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Abstract: The factor of proportionality: between the partial photon width and the elastic channel
neutron width, introduced by the valence model, is calculated for a large fraction of the periodic
table. Results are presented in such a way that they can be used very easily for the analysis of
experimental data. Background capture cross sections are estimated for the 4s region. The
importance of the inelastic channel components, which are neglected in the valence model, is
studied. Their contribution is estimated numerically in some cases.

1. Introduction

The valence capture model has proved useful in the analysis of low-energy neutron
radiative capture. In particular, it can explain the observed correlation between
radiative partial width for electric dipole radiation and the neutron width, and it also
accounts for the existence of the correlation between the photon intensities for
electric dipole transitions leading to different final states and the neutron spectro-
scopic factors of these final states. Essentially, the model assumes that the components
which contribute to the process are, in the initial Amom:oz.smv and final states, those
which describe the target in its ground state; the “inert core components”. It has been
stressed in recent papers *?) that if only these components are involved, the radiative
process mainly takes place outside the nucleus, two or three fm beyond the nuclear
radius. The inert core component in the initial (vesonant) state is then proportional
to the reduced neutron width. Hence, the radiative partial width is also proportional
to the same quantity. Lane and Lynn > *) derived, a long time ago, an expression
for this factor of proportionality, However, their result strictly holds at zero neutron
energy. Recently, Lane and Mughabghab *) derived a fairly general expression for
the proportionality factor, which is valid for non-zero neutron energy. They also
gave an expression for the radiative capture background cross section. The formulae
involve optical-model quantities.

The whole problem has also been reinvestigated %) in the frame of the shell-model %)
or Feshbach reaction theory 7). The work of ref. ?) contains three important con-
clusions: (i) the factor of proportionality can be equivalently given in terms of com-
plex or real optical-model potential; (it) what is usually measured experimentally
is not the parameters of the $- (or X-) matrix, but slightly different quantities; (iii)
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62 J. CUGNON

the potential used for calculating the background cross section may be real or
complex, but it has to reproduce the optical nucleon-nucleus scattering length.

The validity of the valence model lies in the small size of the contribution of the
excited target components to the radiative width. This question has been investigated
in refs. > ®). In ref. ®), Lane discussed qualitatively the neutron reduced width for
excited target state {or closed) channels, while ref. *) mainly deals with the energy
dependence of the factor of proportionality when the neutron energy is negative.
We reinvestigate globally the problem here.

In fact, the aim of this paper is fourfold: (i) We want to do a systematic study of
the valence model for the 2p, 3s, 3p and 4s regions. (ii) We calculate, within the
valence model, the factor of proportionality between the elastic channel contribution
to the radiative partial width and the neutron width in this channel. We try to present
the results in such a way that they can be used easily by experimentalists. (iii) We
estimate the value of the background cross section in the 4s region. (iv) We discuss
the question of the inelastic channel contribution to the photon width and try to
evaluate it in some cases.

In sect. 2, we recall the main features of the valence model. Sect. 3 is devoted to
the numerical calculation® of the factor of proportionality mentioned above in dif-
ferent regions of the periodic table. In sect. 4, we briefly discuss the value of the
background cross section at low energy. In sect. 5 we turn to the inelastic channel
contribution. Finally, sect. 6 contains our conclusions.

2. The valence capture model

We assume that the elastic neutron channel (n) is the only open particle channel,
The collision matrix can be written as

5o LK e K
= 2ido = 3 rm.: == INNQ, ° TR NHV
.m.:: e . ~.~N=n £ M - «.NA:: A
where [ refers to a given photon channel and where
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Ttis argued in ref. ?) that the quantities T e and, I 1 €an be identified with the measured
photon and neutron width if 6, 1s the background neutron elastic phase shift. The
latter can be taken as the real part of the optical phase shift. In the context of the
valence model, one has ?)
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where u,, is the optical wave function and where 4 is the electric dipole operator
relative to the incident neutron and suitably normalized. The quantities 8; and ¢,
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are the neutron spectroscopic factor of the final state and the corresponding single-
particle wave function, respectively. Eq. (2.3) generalizes the Lane-Mughabghab
expression, which can be recovered by putting 84 = 0. In practice, the difference is
rather small, since §, Is small 1.

