	9.4	3.3
	Letter span	20	5.2	1.8	5.9	1.0	5.2	1.4