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The optical-model potential for nucleon-nucleus scattering is constructed theoreti- 
cally in the framework of the RPA. Inelastic channels and resonant states contribu- 
tions to the imaginary part differ from the TDA case. The origin of this difference is 
qualitatively discussed. A small background term is added to the real part. 

1. Introduction 

The shell model  extended to the cont inuum provides in a useful tool  
to investigate the effect of the c o m p o u n d  nucleus and the direct interactions 
on the optical-model potential  1' 2. Unfortunately,  this shell-model theory  
is essentially a Tamm-Danco f f  approximat ion (TDA)  and neglects corre- 
lations in the target, at least for  mos t  numerical applications, where only 
I p - l h  excitations are taken in to  account  3. To avoid these drawbacks 
and to describe collective excitations, a more  elaborated model  has been 
built up, which is the r a n d o m  phase approximat ion (RPA) extended to 
the cont inuum 4-9.  The purpose of this paper  is to use this formalism to 
study the effect of the correlations on the optical-model potential. I t  is 
found  that  the resonant  states and inelastic channels contributions to the 
imaginary par t  are influenced by the correlations in the ground state. 
Moreover  a slowly varying (and probably  small) term is added to the real 
part, due to the boson-boson  interaction. 
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In Section 2 the RPA equations are recalled. Section 3 is devoted to the 
definition of the generalized optical-model potential and to its construc- 
tion. In Section 4, the optical-model potential proper is derived, together 
with useful simple expressions obtained with the help of suitable statistical 
assumptions. The physical origin of the different terms of the optical- 
model potential is discussed. Finally, Section 6 contains our conclusions. 

2. The RPA Equations 

In this section, we recall briefly the equations of the RPA extended to 
the continuum and define our notation. We closely follow Ref. s. 

a) Definition of the Hamiltonian 
The RPA Hamiltonian is defined by: 

Yf = EHr + Ho + V (2.1) 

where Enr is the expectation value of the total hamiltonian H with respect 
to HF ground state. The. HF hamiltonian h possesses bound states 
and scattering states whose wave functions are w']j(r, k,), ulj(r, k). The 
quantity Ho is defined by: 

oo 

Ho = ~ Es A + As + ~ S dE EA +~ (E) A c (E) (2.2) 
$ C ~ e  

with 
A + = a + -a,+, A+(E) = a+(E) a~. (2.3) 

The operators - + + ah, ap (ah, ap) create (annihilate) a hole or a particle in the 
HF (non correlated) ground state. When the particle is unbound, its 
energy ~p is related to the variable E by E =  ep + ec. The quantity V is 
defined by: 

v=Zv s, As As,+-} dEV2)(E)A+A (E)+H.C. 
SS' k , c 

+ E I dE ~ dE'V~(~)(E, E')A~+(E)A~(E ') 
cc" ~e 6e' 

+ {Z V 2A: + r (2.4) 
S S t 

+E I dE VJ2)(E)A+A+~(E)+H.C. 
s c L e o  

�9 CC" ( , ~; ~dEfl  dE' E')A+(E)A+(E')+H.C.}, 
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where V (a) is the part of the two-body force which is responsible of p - h  
scattering and where V (2) is the part which corresponds to the creation 
(or destruction) of two p - h  pairs. 

Within the RPA, the operators A~ +, A~, A~ + (E), A~ (E) satisfy the usual 
boson commutation relations. 

b) Equations of Motion for the Scattering States 
Let T~ +)c a scattering state of the hamiltonian ~/f, with incoming 

waves in channel e only, which is denoted by the upper index (+)e.  
This state can be related to the true ground state T o of ;/f by the equation 

I q / ( + ) c \ -  ~(+)  c? ~ ~ - ~ E  I~o) .  (2.5) 

Then, the operator Q(2 )t must obey the relation 

[~,  ~Et~(+) eel - EC~(+) c t j -  ~/z , L~EI-~ (+) c r ~E,C~(+) c'qj =5~,6(E--E'). (2.6) 

