i N Nuclear Physics A331 (1979) 213—-236; @ North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

A MICROSCOPIC DESCRIPTION OF NUCLEAR MOLECULES:
Application to the >C+'2C system

J. CUGNON *, H. DOUBRE and H. FLOCARD **
Divisions de Physique Nucléaire et Théorique, Institut de Physique Nucléaire, 91406 Orsay Cedex, France Tt

Received 24 January 1979
(Revised 15 May 1979)

Abstract: The interaction energy between two oblate 2C ions is calculated by means of the constrained
Hartree-Fock method. The influence of the mutual orientation of the ions is investigated by con-
sidering two extreme configurations: an axial symmetric one where the two ions approach each
with their symmetry axes aligned with the collision axis and a triaxial one where the axes of the
fragments are perpendicular to the collision line. The corresponding potentials J/, and I, display
very distinct features. In particular the minima of the potentials occur for quite different
interdistances. A method is devised for constructing from ¥, and ¥/, the potentials and coupling
factors between two ions rotating with definite angular momentum. Using these quantities in a
coupled channel calculation, we explain the gross features of the elastic, single 2% inelastic and
double inelastic cross sections. The same calculation yields good agreement with the fusion data.

1. Introduction

The discovery of correlated structures '} in several reaction yields of the 2C+ '2C
system has been the starting point of a systematic experimental investigation. Its
results can be summarized as follows. For energies close to that of the Coulomb
barrier, 500 keV wide correlated structures have been observed. At higher energies
the clastic excitation functions display a gross structure with 2 to 4 MeV wide
bumps ?'3). In addition, a number of fine structures have been observed in the elastic
and numerous reaction cross sections (for a review, see ref. *)). The fine structure
(few keV wide) is likely to have a statistical origin, while most of the intermediate
structure (500 keV wide) and the whole gross structure are thought to be connected
with entrance channel phenomena. Detailed studies of the excitation functions for
inelastic channels {in which one or both *2C nuclei are excited to the first 27 state)
are also available ®*%). Their main and surprising result is that the inelastic yields
are of the same order of magnitude as the elastic cross section over a wide range
of bombarding energies. Moreover, some angle-integrated cross-section measure-
ments have also been performed ©~8). However, the results somewhat disagree from
one experiment to the other, although the presence of wide bumps seems now rather
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well established. Finally, the fusion cross section measured up to 30 MeV (cm.)
displays an oscillatory structure with a period of several MeV [ref. %)].

The theoretical effort has paralleled the experimental achievements. The emphasis
has first been put on explaining the narrow structures for bombarding energies close
to that of the Coulomb barrier. More recently, various models have been proposed
which attempt an explanation of a larger body of data. One may distinguish three
main types of approaches:

(i) A theory based on the a-cluster picture '°) assigns the gross structure of the
elastic scattering to quasibound states in a potential describing the interaction
between two unperturbed carbons, and the fine structure to metastable states of a
system composed of a carbon core and three a-particles. The decay of these states
feeds the compound nuclear system. The theory has however remained mainly at a
qualitative level despite some success in explaining the branching ratios for the o-
particle channels.

(ii) In a group of phenomenological or semimicroscopic models !'~17), the inelastic
channels corresponding to the excitation of the first 2% state of one or both of the
two carbons are included explicitly. The gross structure in the elastic cross section
is still associated unbound eigenstates in the elastic potential well. These resonances
are usually broad since they occur near or above the interaction barrier. Furthermore
they are coupled to quasibound states in the inelastic potential wells. These states
have generally a much smaller width because they lie deeper in the potential well.
This pattern of broad and narrow interacting resonances has received names like
double resonances '°) or band crossing '*). In most of these works, only the potential
{escape) width of the quasibound states is considered. When cross sections are calcu-
lated, the spreading width due to the coupling with the compound nuclear states is
introduced by means of an absorptive potential. However, in order not to wash
out the fine structure, the magnitude of the absorptive potential is always kept very
small despite what is suggested by the large fusion cross section °). ‘

(i) In a third kind of approach '®), one attempts a simultaneous explanation of
the fine structure, and of the magnitude of the absorption. The latter is obtained by
the introduction of a conventional absorptive potential, while fine structure is due
to aresonant Landau-Zener coupling of the elastic potential curves with “anomalous”
potential curves associated with excited configurations and crossing each other
outside the range of the absorption. However, the theoretical justification of the
anomalous potential is still an open problem. ' kk I

