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A simple analytical formula is given to express the transition probability in a quasi-elastic 
transfer reaction. This formula is derived from the DWBA amplitude, using assumptions 
based on the fact that the main contribution to the DWBA integral comes from a narrow 
domain of distances of approach. Recoil effects are taken into account. This method is 
applied to calculate the excitation functions for one and two-proton transfer reactions 
induced in Z~ by heavy ions, below and near the barrier. The curves obtained are 
compared to the excitation functions measured for the production of residual 21~ and 
211At. The corresponding transfer reactions involve excitation energies E* of the residue 
lying in the range 0-8 MeV. This excitation energy is taken as a free parameter in the 
calculation, and the values E*pt which lead to the best agreement between the calculated and 
experimental curves are consistent with the classical values for the optimum reaction Q- 
values. 

Nuclear Reactions. Simplified transition probability for quasi-elastic transfer. Calculated 
a(E) 2~ Y)Zl~ 211At, X = lgN, 160, 19F, 4~ 4~ 56Fe, 63Cu near threshold. 
Compared experimental data. Deduced optimum excitation energy. 

Introduction 

Since the early papers of Breit et al. [1,2],  quasi- 
elastic particle transfer reactions induced by heavy 
ions have been extensively studied [3, 4]. Several 
theoretical approaches of the problem have been 
described, the most fruitful ones using the distorted 
wave Born approximation (DWBA). This treatment, 
initially limited to neutron transfer, has been extend- 
ed to charged particle transfer by Buttle and Gold- 
farb [5, 6], who also showed that recoil effects are 
important. However, this formalism is rather com- 
plicated and it is not always obvious how to extract, 
from these calculations, the salient physical features 
of the processes involved. In particular, the DWBA 
method is not able to express clearly the relative 
influence of some physical parameters, such as the 
incident energy, or the optimum Q-value, on the 
transfer probability. For example, in [7], the exci- 
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tation functions for transfer reactions could be quali- 
tatively interpreted, below the barrier, by the com- 
bined effects of an energetic and a geometrical factor: 
the cross sections for a given reaction at sub barrier 
energies are significant if the energetic balance (po- 
tential energy+mass  balance) is positive and if the 
distance of approach is small enough. Another simple 
model was proposed in Ref. [8] to explain the Q- 
value dependence of the cross sections for few nu- 
cleon transfers. According to this model, the distribu- 
tion of final states in the residual nucleus corresponds 
to the maximal entropy, subject to a kinematical 
constraint on the excitation energy, in order to ensure 
a Q-value distribution centered around a given value. 
Such effects do not appear clearly from DWBA treat- 
ments. Moreover, despite significant improvements, 
the DWBA codes are still time consuming and are 
not adapted for the interpretation of low-resolution 
experiments in which the summation on many final 
states cannot be avoided. Finally, it has recently been 
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shown that the DWBA formalism does not account 
for the energy dependence of the cross sections for 
transfer reactions to individual states [9, 10]. The 
suggestion was made that this failure might be due to 
the neglect of competit ion with the large group of 
unresolved states which we consider here. Thus, on 
many counts, it is important  to try to develop a 
description of transfer reactions to many unresolved 
states. 
In this paper we propose a simplification for the 
expression of the DWBA amplitude based on the 
often quoted fact that, for subbarrier on nearbarrier 
quasi-elastic particle transfer, the main contribution 
to the DWBA integral comes from a narrow domain 
of the r-space, r being the relative distance of the two 
fragment centers. This formulation, which is based on 
the principles given in [11], will allow us to get the 
transition probability in a closed analytical form. The 
same approach was used in [12] for neutron transfer 
reactions. 
In Sect. 1, we describe the general method for deriving 
the transition probability and the basic assumptions. 
Then, explicit formulae are given in Sect. 2, and dis- 
cussed in Sect. 3. In Sect. 4, the method is used to 
calculate the excitation functions for one and two- 
proton transfer reactions, and the results are com- 
pared to the experimental data of [13]. 