The valence capture model also predicts the magnitude of the background cross
section for radiative capture. The expression of the background S-matrix element is

$16 _ o Re {<tild]uype> €08 §yp(cos (Fope—80)) 1} . (2.4)
L—iRe tan (5,,,~ ;)

In ref. ?), it is shown that expression (2.4) is quite sensitive to the optical-model
potential. Arguments are given which say that expression (2.4) can only be interpreted
as the physical background cross section if the optical-model potential reproduces the
optical scattering length correctly. We also require this property for the optical
potential that is introduced in eq. {2.3), although the r.h.s. of eq. (2.3) is fairly in-
dependent of the phenomenologicat optical potentials which are available.

3. Systematics of the elastic channel contribution

Let us consider a specific case with an initial scattering state ¥ and a given final
state ¥{. We have, neglecting antisymmetrization

Vo= LT {u (B0, (3.12)
2.2 0,{t;8},, (3.1b)

where the @ are the target states. The functions u;(E}) describe the motion of the
neutron with a set of quantum numbers denoted by i and with an energy Ey = E-FE,.
The functions #; are neutron bound state wave functions normalized to unity. Finally,
the square of 0, ; is the corresponding spectroscopic factor. Essentially, the valence
model assumes that the components along the target ground state D, are the only
important ones both in ¥y and in ¥{. The initial and final single-particle states
generally satisfy the selection rules for electromagnetic radiation. For E} transition,
as considered here, the main transitions are 2p — 2s, 3s — 2p, 3p — 3s and ds — 3p.
The spin algebra is different if the spin-orbit splitting is taken into account. More-
over, the formulae are more complicated for non-zero targets. The general formulae
for the geometrical factor can be found in ref. *). We give below explicit formulae
for the different cases.
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3.1. THE s -> p TRANSITIONS
For a zero-spin target, the spin of the resonances is 3. Let us first assume that we

t Actually, the Lane-Mughabghab result applies to average partial widths. But another expression
which refers to individual resonance parameters has been worked out in ref. 2) and has been shown
to be equivalent to the optical-model expression.
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know the total angular momentum j; of the neutron in the final state. In this case, we

have
I AN 2
Dot 502 2 2 st (Gl LA G JOI (32)
H.».s \»r
where
2 2 , )
5= € 16441251075 MeV™? - fm 2, (33)
9 (hc)’

and where k, is the incident neutron wave number. The quantity &, is the photon
energy; Z and A are the charge and mass numbers of the residual nucleus; and &7 is a

geometrical factor whose value is given by

1 . i
%\an.w.vnw.mw %ﬁbuwvum.

(3.4)

The explicit expression for Z(j;, j¢) is

Lin (<t rltope, j,> €08 op[008 (S0 —30)]™'} (3.5)
Im tan (8,5, —)

A Q.M > &.mv =
where the optical wave function behaves asymptotically like

Uopt, j1 ™ p w\im {sin k,r+tan d,, cos k,r), (3.6)
' 7h
for I = 0. In the following we take 8o = Re 8y, as in ref. 7). .

If the target spin is non-zero, the spin algebra is a little more complicated. The
neutron can be transferred in p, and p, orbits in the same final state. Moreover,
the «-factor now depends on the spin of the target /,, the spin of the resonance J
and the spin of the residual nucleus Iy. We have

72
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Experimentally, at best the quantities [0 :_Nv Jr = 3% or %, are known and not the
relative phases. Moreover, in practice, only the spectroscopic factor 62 for the capture
in the p-state is known, irrespective of the j-value. The quantity 6% is a weighted sum
of the mwﬁ Eqg. (3.7) can be conveniently simplified by neglecting %.o. cross terms and
by assuming that the weight is given by the .«/-factors. We then obtain

LI R (R R —
R R e Y e A (3.8)
T's A* dm 20 +1

The bar means the arithmetic average over the index j;.
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3.2. THE p - s TRANSITIONS

For zero spin targets, we have

r AN
= = %mwmw -3 )k, J«\&Q,LQ_N“ (3.9)
I, A
where
1
(i n,wubummM = &(j; =4} =J). (3.10)

The quantity £ is given by eq. (3.5) where the normalization of the optical wave
function is determined by the asymptotic form (=1

HEE% ..