The approacn followed in this paper is in the line of the second group cited above.
However we insist on keeping phenomenology at the lowest possible level. With
the Skryme interaction SIII, we compute, the Hartree-Fock (HF) interaction between
two '2C nuclei as a function of their relative distance. The use of an effective nucleon-
nucleon interaction successfully tested on a large body of very different nuclear
properties '°) is an important feature of our calculation. This contrasts with most
of the *?C-12C potentials used in the references above, which are either derived



NUCLEAR MOLECULES 215

phenomenologically * ~1%) or by means of ad hoc nucleon-nucleon interactions ' 7).
The deformation of the intrinsic state of '?C leads to consider the potentials corre-
sponding to different orientations of the '2C nuclei with respect to the line joining
their centres of mass. From them a method is proposed to construct the potentials
and the coupling terms of the system of coupled equations describing the single and
mutual excitation to the 4.43 MeV 27 state of ! 2C. We also discuss the connection of
our approach with the Born-Oppenheimer method and molecular nuclear physics.
Finally we show the predictions of our model concerning several cross sections
including the fusion cross section.

2. Potential energy curves

In this section we investigate the influence of the mutual orientation of the two
deformed !2C nuclei on their interaction energy. This quantity is obtained by
Hartree-Fock calculations in which the total mass quadrupole moment is constrained.

We use the Skyrme nucleon-nucleon effective interaction SIII [ref. 2°)]. The direct
part of the Coulomb force is also included. Since we assume a perfect spin up-spin
down degeneracy the spin-orbit part of the Skyrme force has been neglected. The
HF equations are solved in configuration space by means of a triaxial code. The single
particle wave functions are discretized on a three-dimensional mesh. The mesh size
has been chosen so as to ensure a 100 keV accuracy of the results. Details on the
numerical procedure may be found in ref. 2!). In addition to the spin degeneracy,
spatial symmetries are assumed for the total *2C+2C system. Let us call O the
position of the total center of mass and Ox the collision axis. We impose the parities
with respect to the x =0, y = 0, and z = 0 planes to be good quantum numbers
for the single particle wave functions. No correction for the center-of-mass motion
has been applied. This is consistent with the adiabatic time dependent Hartree-Fock
(ATDHF) method 2?). In this method the collective potential is defined, like here,
as the constrained HF energy (CHF) and a possible center-of-mass effect as well as
other effects of more dynamical origin are taken into account by the replacement
of the reduced mass by an effective mass. Calculation of this effective mass is presently

underway 2°).
With the nucleon-nucleon interaction used in this work the ground state of 2C
is oblate with-a quadrupole moment @, = =39 fm?. It therefore exists a triple con-

tinuous set of possible mutual orientations of the two ' 2C nuclei. We have investigated
two extreme cases which are depicted by diagrams | and 2 of fig. 1. The first configura-
tion is axially symmetric. The two ions approach each other with their symmetry
axis aligned with the direction of the collision. The second case leads to a triaxial
shape with the two '?C axes perpendicular to the collision axis.

To obtain a given orientation of the fragments we impose the proper asymptotic
parities of the wave functions with respect to the three symmetry planes and keep
these parities as the two *2C nuclei approach each other and interact. The potential
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Fig. 1. Diagrams showing the several configurations of the >C+ '2C system considered in this paper.

curves correspond therefore to a sudden collision with respect to the single-particle
quantum numbers. On the other hand our choice of the HF solution implies the
adiabaticity with respect to changes of the spatial structure of the nucleon wave
functions. The underlying physical assumption is that it is easier for the wave-
functions to adjust their shape during the restricted time of a collision than to change
their symmetry properties (i.e. number of nodes). . o

The collective coordinate relevant for the study of ‘a collision is the distance
between the two ions. In this work we have studied the CHF energy of the 12C+ 12C
system using a constraint on the total quadrupole moment @ and we have defined
the distance R between the ions as

Q‘fox\%
R= (272 i
() &

where @, is the quadrupole moment of a single *?C measured along the x-axis.
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When the collision takes place according to diagram 1 of fig. 1, Q;, = Q; = —39 fm?.
When configuration 2 is used Q;, = —3Q; = 19.5 fm?. Here A, stands for the mass
number of a fragment (here 4, = 12).
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Fig. 2. Constrained HF energy curves. Potentials ¥, and ¥, correspond to the configurations of the
12C+12C system shown on the diagrams 1 and 2 of fig. 1. The dotted curve and the dash-dot curve
indicate the classical coulomb energies for the configurations 1 and 2 respectively.