1. The Method 

Let us consider a nuclear reaction in which a particle 
is transferred from a light projectile to a heavy target 
(process denoted Lp type transfer in [6]), for an 
incident energy lower than the interaction barrier. 
Such a reaction may be considered as a transition 
from an initial state 1 (projectile +target ,  with orbital 
angular momentum 11 at a given distance R 0 to a 
final state 2 which is defined by the respective exci- 
tation energies, intrinsic and orbital angular momen-  
ta of the final nuclei, situated at a distance R2~-R 1. 
For low incident energies, the transfer probabilities 
will be mostly influenced by the potential energies 
relative to the entrance and exit channels. A typical 
situation, which corresponds to head-on collisions, 
zero angular momentum transfer, and ground state- 
ground state transitions, is shown in Fig. 1, where the 
potential energies in the entrance and exit channels 
are plotted versus the radial distance r, with the 
respective indexes 1 and 2. In order to take into 
account the mass balance of the reaction Qgg, defined 
as the difference between the sums of final and initial 
masses: Qgg=XM2-ZM1, the quantities U~ = I/1 and 
U 2 = V z-Qgg are compared in Fig. 1. The interaction 
potentials V~ and V 2 are calculated for the s wave, and 
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Fig. 1. Potential energies in the entrance and exit channels. The 
quantities U~ = V~ and U 2 - V  2 -Q~ are plotted versus the radial 
distance r. V 1 and V 2 denote the interaction potentials in the 
entrance and exit channels respectively, and Qgg the ground-state 
mass difference of the reaction. The crossing point C has a crucial 
influence on the transfer probability. BI is the interaction barrier 
in the entrance channel 

are the sum of the nuclear and Coulomb terms. From 
the comparison of such curves and from experimental 
data, it was inferred in [7] that the transfer cross 
sections become significant for energies higher than 
the crossing point energy E c, provided that the value 
of r is small enough to ensure a sufficient nuclear 
matter  overlap. 
If the reaction considered leads to a final state char- 
acterized by an excitation energy E*, the quantity U 2 
becomes equal to V2-Q, with Q=Qgg-E*. More- 
over, if the initial and final angular momenta  are 
different from zero, one should take into account a 
centrifugal term in the expression of the interaction 
potential (see below: Eq. (9)). 
For the Lp transfers considered here, the Qgg values 
are always negative, and the transition amplitude will 
be calculated in the post interaction representation 
[6]. 
The transition probability ~o from state 1 to state 2 is 
expressed in the frame of the Born approximation by: 

J d r  2 2~ ~ )~(r). F(r). zl(r) (1) 
O ) = ~  0 

where Zj is the wave function, suitably normalized, 
for the relative motion in channel j ( j=  1, 2) and F(r) 
the form factor. 
Our aim is to provide sufficiently accurate approxi- 
mations which transform expression (1) into a much 
simpler one, that we hope to be analytical. In order 
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to introduce these approximations, a few remarks 
must be made. As it has been extensively discussed 
(see Refs. [6, 14]) the variation of the relative phase 
of the functions )~ and X2 is becoming very fast as r 
is going away from the classical turning points. 
Hence an accurate description of the functions Z~ is 
needed only in the vicinity of these classical turning 
points, provided it respects the behaviour of the 
relative phase, at larger r. Such a description is 
realized by approximating the Coulomb potentials by 
constant gradient potentials in the region of interest, 
that is to say by replacing the potential energy curves 
by their tangents. The tangential point is chosen as 
the one corresponding to the outermost distance of 
closest approach. In order to respect the energy con- 
servation laws, this distance is defined (see Fig. 1), as 
the interaction of the curve U = E  (E being the c.m. 
incident energy) with the more external potential 
energy curve encountered. This curve corresponds to 
the entrance or exit channels according to the relative 
position of the curves U 1 =f(r)  and U2=f(r ). The 
distance of closest approach corresponding to this 
tangential point is denoted by R. 
As r retreats from R, the product Q Z~ rapidly 
vanishes, and the estimation of the form factor may 
be limited to a narrow domain around R. In this 
region, F(r) can be approximated by the asymptotic 
form of an Hankel function [3 6, 14]. Its variation is 
not significant in the region of interest, and F(r) has 
been approximated by F(R). It can then be factored 
out of the integral. Moreover, since ;0(r) decreases 
rapidly in the region r<R, the lower limit of the 
integral in (1) can be extended to -~c .  The ex- 
pression of m then becomes: 

2~ dr 2 ~  F2(R) i Z~(r) ~1 (r) 

27t + ~: dp 2 
= h-2 F2(R) (7*(P) 7,(P) (2) 

where 71 and 72 are the Fourier transforms of Zl and 

Z2: 

1 
]'j(p) =(2rch)l/5 ,{ e i'hp" Z.i(r) dr for j = 1, 2. (3) 

The calculation of the wave functions 7j(P) in a 
constant gradient potential is well known [15]. The 
resulting expressions are: 

71(p)=l.fil -I/2 exp ( E - U O p -  (4a) 

72(p)=12rchf2]-1~2 exp ( E - U 2 ) p - ~  (4b) 

where U 1 and U 2 are the potential energy values for r 
=R,  and where ,fl and f2 are the classical forces 
acting at this point: 

" t ) =  2 r  r : R  for j = l ,  2. 