The quantity Q~+)~* is written as linear combination of the creation and 
annihilation elementary boson operators: 

A Q~+ )c* = Z [ x ~  (s) A:  - v;~ (s) s] 
$ 

oo 

+~, ~ dE' [X~e(c ', E') A+(E') - Y~(c', E')A~,(E')]. (2.7) 
C" 8es 

The coefficients X~ and Y~ satisfy the following integral equations s: 

t Y, 
7: ~ v: ~,) ( E + E 3 ~ s ,, + V2,) : ', Y~ ( s ): 

(2.8a) 
V(:)(E') ,  V,(},)(E ') ~ , , dE'( 

~, ~o, t- V,<~,)(E ) - V2,)(E'y \r;(~', ~'):' 

t 
\ ~';(c', E'): 

i v2,'(E') 1 v (2.8b) 
- ~ ;  ~ -  vJ:2 (e') - Vcg) (E'): xr~(s): 

] O. 
�9 , ~o,, ~ - v::), (E, E ) - V2), (E', ~"): \,~ ...... t~, E"): 

They generalize the TDA equations which can be recovered by making 
V (2) = 0. Their solution gives a complete knowledge of the wave function. 
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3. The Generalized Optical Model 
We define the generalized optical-model wave function by" 

co 

p~ (r) = <~oc I ~ dE'X~ (c, E') &+(E') l ~o7. (3.1) 
~c 

The integration indicated by the round bracket runs over all the co- 
ordinates except the radial one of the last particle. The function p~(r) 
has the same asymptotic behaviour as T(~+)c since this behaviour is 
completely contained in that part of T(E +)c which is projected in q~c in 
Eq. (3.1). Using the same arguments as in Ref. 1, we then get: 

co 

p~(r) = I de'X~(c, E') u~(r, k;). (3.2) 
g e  

(uc=--ulj, lj are the quantum numbers associated with channel c) 

The SchrSdinger equation corresponding to this wave function can 
be written as: 

ex3 

(E - D) p~ (r) - ~ d r' ~/rEc (r, r') p~ (r') = 0. (3.3) 
0 

In this equation, D denotes the radial component of the HF hamiltonian 
h = t +  Vo. The potential Vo +~e'~ (r, r') is the generalized optical-model 
potential. Eq. (3.3) can be rewritten in the shell-model representation by 
multiplying by u,(r,k') and integrating over r. One gets1 : 

co 

(E-E')X~(c, E') - ~ dE" f'E~(E ', E") X~(c, E") = 0 ,  (3.4) 

with 
co co 

~/PE c (E', E") = S d r S d r' u~ (r, kc) ~/r~ (r, r') u~ (r, k;'). 
0 0 

Inversely, one has 1 

co co 

~r r')= I dE' I dE" uc(r, k'~) fl[(r, r') uc(r, k'~'). 
~c ~,c 

(3.5) 

(3.6) 

(3.7a) 

(I_K~)(X~(c',E')~=(e~n~ 
\ Y~ ( c ', ~')i 

t 
\ Y~(s)/ \Y~(c', E") ' 

We construct now the generalized optical-model potential. For this 
we rewrite Eq. (2.8b) as: 
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where K~ is a 2 x 2 matrix given explicitly by: 

c , E") E+ - E ~  0 
KE(c, c", E', = 1 (3.7b) 

0 E+E' 

( ', z ' )  
(1 ~ ~ C  C ~ 6~,,) 