In fig. 2 we present our results. The quantities plotted in ordinate are the potentials
V(R) defined as the difference between the CHF energy E(R) at a given distance R
and the asymptotic value E(oo). The two potential curves are quite different. For
large values of R the difference arises from Coulomb quadrupole-monopole and
quadrupole-quadrupole interactions, which differ according to the considered con-
figuration. As expected, Coulomb polarisation effects are small and the HF curves
closely reproduce the classical Coulomb values. When R decreases the nuclear
interaction sets in first for the triaxial configuration. A minimum of V, is reached
at R = 6 fm, then nuclear repulsion takes place and the system approaches a particle-
hole excited configuration of **Mg. The existence of this minimum at R = 6 fm
is in keeping with the results of the analysis of ref. 2*). When the two '*C nuclei
face each other the top of the barrier occurs at a smaller distance (R, = 6.0 fm
instead of R, = 9.2 fm) and a higher energy (¥, = 7.2 MeV instead of V, = 5.6 fm).
inside the barrier the potential deepens until a slightly excited (E,, < 2 MeV) con-
figuration of **Mg is reached T.

We shall not try to compare our results with the presently available phenomenolog-
ical and theoretical potentials. Indeed, we think that such a comparison would not be
meaningful since these potentials are used in formalisms quite different from ours 1.

¥ The HF lowest solution for **Mg is triaxial. It is not reached, either in ¥, nor V,, because it
corresponds to a different set of quantum numbers.
" A HF potential for the axial configuration is aiso calculated in ref. *%). However a detailed
comparison with our results is made difficult by the fact that the authors only give a Saxon-Woods fit
to the outer tail of the self-consistent potential.
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3. A model for the 1*C+ '*C collision

The potential curves obtained above correspond to very specific geometries of the
collision. We expect deformed objects like the '2C nuclei to rotate and generate a
rotational band. Hence the physical quantity of interest is the interaction energy
between two ions with definite angular momentum. In this section we show how it
is possible to extract such quantities out of the CHF curves. As afirst step we generate
in a simple way the wave functions of the 0% and 27 states of '2C and indicate the
relationship of our approximation with the Peierls-Yoccoz method. Second we
derive from the CHF curves the potentials between two ions with definite angular
momentum in a frame where the line joining the two fragments is at rest, i.e, in what
is usually called the rotating frame. At this point we discuss the Born-Oppenheimer
approximation. Finally we write the equations in a c.m. frame with fixed axes.

3.1. ROTATION OF A FRAGMENT

In this subsection we consider one !?C nucleus. Let [x), |y> and |z) denote the
HF ground states with a symmetry axis pointing in the x, y and z direction. Since,
as we shall see later, these three states are orthogonal, we can construct the following
three orthogonal vectors,

00 = 3>+ > +I2),
20> =2 =y —12), 2)
242> = /3w —12).

The vectors defined in formula (2) should be understood as approximations of the
states of good angular momentum obtained according to the Peierls-Y occoz prescrip-
tion 2%). Indeed these projected states with angular momentum j and projection m
read
jm) = deQDf;t’o@)lm, (3)
where |Q2) indicates the HF state with its axis pointing in the direction Q and D}, (Q)
the usual rotation matrix. The replacement of the integral (3) by a six-point formula ?7)
with the points (8, ) = (0, ¢), (z, ¢), &7, 0), G, in), Gx, ), (37, 37) leads to formula(2)
for the0" and 2% states. In the case of a ' 2C nucleus, eq. (2) is a rather good approx-
imation. Indeed the overlap (| is a slowly varying function of the angle @ between
the directions € and €. For a ! ?C Slater determinant built with deformed oscillator
wave functions one finds

4q 6 4gcos & )4
Q) = ((1 +q)?={l—g)cos’ @) \(1 +g)*—(1—g)*cos* &

~ cos* &,

(4)
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where ¢ is the ratio w, /o), between the oscillator frequency in the plane perpendicular
to the ' 2C symmetry axis (w ) and the frequency along this axis (wy). As a consequence
of the slow variation of the overlap function, it is not necessary to include in the
integral (3} all the directions Q) since most of them would bring in redundant informa-
tion *. For a heavier system the overlap function decreases much faster and the
approximation (2) becomes worse. We should also mention that, with this six-point
method, we can describe only two states of a rotational band and cannot distinguish
between the states j = 2, m = 2 and j = 2, m = —2. From now on we shall assign
the state |00 to the ground state of **C and the states |20) and |24+2) to the 27
excited state with energy 4F = 4439 MeV.