Uopt, jy ™~ — “\ 5~ (cos ki, r—tan Oopt St Ky 7). (3.11)
rV zh

For a non-zero spin target, and if the resonant state of spin J can be populated by

ps as well as py, the neutron width is generally not known for each channel, but only

for the / = 1 channel considered as a whole. In that case, one can use the formula

27 Gim L L JTY 1
o e LG 1 3.12
T4 bnM».w 2741 &ﬁ_\&c Jol (3.12)
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3.3. USE OF THE GRAPHS

We give in the figures below the value of the quantities |7 (i, jo)l for different
regions. For p — s transitions, the curves are given up to 500 keV neutron energy.
For s — p transitions, the curves are given to 200 keV, but we checked that they can
be extended linearly up to 500 ke'V, with an error less than a few percent. The quantities
17 (i, Jo)l are given for several values of 4. For the other values of 4, one can use
linear interpolation.

3.4. DISCUSSION

3.4.1. The 35 region. The optical potential which best reproduces the scattering
length in this region is the Moldauer potential 19), and this is the one we have taken.
As in subsect., 3.4, the final single-particle wave function is calculated from the
potential given by Ross et al. '), which provides good single-particle wave functions
near the Fermi level for a wide range of nuclei: the real part of Moldauer potential
overbinds the 2p levels by 3 or 4 MeV. Let us note, however, that the results are not
very sensitive to the very detail of the function 7. The results of the calculation of
# are given in fig. 1. Except for very small energies, the quantities | #| are linear
functions of the neutron energy. The general trend is a decrease of | 7| with the mass
number. This is due, as explained in ref. 2), to the fact that the wave function £,
(eq. (3.5)) is pushed more and more inside the nucleus and that external capture
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Fig. 1. Calculation of the quantity | #| (see the Fig. 2. Neutron strength function (full curve,
text) versus the neutron energy E, in the 3s normalized at 1 eV), scattering length a, (small
region. The numbers labelling the curves are dashes) and radius (long dashes) corresponding
the mass numbers. to the optical-model potential used in the 4s

region (see the text for detail).
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Fig. 3. Same as fig. 1 for the 4s region.

dominates. The difference between the 3s; — 2p; and 3s, — 2p, transitions has es-
sentially the same origin.

3.4.2. The 4s region. In this region, the measurements of the scattering length
are very scarce. We are thus reduced to choosing the optical potential which best
reproduces the strength function, hoping that the scattering length and the strength
function are reproduced with the same accuracy, which seems to be the case in the
3s region. The best optical potential in the 4s region must contain vibrational and
rotational couplings in order to account for the splitting of the 4s giant resonance.
Since a good description of the s-wave part of the optical wave function is only
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Fig. 4. Same as fig. 1 for the 3p region. Fig. 5. Same as fig. 1 for the 2p region.

needed outside the nucleus, we avoid the complications of these couplings and use a
spherically symmetric optical potential. We vary the radius parameter in such a way
that the strength function is reproduced (on the average). The other parameters are
those of the spherical part of Jain’s optical potential 12). The results of the fit for
the strength function are given in fig. 2, as well as the value of the corresponding
scattering length. !

The values of the calculated | #| quantities are given in fig. 3. Once again, they are
linear in the energy. The general trend of the A-dependence is the same as in the 3s
region, with, however, some slight differences induced by the splitting of the giant
resonance. The average value of | #] is larger in the 4s region than in the 3s region.
This is easily interpreted as the effect of the r-operator in eq. (3.7) conjugated with
the dominance of external capture,

3.4.3. The 3p region. Once again, because of the lack of scattering length mea-
surements, we are reduced to choose the optical potential that provides the best fit
to the p-strength function. Moldauer’s potential is the most suitable one, at least at
the centre of the giant resonance. The values of | 7] are given in fig. 4. The curves
seem more complicated than those relative to the 3s and 4s cases. However, the gross
variation with A is the same. The (slight) difference between the p; and the p,
captures arises from the fact that the Pg wave experiences a less repulsive potential
than the p; wave at the exterior of the nucleus, where most of the capture takes place.