~-  v~,~),(E ', ~ ) - Vcg),(E', E" ) / '  
and where 1 is the 2 • 2 unit matrix. The matrix V is the one written down 
in Eq. (3.7b) when it is comprised between quantities both containing a 
continuous variable (E') like, for instance, in the third term of the r. h. s. 
of Eq. (3.7a). It has the form given in the r h.s. of Eq. (2.8a) when 
comprised between two quantities, one containing a continuous variable 
(E') and the other a discrete one (s). This appears in the second term of 
the r.h.s, of Eq. (3.7a). The matrix Ec ~ is given by: 

t 1 , 0 / Ec~= E + - E  (3.8) 
1 

o E+E' /  

In Eq. (3.7a) and in the following, summation over the variable s or 
summation over c ' #  c and integration over E' are omitted. It is easy to 
see where they operate. In order to construct the generalized optical- 
model potential, we extract from Eq. (3.7a) the coefficients X~(c',E') 
and Y~(c',E') for c'#c. We insert their value in Eq. (2.8a) and find an 
expression for the coefficients X} (c), Y~ (c) that we introduce in Eq. (2.8 b). 
Let F~ be the resolvent of K~: 

(1 + F~) (1 - K~) = (1 - K~) (1 + F~) = 1. (3.9) 

We readily get: 

r~ (c, E')/ 

_~_VeDC_X(E) ve(X~(c,E,,)I+ve(X~(c, EH)) (3.10) 

~Y~(c, ~")/  ~Y~(c, ~") ' 

where effective interaction V e is given by 

W = V +  V(l  + I:~) EctV. (3.11) 

If M denotes the number of boson states A~lTto>, the matrix D c is a 
2M • 2M matrix acting between the latter states and given by: 

De= Es-V ~ (3.12a) 
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( ;  ~ i ( E -  E3 ~, ~, o (3.12b) 
'-'s'~'= ~ o (E + E s ) ,~ f l  " 

The last operation, absent in the TDA 1' 2, consists in eliminating the 
coefficient Y~ (c,E') from Eq. (3.10). 

We define Vex, V er and F r by: 

V ex =V e (10 00) , ve r=v  e (0 0 01), (3.13a) 

(1 -  Ecl Vet) (1 + FY)=(1 + FY) (1 -  EclVer) = 1. (3.13b) 

We write Eq. (3.10) in the form: 

Y~ (c, E')/ - + 

Applying on the left the operator (1 + FY), we obtain with the help of 
Eq. (3.13b): 

( X~(c,~')] 

Y~ (c,E')/ 
C I t  0 

Replacing this value in the last term of Eq. (3.14), we find 

+ Ec 1 [ V  e Dc-aveX 4- v~X4 - V eY ( l  -I- F r) Ec ~ v~X-I 

�9 (X~(o' E") )+  Ecl [1 + Vet(l+ Fr) Ec 1] 

" VeDc- 've~'(y~( 0 )) 
c, ~ E"  " 

(3.16) 
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Multiplying by ver(E ') and integrating over the variable E', we get: 

S dE' ') 0 
~ Y~(c, E')  

---- A c-' V ~r [c  1 {V ex + V ~ D c-' [1 + vet(1 + F r) fie 1] veX} (3.17 a) 

with 
A~;1 - W ~  E2I [1 +Wr(1 + F~) E~I] VeD~-L (3.1.7b) 

We insert the value (3.17a) in Eq. (3.16) and multiply this equation by E c. 
Taking the first component, we obtain Eq. (3.4) with 

~ [  (.E) E") = (1, 0) {W(E') D c-'(E) W (E") + V~o(E', E") 

+ V'(E')D~-'(E) V'r(I +Fr)Ec' V'(E")} (~ ) 

+(1, 0) {[1 + ve~'(l + F ~') Ec 1] V'DC-'(E)A~-'V'rEc I } (3.18) 
�9 {V" (E") + V" D ~-'(E) [1 + Ver D ~-'(E) 

�9 (1 + V~r(1 + Fr) Ec')] V'(E")} (~). 

Let us define the operators V ~, W Y and ~ by 

vr=v~ ' (1  + Fr) Ecl W, w r = v ~ + v  r , (3.19a) 

@~ = D e -  V ~" Ec ~ W r. (3.19 b) 

We can write Eq. (3.18) in a more compact form: 

q/~(E', E")=(1, 0){V:~(E', E")+ V~(E')D~-'(E)Ve(E")} (10) 

+(1, o) {v'(E') D v ' (e " )  + [v~ + v"(E')] 
�9 ~-,(E)V~rEc~[V~(E,,)+V~DC,(E)V~(E,,) (3.19c) 

+ W D~-'(E) Vr(E")]} (~). 