The terms Itj are the reduced masses in channel j. 
Equations (2), (3), (4) yield 

F2(R) i -f2 \ fl ( D - -  2 " " h .]41 J2 exp p 

6 \/x, f ,  /x2f2 (5) 

Using the transformation 

6h \ l q  f l  la2 .t"2] 3 

and taking into account the definition of the Airy 
function 

A(X)= j'cos uX+5 du. 
7r 0 

Equation (5) can be rewritten: 

4~z 2 F2(R) /  _ 2h \e3 
A2(X) u ) -  (6a) h 2 f,s  [ 1 _  ! /  

\ i l l  f l  t12,12/ 

with 

X = - h l [ ( l . t i -  f 2 ) E - ( - U f l l - - f 2 ) ] (  Ca it1 f l  ..... 2h_ ,s J'2 ~. )l 3 

For incident energies E lower than E c, i.e. below the 
crossing point energy, the distance of closest ap- 
proach is defined by E : U  2 (see Fig. 1), and the 
expression X becomes: 

X = -- j.; i-if1 --;'2.12 (6b) 

On the other hand, for E >E<,, X is given by 

E-V2(R)+Qg~(2~2'~(  1 1 ~ ,,.3 
X =  .~ \ h i  \ l~,. f l  I~2-f2-7 " (6c) 

2. Explicit Formulae 

2.1. Form Factor 

A suitable approximation for the form factor for 
subcoulomb energies is given by the expression [3, 
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16]:  

e-~r 
F ( r ) = N . - -  

8~r 
(7) 

where ~ is related to the binding energy B of the 
transferred particle of mass m, in the final nucleus: 

= [2m, B/h 2] 1/2 (8) 

The term N in Eq. (7) contains the spectroscopic 
factor (S) and a normalization term. In the present 
case, the spectroscopic factors are not known, and N 
has been arbitrarily taken to be equal to 1. We thus 
obtain relative values for the cross sections, but the 
shapes of the calculated excitation functions will not 
be affected, as N is independent of incident energy or 
angular momentum, for a given transfer reaction. 

2.2. Interaction Potential 

The total real potential is written as 

Z I j Z z j e  2 h 2 lj(lj+l) 
Vj(r) = VN, -t + (9) �9 r 2/2j r 2 

where VNj, Z12, Z2j, /2 2 are respectively the nuclear 
potential, the projectile and target charges, and the 
reduced masses, and lj the angular momentum for 
the channel j (j= 1,2). The real part of the nuclear 
potential is deduced from the energy density for- 
malism (Ref. 17) 

A1/3A1/3 
Vu(r ) "1 ~'2 = A 1/3 ~_ ~i-1/3 " UN(r) (10) 

zxl ~ 2  

with 

UN(r) = - V  o exp(-O.27(r-ro(A[/3+A~/3)).  (11) 

V o and r o being equal respectively to - 3 0  MeV and 
1 fm for all the systems. 

2.3. Introduction of Recoil Effects 

It was underlined in I-6] that taking into account the 
recoil effects, which arise from the modification of the 
center of mass coordinates when the transfer takes 
place, gives a great improvement in the general treat- 
ment of the transition amplitude. 
Recoil corrections have been introduced here accord- 
ing to the method given by Buttle and Goldfarb [6]. 
The transferred particle being denoted t, and c 1 and 
c z denoting the nucleus cores, the transfer reaction is 
schematized as follows: 

(C 1 + t )+C 2 --*C 1 +(C 2 +t) (12) 