3.4.4. The 2p region. In this region, the best optical potential is quite badly
determined. We have taken the same optical model as in the 3p region. The results
are shown in fig. 5.
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3.5. REMARK CONCERNING THE DIPOLE OPERATOR
In subsects. 3.1 and 3.2, we have assumed that the electric dipole operator d is

essentially given by
d=gur-s, (3.13)
where z; is the energy of the transition, and where ¢ is polarization vector of the
photon. The operator 4 can also be defined with the help of the gradient operator.
When d is sandwiched between two states which are not orthogonal [as in eq. (3.5)],

an ambiguousity arises, since the relation

- mm_.x%:%_v = (7 - gfy (3.14)
is no longer valid. The numerical results described below are obtained with the form
(3.13). We checked that using the gradient form does not change very much the
values of I'y¢/T,,, say less than ten percent, except in the wings of the giant res-
onances, where the difference can reach 20 %. The background cross section may
change more than 50 9. We, however, preferred to use (3.13), since the gradient
form corresponds to a current which is not conserved, while Siegert’s theorem %)
tells us that the current [H, ], which yields eq. (3.13), is conserved.

4. The background cross section

Besides the correlation between photon and neutron widths, the valence capture
model predicts the existence of a background capture. This provides a challenge to
experimentalists. However, up to now, the existence of a background cross section
has not been established unambiguously. The predictions, within the valence capture
model, of the most favourable regions of the periodic table for the observation of
sizeable background capture cross sections would be desirable. In the following, we
restrict ourselves to s-wave capture, since the backgropnd p-wave capture cross
section would be too small. The background cross section is given foras — (I = 1, j;)

capture on a zero-spin target by

$ Z' N
%uw 058y = UG 10 (.1)
where &7 is given by eq. (3.4) and where
ti P lttopy, 1> €08 Sl 08 (8, —8,)] !
G, ) = 2 | ROl oo ) 008 Oupleos Con =001} -y
1~iRetan (§,5—3,)

If the average over j; is taken, or if the spin of the target in non-zero, eq. (4.1) should
be changed in the way described in sect. 3.

The calculation for the background has been performed in ref. ®) for the 3s region.
According to these results, the background is more likely to be observed for 4 < 55.
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Fig. 6. Calculated background cross section in the 4s region. The curves give, within | or 2 %, the
cross sections both 100 keV neutrons (left-hand scale) and for thermal neutrons (right-hand) scale.

We give in fig. 6 the results for the 4s region, using the same optical potential as
in subsect. 3.4.2. We have put 02, = 1. We see that the most favourable region for the
observation of the background extends from 4 =~ 170 to 4 ~ 190. At low energy
the cross section is inversely propertional to k, because of threshold effect. This effect
extends to E, = 100 keV, and factors out from the remaining expression which
contains all the 4-dependence. The curve in fig. 6 represents the background cross

section for 0 < £, 5 100 keV, provided that the quantities o8 (E, ) are given by

GBE(E,) = aB5(100 keV)/(100 ke V)/E, .

ny

5. The closed channel contribution

To be specific, let us consider the 3s region. The underlying single-particle tran-
sition is 3s — 2p. We kept only these components in ¥y and ¥ (eq. (3.1)), with
the target in its ground state. If the energy is sufficiently low, say less than 100 or 200
keV, there is no open inelastic neutron channel in general. Then, the other components
in (3.1a) correspond. to a negative neutron energy, i.e. a closed channel. This fact
explains the title of this section.

Let us call 4 the dipole operator relative to the neutron and D the dipole operator
corresponding to the target. The El(= d+D) matrix element should read, using
eqs. (3.1), and neglecting antisymmetrization between the incident neutron and the
nucleons of the core,

Aﬁ%m:%m\ = Qo.mnA?umAmmv@ow:&Tmu Do}y
+ M M M %m.\.AA:_,AmCQNW& A:T\. @.&C.v

i [j} s#0

200 2 O, Kl B} DI {183, ). CRY

i [s] s'#0
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The first term is the one retained in the valence model picture. In the second term,
the symbol [/ ] means that one only retained the #; which have non-vanishing matrix
elements with the u;. The symbol [s] in the third term has a similar meaning. An
interesting part of this term is provided by the case where s = 0 and s denotes the
giant dipole state constructed on ¢,. We do not examine these transitions here.
We refer to recent works '*#) where they are discussed and where it is argued that
they are not important near the neutron emission threshold.