The generalized optical-model potential has a fairly complicated 
form. This complication arises from two sources: i) the continuum- 
continuum interaction (already present in the TDA) which implies the 
introduction of the effective interaction V ~. ii) the RPA itself, which 
leads to the following two features. Firstly, the interactions are described 
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c _ _  c now by matrices. Secondly, the states [ZE)--AE]~O) are virtually 
excited from the intermediate states A~'+l~o), c':4=c, and A+lk~o) and 
they must decay back to those states, since they do not contribute to the 
asymptotic behaviour of ITS(+)). This effect is responsible for the 
presence of the second term in curly brackets in Eq. (3.19c) (see Eq. 
(3.19a)). 

The operators F c and F r can be expanded in Born series 

F': = K ~ + K ~ + K ~3 + . . .  , (3.20a) 

F r = K  Y+K r~+K r3+.. . .  (3.20b) 

These series converge if there exist no narrow single-particle resonances 
in the HF potential well. The divergence of the Born series, if it occurs, 
can be removed by using a method similar to those described in Ref. s 

4. The Optical-Model Potential 

In this section, we derive the optical-model potential and some 
useful expressions by extracting the driving terms. 

It is well known that in the absence of the single-particle resonances 1, 
the optical-model potential can be written in shell-model representa- 
tion as: 

~/zr~ (E', E") = Vo (e', E") + ~ c  (e', E"),  (4.1) 

with 

"~E c ( E t  , E r r ) =  "[/'1~+ iI ( E  t, E ' t )  . (4.2) 

We write then explicitly 

with 

~o~t ~ (E', ~") = Vo (E', E") + V:: ~ ~> (E', E") 

+ ~ ( ~ ' ,  ~")+ ~"~(E', ~"), 

VL(E', ~")= ( ve~"" v:y~] 
~ vL~ ~. v:y~] ' 

(4.3) 

(4.4a) 

~ "  (~', E")=E (v::m(E'), V:p~(F:)) (D~-'(r. + iI))., 
s s t 

�9 

W:,~-(E, , )]  ' 
(4.4b) 
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~( ' (~ ' ,  ~")=Z(vL" ' (~ ' ) ,  vL":)(~')) 
$$1 

�9 (D~-I(E+ iI)), ~, [Vsr'(ll)(E")] 
t v , ~ ' ) ( E , , ) l  

+ Z (W: (ix), WJ~(12))(~-'( E + iI)),,, ( F ~  

"t- Z (WZ (11), Y(12) c - I  W~ ) ( ~  (E+iS)),~, 
s $, 

spr ~tttt 

c - I  �9 F~,:,,(D (E+iI))~,,,,,, {WJ"(~ll)'t 
t w~,,~,~'] ' 

(4.4c) 

F = W r E S I V e. (4.4 d) 

The term r CNtE' E") contains most of the effect of the compound E k 
resonant states. For simplicity, let us make in it Ve= V. The matrix D ~ 
can be put the form: 

A 
De= ( - C  7 ) '  (4.5 a) 

with 
oo 

VO) _ A s ~ , = ( E - E , ) 5 ~ , - . ~ ,  Z [.dE' V~(~)(E')V~'I)(E') 
E + - E '  

oo + ~. I dE' V(~)(E, ) V(2)(E,) (4.5b) 

e,~,o, E+E'  ' 

~,,~o, E + - E '  dE' 
oo 

- E I de,' v2,'(~') v~'~(~') 
e'.~o, E+E'  ' 

(4.5c) 

c,,, = - v2 ) -  Y, I v2'~(E') v$?, (~') ~,,~,o, ~-~L-T de' 

+ Z S vZ)(E') V~'o!(E ') 
c'*c~c, E+E'  

(4.5d) 

The matrix D c-1 can be written in the form s 

7) (4.6 a) 
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with 

A '=d  -1, = A - C B - l t ~ ,  

C ' = -  -1CB-1,  D ' = B - 1 C d  -1, (4.6b) 

B,= B- l_  B-l~d-lCB-1. 