Here, a 1 =(c, +t) is the projectile, a2=(c2+t ) is the 
nucleus formed after the target c 2 has captured the 
particle t. 
The wave functions Z~ and ~2 are now connected 
with the potential energy curves considered as func- 
tions of the relative distance r of the cores. Near the 
turning points the relative distances r 1 and r 2 of the 
ions in the entrance and exit channels are related by: 

where 

(13) 

mt RI ~_y2=m"2q mt R1 (14) 
ma~ i r ma2 ma2 V 

The masses m,,, m~, rnc~ and m, refer to the different 
nuclei and particles defined above, and ~-is the closest 
distance of approach, averaged for the entrance and 
exit channels. 
The recoil correction leads us to replace in (6a), (6b), 
(6c) the expressions of U 1, U 2, f l ,  f2 by their cor- 
rected evaluation: UI(~1 r), U2(~2r ) 

(~U1 (r r) (~U2(~2 r) 
,fl -- gr f 2  - -  ? r  (15) 

and the method of Sect. 1 can be applied again. We 
give the final result which generalizes (6). I fE < E  c, r is 
solution of the equation E = U2(~ 2 r) and 

4rt 2 F2(r) ( 2h )','3 

~o = h2 fl  f2 1 1 

lq fl ~2 f2 

. A 2 [  E - U l ( ~ l r ) ( 2 ] ' / 3 (  1 1 ) -1/31 
Ji \hzJ \fl~fx /~2f2 (16a) 

where J) and f2 are given by (15). 
If E > E c, r is solution of E = U 1 (~ 1 r) and 

4rt 2 FZ(r) ( 2h t 2/3 
c o -  h~-  ]] f2 1 1 

;,IA /2;;;I 
, A2 [E--U2(~2F' (2~1/3( 1 1 ) -1/3 ] 

f2 \~2] /21-fl  /22f2 . (16b) 

3. D i scuss ion  

Equations (16) show that the transition probability is 
dominated by two factors: 
(i) F(r) which expresses the effect of the range of the 
nuclear force responsible for the transfer 
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Fig. 2. Variation of the transfer probability versus the Q-value. The 
dotted line represents the transfer probability calculated for l - 0  
using the present method, the solid line a DWBA calculation of 
the differential cross section for 0L=150 ~ taken from [13]. The 
transfer reaction considered is L60+ 14~ 14C-~-142Nd, and the 
incident energy is 56.5 MeV in the c.m.s. The curves have been 
normalized at their maximum 

(ii) the Airy function which shows that the transfer 
yield is considerably influenced by the matching of 
the relative motion wave functions. This factor char- 
acterizes the energetics of the reaction: for Lp type 
transfers, the transfer yield is dramatically reduced 
for energies lower than E c, because the argument of 
the Airy function is positive for E<Ec, and the 
function decreases exponentially. 
On the other hand, when E > E  c, the argument be- 
comes negative and the function goes through a 
maximum. By taking into account the properties of 
the Airy function, Eq. (6c) has been used to derive 
an analytical expression for the optimum Q-value 
(Qo~,) in a simple case (no angular momentum trans- 
fer (AI=0), zero initial angular momentum (l=0)). 
This expression is given in [11]. 
The dependence of the transfer probability on the Q- 
value has been calculated under these assumptions 1 
=0, A l=O, and compared to the result of a full 
DWBA calculation. The chosen reaction was the 
two-proton transfer reaction 1 6 0  -~- 1 4 0 C e  ~ 14  C 

+142Nd which has been studied previously by 
Von Oertzen et al. [18]. The comparison is shown in 
Fig. 2. It can be seen that a fair agreement is ob- 
tained, particularly for the position of the maximum, 
which defines the optimum Q-value. This indicates 

that the approximations involved in the present work 
lead to results which are accurate enough, at least as 
far as the dependence of the transfer probability on 
the Q-value is concerned (or its dependence on the 
incident energy, since E and Q play symmetric roles 
in the formalism). 

4. Application to Excitation Functions 

For a given transfer reaction, at a given energy, Eqs. 
(16a) and (16b) can be used to calculate the transfer 
probability (~)(/1) for each partial wave in the en- 
trance channel. It is then possible to get the transfer 
cross section by multiplying e)(/1) by the cross section 
for elastic scattering corresponding to the same 
angular momentum. Below the interaction barrier, 
this Rutherford cross section can be approximated by 
the term 

a(/l) =(2I ~ + I)~zR 2 (17) 

where 2~ is the reduced de Broglie wave length for the 
relative motion. 
The total cross section for the transfer reaction con- 
sidered, at the energy E, is then given by the sum- 
mation 