Let us discuss in more detail the second term in (5.1). In general f, only one single-
particle giant resonance among all the partial waves involved is important. In other
words, the wave functions u; corresponding to a given partial wave dominates the
other ones. Around 4 == 60, it is the 3s partial wave. Hence, in the second term, the
summation over i can be reduced to one term. The summation over j is also reduced
because of the selection rule. Neglecting the third term in (5.1), we have

Am\m_m:.\m\ = Qo.NnA?JwAva%cTE_?Nn@cw%v
+0, SQ:%A@U%QL&_?? Dy +0; 0. .. (5.2)

This decomposition also applies to partial photon width, and we write with obvious
notation

Iho=T% o+ Tk (T s+ ... (5.3)
We have neglected the (small) difference between the quantities with and without
tildes [0, = 0 in egs. (2.1) and (2.2)]. In eq. (5.2) E! is negative, in general, at low
energy. The quantity Hw»..o is of course given by eq. (2.3) (with §, = 0). A straight-
forward generalization of the latter equation to negative neutron energy yields an
expression for

M, =10, Im AAMNL&:QEQMvv\AOOm Jopy T8I0 o)} v (5.4)
' . .:5 A.chnv
where the optical model quantities refer now to the channel {13,®,}; with a negative

energy EL. The optical wave is represented by (l=0)

Ugpe & W “\MWWW (8(r) €08 S+ C(r) i 3,py), (5.5)
with for s-wave,
S(r) ~shwr,  C(rymcher, —h**2m = E.. (5.6)
Evidently, one has
Sy == i Do (5.7)

1-+tan é,, )

T An exception is, for instance, given by the interference of the 4s and 3d giant resonances around
A = 160.
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The S-matrix enters explicitly in eq. (5.4) since, at negative energies, the physical poles
and residues are those of the S-matrix. We draw the attention to the quantity I'y, 4,
which is defined as the residue of the pole of the S-matrix in the channel {us5P},.
This pole manifests itself as a resonance in channel 0, but is located below the inelastic
threshold. Hence, I, ; is not directly accessible by experiment.

We can summarize eqgs. (5.2) and (2.3) by writing

N.,»Fm = AQP N@VNNADNJ@ANMV\,AMMVQ i = Ou m,u Nu " ey Ammv
where

L(i) = Sy 2 (i). (5.9)

The function f(E}) is given by
JE) = kg ' (i, io)l%, (5.10a)

if { = 0 [see eq. (3.7)] and by

- i . : 2
\Amﬁv — Im »‘A&L‘ ?%,Ahsvv\«,oom. Ogpe 3N m%bw i AM.HOGV
Im(S,,)

if i # 0. The u,,, is normalized as in eq. (5.5). The geometrical factor .7 (#) depends
on the spin of the core in channel i. Its expression can be found in ref. %). Of course,
it i = 0 corresponds to a zero-spin target, (i = 0) = 12r [see eq. (3.6)]. In eq.
(5.8), we neglected the local fluctuation of [0, with 2, and we assumed that, in the
spirit of the optical model, {I';, ;> &~ I';(£}) is a function of the neutron energy in
channel i. Cugnon and Mahaux ?) have investigated the properties of the function
Iy(E)f(E), using a simple model for the energy dependence of I')(E). They took
for f(E) a formula involving a real potential that reproduces the optical scattering
length. At positive energy, they checked that it yields the same results as the expres-
sion with a complex potential. Here, we perform the calculation with a complex
optical potential on both sides of threshold. The evaluation of I';(£,) is impossible
but a closely related quantity is the strength function. Thus, it is better to consider

T, i0ID = Q_..NLN“QVMA&U\?MU, P=0,1,2,..., (5.11)
where
S(E,) = <TA(ED/D. (5.12)

At this point, we have to say a few words about the optical potential in the channels
i # 0. No experimental information is available. Furthermore, the quantities s(E?)
and s(E.) cannot be determined independently by an optical-model calculation if
there is a strong coupling between channels { = 0 and ; 5 0, such as the rotational
and the vibrational couplings which split the 4s giant resonance in two parts. In
the absence of strong coupling, there are not many reasons to believe that the optical-
model potential in channels i # 0 is very different from the optical-model potential
in chanpel i = 0, since in general the target state in channel / can be obtained from
the ground state by putting a small perturbation near the Fermi surface. Hence, in
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the following, we restrict to the 3s and 3p regions and we use the same optical
potential for all the channels.