If we define the quantities 7ff~(E') by: 

7ff~(E')= V~)(E')+ Z (C(E))ss'(B-I(E))~'s"V~?)~(E'), (4.7a) 
S' S" 

the quantity r (E', E")  is given by: 

~r ,, E , - 1 E t ,E ) = Z r ~ s ( E ) ( d  (E+iI))~,~c(E") 
S S'  

(2) , - i  (2) ,, (4.8) - Z v'~ (e)(B (E))~,V~,~ ( e ) .  
S $ '  

One can get a simplified expression for 7~(E ' )  by taking only second 
order terms in V and writing 

v(Z) 
y~ (E') = V~)(E ' ) -  Z "~ ~" V~ 2) (E'). (4.7 b) 

~, E+E~, 

The continuum-continuum effect on the quantities ~ may be introduced 
by replacing in Eq. (4.7b) the quantity V by V ~*. 

Since the non-diagonal terms in the matrix d have statistically varying 
signs, one may assume they have mutually cancellating effects. One has 
roughly: 

yc~(E')y~(E") v~Z)(E') V~2)(E '') 
~ c u ~  Z - ~  (4.9 a) 

s E+iI--E~ E+E s 

If the mean separating distance d between successive Es'S is less than the 
averaging/,  Eq. (4.15) reduces to: 

~ c N ~ - i r c  7cs(E)~sc(E ) ~ "cs " - "  (4.9b) 
d ~ E+E~ 

Let us now discuss the second term of the r.h.s, of Eq. (4.3). The 
quantity V e is the main term due to the continuum-continuum inter- 
actions. It can be expanded as follows: 

ve=V+VEc~V+VEc~VEc~V+... (4.10a) 

* V e must have the same structure as V since it is true at each order of the perturbative 
series for V e. 
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or more explicitly 

gec= V(lc)(E" t E't) V(2)(E", E'') ~ 

~ -  VJ~(E  , E" )  - V2~(E , E" ) !  

V ( 1 ) ( ] ~ ,  ]~,,,~ - ~ ( 2 ) - ~ ,  ~ , , , .  

+ ~ ~ , ~ ' , ~ , ~  , 
(2) , ,,, ~,,~ ~o, - vL,  (E ,  E ) - V2)(E',  E'")! (1 / 

E § - e,'" o [ v :  1)(E''', E") Vy2(F:", E") 

�9 1 ~ . . . . .  - vP2(E'", E")) + 0 E + E ' " /  \ -V ; , c (E  ,E ) 

(4.lOb) 

In second order in V, we get: 

oO 

VeO1)cc = V(i)(/~'~c ~ ,  E")+ ~ S dE'" v~ E'")V~('I)(E'"'E")_+ ~,,, 
13 

E ) V b c ( E  , ~  ) - Z l dE'" V~2(~', '" ~ . . . . .  
~,,~ ~, E + E'" 

(4.11) 

The third term in the r. h.s. is the proper contribution of the RPA to the 
pure direct processes (in second order in V), since the first two are 
present in TDA. By taking the non-hermitian contribution of the RPA 
to the third order term of expansion (4.10a) and a small part of the 
fourth order term, one may get an expression similar to Eq. (4.9a): 

v:~i'= V 2 ' ( E  ', E " ) +  E 

with 

tA[ . L I  

c'*c ec, E + - E f t '  
o O  

- -  : " C 'ck~  ,~  1 - Z I dE'" V(2(E" E " q  V(2 ) ( / ?  ''' ~"~ 
E + E . . . .  C'  ~F C ~c' 

•(1)(Np . ( 1 )  , , ,  cc,,-,E )=VL,(E,E ) 

2 
C t"  C '  \ ~ V(2~,),(E',E'")V. (2) (E'" E") 

J E+E'"  C'" * C ~c,t 

(4.12) 