lm~l• 

~ E (2l l  + l ) ~ O ( / l ) .  (18) 
I~ 0 

Practically, the value 1 .... has been chosen to be the 
lowest l value which gives a contribution smaller 
than 0.1 '!0 to the sum. 
This method has been used to calculate excitation 
functions for one and two-proton transfer reactions, 
induced with heavy ions in Bi targets, close to their 
energy threshold. This was done in order to compare 
the calculated values with the experimental data from 
[13]. In this work, one and two-proton transfers 
induced in Bi were studied by observation of the 
heavy residual nuclei 21~ and 21~At. The identifi- 
cation of the residual nucleus is generally not suf- 
ficient to determine unambiguously the nuclear re- 
action which has taken place. For example, 2~ At can 
be produced either through direct transfer of two 
protons from projectile to target, or through the 
transfer of two protons and x neutrons, followed by x 
neutron evaporation from the excited 2xl+XAt nu- 
cleus. But these various reaction channels correspond 
to different energetics and can be distinguished from 
each other on the basis of the c.m. energy distribution 
of the residual nuclei. This was done for the lightest 
projectiles used (14N, 160)  [19]. For incident en- 
ergies close to the thresholds, the reactions leading to 
21~ and z~ tAt involve the transfer from projectile 
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Fig. 3a g. Comparison of the calculated excitation functions (solid 
lines) to the experimental cross sections (points associated with 
error bars). The black symbols refer to 2 proton transfers, the open 
ones to one proton transfer. The system projectile +target is in- 
dicated in each case. The excitation energy E* adopted for each 
calculation is indicated close to the curve. The calculated exci- 
tation functions have been normalized to one experimental point. 
The vertical arrow indicates the position of the calculated in- 
teraction barrier B~ 

to target, of one and two protons  respectively, the 
2~~ or 2~ZAt nuclei being formed with an exci- 
tat ion energy lower than the neutron separation en- 
ergy B,-~8 MeV. Such reaction paths are denoted 
(+P ,  - 7 )  and (+2p, -7 ) .  Under  the assumption that 
this result can be extended to the other projectiles, all 
the physical parameters  which enter the calculation 
(incident energy, masses and a tomic  numbers  in the 
entrance and exit channels, Qgg) are defined, with the 

exception of  the excitation energy E* and orbital 
angular m o m e n t u m  12 of the system in the exit chan- 
nel. Assuming that most  of the excitation energy is 
concentrated on the heavy reaction product ,  the pa- 
rameter  E* has been considered as free within the 
above ment ioned limits of  0 and 8 MeV. Moreover,  
the angular  m o m e n t u m  transfer has been assumed to 
be negligible so that 12 = 11. 
The result of  this calculation, for one and two- 
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proton transfer reactions induced in 2~  b y  14N, 
160, 19F, 4~ 4~ 56Fe and 63Cu are compared in 
Fig. 3 to the experimental excitation functions from 
[13], in the subcoulomb energy range. The points 
associated with error bars represent the experimental 
cross sections, and the solid line the calculated exci- 
tation functions, after arbitrary normalization. As 
mentioned previously, recoil effects have been taken 
into account in the calculation, and the potential 
energy functions include a nuclear and centrifugal 
part. 
The parameter E* has a significant influence on the 
slope of the excitation function. This can be appre- 
ciated by comparing the curves obtained for E* = 0  
(ground state to ground state transitions) to those 
which lead to the best fit, for which the value of E* 
(denoted * Eopt) is indicated in the figures. It can be seen 
that very good agreement between experiment and 
calculation is obtained for all projectiles, and that the 
corresponding value of Eo* t always lies in the range 
0 8 MeV previously defined from the experimental 
studies. 
It is obvious that the excitation functions obtained in 
[13] do not correspond to a single energy level in the 
exit channel. Therefore, the value of Eo*~ must be 
considered as the mean energy of the group of levels 
towards which the transfer occurs preferentially. It is 
therefore interesting to compare the values Eo* t found 
from the present calculation to the optimal excitation 
energies which can be derived 

i) from the classical expression of the optimal Q- 
value: 