The properties of the strength function s(E) near elastic threshold have been
investigated by Goebel and McVoy 13) and by Lane #). An optical-model calculation
of the strength function at negative energy has been performed recently Zv. It turns
out that the neutron strength function is continuously rising as the energy becomes
more and more negative, with a rate which varies, however, from one nucleus to the
other,

The results of the calculation of the quantity (5.11) are displayed in fig. 7, where we
put 02 = 1, and where £ is given by (5.9) with (i) = 1/2n. They refer to the 3s
region and Moldauer’s optical potential ?} is used. The bound state wave function
(this is true for fig. 8 also) corresponds to the potential of ref. 1), The energy of the

2k N N

JAEN
~
1R Vi // A
-

b e e T ! t /l..l

-1 -05 4] 0.5 1
E; (MeV)

Fig. 7. The 3s region. The dashes represent the function |k[f (see the text), in arbitrary units, and
the full curve corresponds to the photon strength function.
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transition ¢, is taken as ¢, = EJ + Ey, where Ej is the binding energy of the 2p state
in the potential well of ref. **). The dashed curves represent the function || f(E,),
with [k] = »\N§E.=_§M“ it shows a cusp at £, = 0 for all the nuclei. This was already
noticed in ref. ?). Moreover, it decreases sufficiently rapidly when E, becomes more
and more negative to compensate in some cases the rise of the function |k| ™ 1s,. This
compensation is less and less effective as A4 increases, and, for 4 2 65, the photon
strength function is as bigat E, < 0 as at E, > 0. Our calculations confirm the general
trend of the results of ref. ?), although for 4 ~ 60, they indicate that the photon
strength function still decreases at negative energy. We also give the absolute value
for the photon strength function, while ref. ?) deals with relative value only.

Our curves can be used for getting an estimate of the contribution due to a given
inelastic channel, at least if one knows the level density D™, However, a safer nse
of our curves is to deduce from them the ratio between the inelastic to the elastic
channel contributions (except for the spectroscopic factor). Of course, one does not
know the phase between the two amplitudes, but our calculation gives an idea of the
correction to the simple valency model amplitude.

Finally, our curves also give the partial photon strength function below neutron
threshold. We see from fig. 7 that this quantity peaks at threshold for 4 < 60, while
it is somewhat flat for values of 4 above 60. This result contrasts with the behaviour
of the calculated neutron strength function, which is qualitatively the same for al}
nuclei *4),

In fig. 8, we display the results of a similar calculation for the 3p region. Moldauer’s
optical potential has been used without a spin-orbit term, however, in order to get
directly an average of the p + and p, neutron strength function. The quantity {(i) is

x10%

<F;\f>
D

Fig. 8. The 3p region. The dashes represent the function [&]3f (see the text) in arbitrary units. The
full curves give the photon strength function.
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given by (5.9) with 27(i) = I/4n. The results indicate that the valency model is
expected to work well up to 4 ~ 110, This is very different from the situation in the
3s region, where the model scems to fail in the upper half of the giant resonance
region.

6. Conclasions

In this paper, we have investigated several numerical aspects of the valence model
for low-energy neutron radiative capture. This model predicts a proportionality
factor between neutron and partial photon widths. We have indicated that, apart
from a simple kinematical factor, this proportionality factor does not vary very
much with the neutron energy. We have calculated this factor for a large part of the
periodic table and have presented the graphs in such a way as they are very well
suited to the analysis of experimental data. For the 4s region, we have given predic-
tions for the size of the background radiative capture cross section and we have
shown the regions where it is more likely to be observed. Finally, we have estimated
the inelastic channel contributions in the 3s and 3p regions. Our results indicate that
the valence model does not work well in the upper half of the 3s giant resonance,
while it works well in almost the whole 3p region. Moreover, in the 3s region, the
calculated partial photon strength functions display an interesting threshold effect,
whose features change with the mass number.
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