Asin other works '7) we consider the ! 2C nucleus as a rigid rotor. This approxima-
tion is supported by ref. 2%), which evaluates the quantum of quadrupole vibration
as large as 7 MeV. In addition the present work does not exclude the polarisation
of the intrinsic state of the fragments during the collision, an effect which is actually
contained in the curves ¥, and V,. We only assume that this does not perturb the
rotational properties of the fragments.

3.2. BASIS FOR THE TWO-JON SYSTEM; HAMILTONIAN OF INTERACTION

As a basis for the total system, we take the tensor product of the basis of each '2C
nucleus. We can label it {|x;x,), [x,v,> ... ... |z,2,0} or {|jym,j,m,>}. Each HF
configuration like |[x,y,> can be followed continuously for any value of R, and,
with the help of the tensor square of the unitary matrix (2), we define the associated
states {|jm,j,m,>}. In principle, the second labelling is only meaningful for large
distances when the two ions are clearly separated, and have good individual angular
momenta. Since we are mainly interested in calculating cross sections, it is sufficient
to have a basis whose vectors have a physical meaning asymptotically. However, as
will become clear from our definition of the hamiltonian, we will assume that the
vectors |j,m, j,m,) describe, for any distance, states such that both '2C nuclei have
a good angular momentum.

Let us now construct the Hamiltonian of interaction H,, namely the total Hamil-
tonian H minus the relative kinetic energy. We write it as:

Hy = h1+hz+U(R), (5)

where the /s are the internal Hamiltonians of the two *?C and ©(R) the potential
interaction. To be more precise from now on the adjective “internal” will refer only
to the orientation coordinates of the fragments and no longer to other nucleonic
degrees of freedom inside each fragment. As said in the preceding subsection, the
effects of these degrees of freedom is contained in the self-consistent potentials ¢(R).
In the basis |j,m,j,m,», h, is diagonal with eigenvalue 0 for the states |00, j,m,>

T In the case of oscillator wave functions 15 points are enough to make the integration (3) exact.



220 J. CUGNON et al.

and AE = 443 MeV for the states [2m,j,m,>. A similar definition holds, of course,
for h,. As for v, we shall neglect its non-diagonal matrix elements in the basis
{|x,x,>,...|z,2,>}. The physical meaning associated with this appproximation is
that the interaction v cannot change the orientation of the fragments 7. Such a change
takes place only indirectly via the internal hamiltonians h; which mix all orientations
(they have non-diagonal terms in the basis {|x,x,),...|z;z,>}). On the contrary, v,
which is non-diagonal in the basis {|j,m, j,m, )} induces angular momentum transfers.
Due to the axial symmetry of the ! 2C nuclei, (R) has only four distinct eigenvalues.
The corresponding configurations are given in fig. 1. To an axial collision (first
diagram) corresponds the potential

VeslR) = Cexfe(R)|xx) = Vi(R), (6)

and to the triaxial configuration 2 two identical potentials depending on whether
the '2C axes point in the y- or z-direction,

ViAR) = V..(R) = VR). (7)

¥y

We have not calculated the potentials V; and V, (see fig. 1) which imply the breaking
of the x = 0 plane symmetry. In the numerical calculations and some discussions
we shall replace them by the following approximations

Vix V,,  Vox YV +V)). (8)

For reasons of geometry these approximations appear reasonable. One can also
check that they are exact for the first two leading terms of the Coulomb interaction
(monopole-monopole, monopole-quadrupole).

We are now able to write the Hamiltonian H, in the {|j,;m,j,m, )} basis but we will
first make a study of its symmetries.

3.3. THE SYMMETRIES OF H,

We shall make use of the analogy of our model with those commonly used in
molecular physics *°). In the rotating frame'" we distinguish four types of symmetries:

(i) H, is nvariant with respect to any rotation around the line joining the two
c.am.s. (the invariant line). The quantum number associated with this symmetry is
the projection 4 = m; +m, of the total internal-angular momentum on the invariant
line. ot - e

(i1} A reflexion through any plane containing the invariant line leaves H; unchanged.
However in our case this symmetry does not induce any simplifications of H, in
addition to those introduced by (i).