(4.13) 

All the terms contained in . J / ' ( 1 )  c o m e  from the virtual excitations 
from the intermediate states A+[7%) and A+(E)[~go) to the states 
Ac(E)]~go) via the boson-boson interaction. Those states then must 
decay back to the states where they are excited from. As a consequence, the 
term ~e-(1) is a term of higher order in the interaction V. It is at least of 

5 Z. Physik, Bd. 245 



66 J. Cugnon: 

third order in V and then we drop it. Gathering the results, we get a 
simplified formula for the optical-model potential 

~ o p t  (c )  ( E  t ' E '  ' )  = 110 ( E  t, E t t) q- V~(1) (E , ") 

' 
i'(1)(I~. ' E)[ "(Ott~ E " ) - i ~  --ire ~ ~cc',- , ~c' c~-, d 

C" ~-C 
oO 

_ . c ~ , , - , -  , . c ' c , -  , -  , ( 4 . 1 7 )  Z I v(:)cF' 
E + E'" C" ~ C 8r 

- - ~  E+E~ 

We see that the main consequence of the introduction of correlations 
in the ground state is the modification of the inelastic channels form 
factors rm or, ~"~ and the compound states form factors ?~(E')  which 

~CCtK  ~ , ~  ] 

reduce respectively to V(~)r , c , ,~  ,~'q, and V[~)(E ') in the TDA. We discuss 
briefly and qualitatively how these form factors are influenced by the 
RPA. The work of Dover and Hahne 9 indicates that within the RPA 
model described here the resonant state partial widths are not enhanced 
and even slightly damped by the correlations. Since the partial width in 
channel c of the resonant states of energy E~ is given approximately by 
7~,(E~), at least for the weak coupling case, one can say that collective 
excitations do not enhance the resonant state form factors. 

Inelastic channels form factors do not seem enhanced by the collective 
excitations either. In Eq. (4.13) the second term of the r.h.s, involves a 
"continuum Green function" evaluated at a negative value of its argu- 
ment: 

oo t t 

G~(r, r', - E ) =  ~ dE' u~(r, k)uc(r ,  k') (4.18) 
.o ( - E ) - E '  

This quantity is probably very small. In fact, the RPA model of Ref. s 
which is retained here provides a poor description of the collective states 
of the target. Since those are more or less given by 

C ---I" 
Ige>=ah 1~o> (4.19) 

all of them contain the same correlations except for a hole. To remedy to 
this situation, one has first to construct operators q~§ and qf: following 
(2.6) by taking in ~ that part of the interaction which scatters particles 
in bound orbitals only, i.e. by taking in Eq. (2.4) matrix elements V~! 
and V~2! with equal E '  and E"  variables. The operators q~+, q~ create 
(annihilate) a particle in the continuum and a correlated hole in the 
ground state ~o.  The investigation of such a RPA model remains to be 
done, as far as the optical-model potential is concerned. 
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5. Conclusions 

We have studied theoretically an optical-model potential in the 
f ramework of the RPA equations extended to the continuum in order 
to exhibit the effect of the correlations in the ground state and hence the 
effect of the collective excitations on the absorption. This effect is not 
easy to visualize because it is mixed with two other effects: the effect of 
the continuum-continuum interaction and an effect proper to the RPA. 
Indeed, as we have shown, some boson states conjugated to the channel 
states do not contribute to the asymptotic behaviour of the wave function 
and hence induce intermediate virtual excitations. Nevertheless, it can 
be said that  the inelastic channels and resonant states contributions to 
the imaginary part  of the optical-model potential differ f rom what they 
are in the TDA. They reflect the importance of the correlations in the 
ground state. However, in practice, it seems that this does not lead to an 
enhancement of the imaginary part. This is partly explained by the fact 
that  all the target states contain the same correlations except for a hole. 
Moreover, collective excitations introduce slowly varying terms in the 
optical-model potential. They are due to virtual excitations to the 
conjugate of the compound nucleus states and to the inelastic channel 
states. 
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