/ Z a l  Zc2 1) 
Q ~  Z c  1 

(19) 
/ 

and the corresponding excitation energy 

w~ =Q.~-Oop, 

ii) from the expression Qgg-A V which was shown in 
[7] to be equivalent to the optimum excitation en- 
ergy, but which takes into account the nuclear part of 
the interaction potential. The quantity A V=V2(R ) 
-Vt(R ) is calculated for the value R of the radial 
distance such that E = V 1 (R). 
This comparison is made in Table 1. For each of 
expressions (i) and (ii), two values are given which 
correspond to the limits of the energy range over 
which the experimental and theoretical curves are 
compared, the upper limits being equal to the in- 
teraction barrier. Although negative values for the 
excitation energies have no physical meaning, they 
have been kept in Table 1, in order to appreciate the 
amount  of energy missing to reach the ground state 
level (E*=0).  First it can be seen from Table 1 that 

Table 1. Comparison of the optimum excitation energies Eo* , 
leading to the best fit of experimental data with the classical 
values 
i t E~-Qgg-Q . . . .  

ii) Q~g- A ~ 
The expressions i) and ii) are calculated for two incident energies, 
the lowest energy of each excitation function (L) and that of the 
calculated interaction barrier (B) 

lncident Transfer Eo* t Qgg-AV Qgg-AV E* E* 
ion reaction (MeV) (L) (B) (L) (B) 

N + P , - 7  5 4.5 6.7 5.0 6.6 
+2p , -  7 1 - l  1.6 -1 .8  1.4 

0 +P, -7  2.5 0.9 1.9 -0 .3  1.9 
+ 2 p , - ~  3.5 0.9 4.1 -0 .5  3.9 

F + P , - 7  4 4.2 6.0 4.2 5.8 
+2p,-~, 1 - 1 . 4  2.2 -1 .3  2.0 

Ar + P , - 7  0 - 0 . 6  0.1 0.9 0 
+ 2 p , -  7 0 0.3 0.7 -1 .2  0.4 

Ca + P , - 7  3 2.8 4.0 2.4 4.0 
+ 2 p , -  7 8 4.8 8.5 5.0 8.2 

Fe + P , - 7  I 0.3 1.5 0.4 1.3 
+ 2 p , -  7 2.5 1 2.2 1 2.9 

Cu +P,-7  4 3.9 5.1 3.9 4.4 
+ 2 p , -  7 1.7 3.6 1.3 3.2 

the limits for the optimal excitation energy values 
calculated from both methods i) and ii) are very close 
to each other. This is not surprising because, for 
subcoulomb energies, the contribution of the nuclear 
potential can be neglected. Secondly, the value Eo* t 
which best reproduces the slope of the experimental 
excitation function is always situated between the 
two limits of excitation energy defined above. This 
gives credence to the validity of the reaction paths 
(+P,  - 7 )  and (+2p ,  - 7 )  which have been assumed 
for the calculations, and to the physical meaning of the 
parameter E*. The best agreement between the exper- 
imental and calculated curves is obtained when the 
exit channel corresponds to an energy level such that 
the potential energy curves U 1 and U 2 cross in an 
energy region close to the barrier. This result is in 
good agreement with the conclusions of [7], and the 
excellent fit obtained for two types of transfer re- 
actions over a wide range of projectiles gives con- 
fidence in the validity of the approximations made 
for the transfer probability calculation. 

5. Conclusion 

We have worked out a simple analytical form for the 
transition probability for particle transfer reactions 
induced by heavy ions below the Coulomb barrier. It 
is based on the DWBA formalism and a reasonable 
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approximation for the entrance and exit channels 
wave functions. The application of this formula to the 
calculation of cross sections leads to very good agree- 
ment with the excitation functions measured for the 
production of the residual nuclei, 2t~ and 21~At 
through one and two-proton quasi-elastic transfers. A 
single parameter Eo*ot is used in the calculation, and 
the value of this parameter which gives the best fit 

i) lies in the correct range 0-8 MeV consistent with 
the observation of the residual nuclei 
ii) is in good agreement with the value calculated 
from the classical expressions of the optimum Q- 
value. 

This method of calculation is therefore very con- 
venient for the interpretation of such data from low 
resolution experiments. Moreover, it has the advan- 
tage of leading to a factorized expression in which the 
relative influence of the energetic balance and of the 
distance of approach are more transparent. 

We thank J.M. Alexander for interesting discussions and careful 
reading of the manuscript. One of us (J.C) is grateful for the 
hospitality extended to him by the members of the Division de 
Physique Th+orique of the Institut de Physique Nucl~aire at Orsay 
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