' This is in good agreement with the results of semiclassical calculations of heavy-ion collisions 29y,

t As usual this frame is chosen so that the c.m. of the two 1*C always lie on its Ox axis. The potentials
¥, have been defined in this frame.
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(ili) The Hamiltonian H, is invariant under an inversion through the c.m. of the
total system.

(iv) H, is left unchanged by the interchange of the coordinates of two '*C nuclei.

Since the last two invariances are preserved when the relative kinetic energy is
added to H, they will induce a symmetry classification of the total wave function that
we shall describe later. To make their influence on the structure of H; visible, we
shall introduce the symmetrized basis {{(j,m,)(j,m,)s); [(im)jm,)a)y} defined as

UpmUnmaly = (G m ma)) £l ma)j, m)D). 9

\/2(1 + 5]1125"”'"2)

In table 1, we give the expression for H, on the symmetrized basis in terms of the
four potentials ¥, and the excitation energy 4E. Table 2 shows how H, simplifies
when the approximation (8) is introduced. Due to our restricted basis we know the
Hamiltonian H, in the subspace A4 = 0, +2, +4 only. To pursue our analysis it is
easier to introduce states of the ' 2C + '2C system with definite total internal angular
momentum I namely the basis {|(j,j)As);1(j,j ) Aa>} with

[ j ) As) = Z (jymyJ m AN ml( 5 ma)s). (10)

Mgty

A similar definition holds for the antisymmetric states. However the sums performed
in eq. (10) run over all values of m, and include states of *?C like |j = 2, m = 1)
which are not in our basis (2). To estimate the missing matrix elements of H; we make
use of geometric considerations: the state |21) of '*C corresponds to an angular
momentum pointing 45° aside the invariant line while |20) is essentially aligned
with, and |2+2) perpendicular to, this line. Hence we shall replace any diagonal
matrix element involving |21 like ((21)(2 — 1)s|H|(21)(2— 1)s) by the average between
{(2020)|H,J(20%20)y and {(22)2—2)s|H (222 —2)s) and neglect any off-diagonal
term involving states like [(21)2— 1)s). This prescription is exact for the h, +h,
part of H, and is reasonable for v which is predominantly sensitive to the relative
orientation of the fragments.

In table 3 we give its expression in the 4 = 0 subspaces (4 < 0 matrices are
identical) of the basis {|(j,/,)]4s)}. We do not consider here the antisymmetric
subspace {|(j,j,)[Aa)} which is not useful for the study of a '*C+**C collision
because the symmetry of the initial state of the collision is not broken by the Hamil-
tonian.

Several remarks can be made about the structure of H,. First we note that [ is
not a good quantum number so that H; induces rotational excitations of the 12
nuclei. Second all the coupling terms are proportional to the difference V, - V,.
This was expected since the possibility of a change of the angular momentum arises
only from the difference between ¥, and ¥, and disappears when the potentials
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become identical. On the other hand, one notes that there is no direct coupling of
the elastic channel to the double inelastic channel. This is a consequence of the
approximation (8) which does not hold when the four potentials V; are used.

3.4. EQUATIONS OF MOTION IN THE ROTATING FRAME; BORN-OPPENHEIMER
POTENTIALS

The full Hamiltonian of the system reads:

hz
H=—-—4+H, (11)
2u
In formula (11), the first term is the relative kinetic energy and p is the reduced mass.
In order to derive the dynamical equations we proceed as usual. We study the action
of the Hamiltonian H on the most general collision wave function written in the
rotating frame and deduce a set of coupled equations for the several radial amplitudes.
Hereafter we shall use the shorthand notation ¢ to label the quantum numbers
(j;» i I) of the internal states of the '2C+ '*C system and denote HY the matrix
element

HE = G ASIH() )1 As). (12)

The most general expression of a scattering wave function in the rotating frame can
be written as

b= Y QI+ 1T nRIDY 6,6,0)c4). (13)
J Ac
In formula (13) #/M(k,R) is the radial relative wave function, D7}, , is the rotation
matrix, 0 and ¢ are the two Euler angles which bring the fixed OX axis onto the
invariant line Ox and 4 labels, as above, the projection of the internal angular
momentum on the invariant line.
We are now in position to study the action of H on . The Hamiltonian can be split

in three terms:
Hen nt1 82 L*n? (14
A=A RN uRE a4

1In the evaluation of Hy only the third term of H gives rise to some difficulties.
To study the action of the orbital angular momentum L? we shall write it as

P2=J2412-27 1, (15)

where we have introduced the total angular momentum operator J and the internal
angular momentum operator I. The problem is now identical to that encountered in
the rotational model from which we can extract the solution *!). After having
collected the three contributions to Hy and projected onto Dy, ,JeA> we find the
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coupled radial equations

d*  JU+DHIT+1)—=242 2 ,
<~—— - 2~ LS e Ryl

dRr? R? h
— [+ D~ U+ DT+ D= (A4 + DO Prlih
~ [+ D)= A=-DAI+ D)= (A=) Pylil, = 0. (16)

In eq. (16), the last two terms are due to the Coriolis coupling. They are responsible
for the breaking of the A-symmetry. In molecular physics a well-known approxima-
tion to this set of equations is the so-called Born-Oppenheimer method 3%) which
neglects the Coriolis coupling and introduces a R-dependent basis diagonalizing
the interaction matrix H¢ (R) for every value of the separation distance R. If we
consider the block A = 0, this diagonalization can be done analytically. The lowest
Born-Oppenheimer potential (elastic channel) is

(R) = AV, + V,)+ AE—[4(V, = V;)* + YE(V, = V,)+ (4E)* T (17

When 4E — 0 ¢,(R) reduces to Inf(V,, V,). One may note that Inf(¥,, V,) has
already been used in ref. *%) although the connection with the Born-Oppenheimer
method had not been emphasized. When 4E — oo, ,(R) — 4V, +2V,) which, as
we shall see in subsect. 3.5, is the elastic potential of the system of coupled equations
in the fixed frame. This is not surprising since the problem reduces to a description
of simple elastic scattering when the internal excitation energy goes to infinity. The
combination V; +2V, is such that the monopole-quadrupole terms (~ R™3) of the
Coulomb potential disappear so that the potential for large R-values is a pure point
Coulomb potential as should be expected for the interaction of 0 states.

In fig. 3 we compare the potentials ¥, V, and the Born-Oppenheimer potentials
&;,, which asymptotically correspond to the elastic and simple inelastic channels.
We have subtracted the point Coulomb interaction from all the potentials. From
this figure, one can check that the Born-Oppenheimer approximation fails in mole-
cular nuclear physics. Indeed a simple estimate shows that the energy difference
between the vibrational states in the potential wells ¢(R) has the same order of
magnitude as the separation between these wells. Hence a discussion in terms of one
Born-Oppenheimer potential is not possible and a solution of the full coupled system
(16) becomes necessary. B il o it ;

3.5. EQUATIONS OF MOTION IN A FIXED FRAME

To write the equation in a fixed frame, we start from the general expression of a
scattering wave y with total angular momentum J and projection M on the beam
axis,

1
Uim = Z‘ﬁ R @ 1M DT, (18)
le
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Fig. 3. Born-Oppenheimer potentials ¢, and e, associated respectively with the elastic and single
inelastic channels.

It will now be convenient to introduce the notation ¢ for the set of quantum numbers
{cl}. The coupled set of equations for the radial wave functions ¥XR) is

(dl [(1+1)

2 i
R +f<2) ZR)- 25 L VT (RIAR) =0, (19)

where we have introduced the notation , ; -
VER) = [ ¥ @ leMp T HIL Y @ [ M T @

In order to evaluate the matrix element V™ we need the expression of the state
[V ® lcM )]}, in the rotating frame:

[ @ leMp Ty = > (— D) M JQ2J+ D)2+ 1)/4n
A

x((l) /11 _jA>D{M,A(¢,8,0)1cA>. 1)
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V{MeV)

10

-10

Fig. 4. Potentials and coupling factor (eq. (24)) for the '2C+ '2C system.

After some straightforward angular coupling algebra, one finds the expressions of
V& in terms of the H<s 1:

VE(R) = ((21+ 1)1 + (= 1)’ Z (—DH2A+1)

Lo A){Z I J}FM,R
X(oooz' poaf R
cc’ o Y I I A yec' o3
FA(R)—;( 1) (A A O)EA(R)- (22)

In the above formula the F§’s are the reduced matrix elements leading to a transfer
of angular momentum A between the internal states c and ¢’ 1. Welist them in table 4.
All the off-diagonal elements as well as the diagonal elements FY with A 0 are
proportional to ¥, —V,. In fig. 4 we display the three distinct diagonal elements
CFG/2I+1 (the so-called channel potentials) and the coupling factor 1 (V, — V).
Except for an energy shift the three potentials are very similar. Interesting to note
is the strength and the R-dependence of the coupling factor (V, — V,) which as we
shall see induce large inelastic and double inelastic cross sections.

! The geometrical factors in front of eq. (22) differ from some of those available in the literature by a
factor #*!*" because we used throughout this paper the phase convention of Brink and Satchler 3%)
instead of that of Rose %),

1 For the numerical applications the Coulomb potential has been included in the coefficients FE(R)
and V*(R), egs. (19) and (22).
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The coupled systems (19) and (16) are equivalent. If one neglects Coriolis coupling
egs. (16) become much easier to solve. However the handling of the asymptotic
conditions in the rotating frame requires some care. For this reason and because
a standard coupled channel code was at our disposal we have rather solved eq. (19).
Because of the symmetry under the interchange of the coordinate of the two fragments
only even partial waves [ and I occur. In addition the scattering amplitude must be
symmetrized.

4. Results

Up to now the matrix elements V™ have been expressed in terms of the micro-
scopically calculated quantities V; and V,. However our model includes only three
of the possible channels. In order to reproduce the reaction cross section we need
some absorption; in other word an imaginary potential. We first discuss how this
potential was chosen, then present our results.

4.1. ABSORPTION POTENTIAL

With the possible exception of the a-particle channels *°), it is generally believed
that most of the inelastic channels not included here are fed by compound nuclear
process. This means generally a fusion of the two partners or at least a large overlap.

Fig. 5. Contour lines of the total density. (A) '2C ground state density in plane passing through the

symmetry axis, (B) the plane of the figure is perpendicular to the symmetry axis, (C) density of the axial

configuration of the '2C+'°C system in the plane z = 0 (see diagram I, fig. 1) for the value of R

corresponding to the minimum of ¥, (D) density of the triaxial configuration of the *2C+12C system in

the plane z = 0 (see diagram 2, fig. 1) for the value of R corresponding to the minimum fo V,, (E) same as
D for the plane y = 0. Each contour line indicates a 0.02 fm ™ increase of the density.
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Tabie 4

Reduced matrix elements F of the interaction Hamiltonian (see text)
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Fig. 6. The full line curve is the imaginary part added to the elastic potential (dashed curve). The
imaginary potential has 4 range smaller than that of potential V| (fig. 2). The dotted curve shows for
comparison the imaginary potential used in ref. '¢).

According to fig. 2 it is natural to associate the compound nuclear formation to a
collision in the axial configuration {potential V). Indeed the minimum of V, corre-
sponds to a fused system close to the ground state of **Mg . On the contrary in the
triaxial mode the nuclear saturation creates a repulsion for distances smaller than
6 fm before any strong mixing of the two ions can take place. This can be seen in fig. 5
where the nuclear density in the equatorial plane of the two '?C is shown for a
distance of the two ' *C corresponding to the minima of ¥, and V,. We shall therefore
introduce an imaginary part with range slightly smaller than that of ¥, and add it
to V| everywhere this potential appears in the reduced matrix elements and potentials
of the coupled equations (table 4). This procedure leads to complex coupling terms.
It is sometimes argued on the basis of statistical assumptions that the coupling terms
should be real. However the validity of these assumptions is questionable for strongly
correlated channels {i.e, channels with very similar intrinsic wave functions), as the
ones built on the rotational states described here 3%). We would like also to mention
that complex coupling is often used in phenomenclogical analysis 37}, at least for
nucleon channels. In any case, the complex coupling terms in our model arise
naturally from the geometrical relationship (see eqs. (2) and (3)) between the different
channels.

All the results presented hereafter have been obtained with a Woods-Saxon
imaginary potential of radius R =5 fim and surface width o =02 fm. The depth of —
the potential has been roughly adjusted to give good average agreement with the
experimental fusion cross sections 1. In fig. 6, we show the imaginary potential (depth
of 5 MeV) added to the elastic potential V99R) along with V%R). As a comparison
we give on the same figure the imaginary potential used in ref. '®). The qualitative

" As said in sect. 2 the HF ground state of 2*Mg is triaxial, but its energy is less than 2 MeV below
that of the minimum of ¥,.

" We define it as the total reaction cross section minus the inelastic channel cross sections,
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and quantitative differences are certainly due to our additional requirement of
reproducing the fusion data. In fig. 7 we display our results for the fusion cross
section. A good agreement is obtained for the highest bombarding energies. At low
energy we overestimate the fusion cross section. This indicates that an imaginary
potential with depth increasing with energy would be more appropriate in the
5-15 MeV region. However in this paper we shall focus our attention on the qualitative
and semi-quantitative implications of our microscopic model and shall not attempt
a detailed study of the influence of the phenomenological imaginary potential.

T T T Y 4 Y

1000}

Irb

800t

600+

400+

200+

i 1 1 |

5 0 s 20 B¢ men) O

Fig. 7. Experimental (dots) and calculated (full line) total fusion cross section. Data taken from ref, %).

Before going into the discussion of the elastic and inelastic cross sections we mention
a technical point. The real potentials ¥, and V, have been calculated for distances
R > 22 fm and R > 3.5 fm respectively. At shorter distances the nuclear saturation
of the effective nucleon-nucleon force and the Pauli principle lead to a repulsive
core that we did not try to compute in full detail. We have rather extrapolated the
curves towards R = 0 by means of a parabolic extrapolation. It is our belief that
this procedure does not affect sensitively our results. Indeed a precise knowledge of
the real potentials at short distances is certainly of small importance in view of the
magnitude of the absorptive potential (V] ~ 5 MeV for R < 4.7 fm). B

4.2. ELASTIC AND INELASTIC CROSS SECTIONS

Our results for the 90° excitation functions are shown in fig. 8. The general slope
of the elastic cross section is correctly reproduced as well as the amplitude of the
gross structure oscillations. However the minima of the calculated curve do not
always occur at the right energy. We have not studied whether this discrepancy could
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Fig. 8. Experimental (dash) and calculated (full line) excitation functions at 90° for the elastic (0*0")
single (072%) and double inelastic (2*2%) channels. Data from refs. 27°).

be cured via a better choice of the imaginary potential. The theoretical curve shows
no fine structure. In our calculation it is washed out by the strength of the absorption.
It is not clear whether the use of a shallower imaginary potential in the 5-15 MeV
region as suggested by the comparison with fusion data would reveal any narrow
resonances. It therefore seems impossible within our model to explain both the
existence of a fine structure in the elastic ¢ross section and the magnitude of the
fusion cross section.

The average agreement obtained for the simple and double inelastic yield indi-
cates that the coupling factor (~ V, — V,) predicted by our model has the right order
of magnitude. The fact that we slightly underestimate the double inelastic cross
section may be due to our use of approximation (8) which restricts the double excita-
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Fig. 9. Transmission factors 7.

tion to a two-step process (see subsect. 3.3). As was the case for the elastic data, we
do not reproduce the experimental fine structure.

To conclude this section we give in fig. 9 the transmission factors for the lowest
potential waves in the energy range just above the Coulomb barrier. It can be seen
that the first oscillation in the ascending part of the fusion cross section is associated
with a resonance in the [ = § partial wave.

5. Conclusion

In this paper we presented a simple model that attempts a microscopic description
of the molecular motion for the '2C+ '2C system. Starting from two constrained
Hartree-Fock energy curves we were able to explain the magn‘ftude and the main
features of the elastic and inelastic cross sections. We could not however explain at
the same time the fine structure in these cross sections and the fusion data. It seems
to us that most of the available models suffer from the same deficiency and can only
explain the first phenomenon by ignoring fusion data. Our discrepancy is certainly
an indication that the simple imaginary potential is too crude a model for the
description of the absorption even when the (2¥07%) (2¥27) channels are explicitly
taken into account.

By an analysis in terms of the Born-Oppenheimer method, we have shown the
connection of our model with earlier ones®?) and discussed the approximations
that they contained. Improvements can be achieved in a consistent way along several
lines. First, dynamical calculations using the ATDHF method 2?) could tell us how
much the coliective mass u(R) departs from the asymptotic reduced mass value and
how the position of potential resonances is affected T. Second, constrained HF
calculations with an additional constraint on the total angular momentum af, 7

t An indication of the magnitude of this effect is given in ref. *%) where the collective mass is
calculated according to the Inglis cranking formula.
A variational but not self-consistent calculation is available in ref, *?).
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would give the I-dependence of the potential. In both cases our model could be used
with only minor adjustments. However on the basis of our results it seems that the
major challenge is now to find a microscopic explanation of the absorption process.

We would like to acknowledge fruitful discussions with P. H. Heenen and A.
Raynal. One of us (J.C.) is very grateful to the members of the Division de Physique
Théorique at Orsay for the kind hospitality extended to him.
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