Uncertainty Quantification of Aerothermal Flow Simulation Through Low-Density Ablative Thermal Protection Materials

Joffrey Coheur

Supervisors: Thierry Magin (VKI), Maarten Arnst (ULg), Philippe Chatelain (UCL)

Introduction

The thermal protection system (TPS) is essential to shield spacecraft and their payload from the severe aerothermal conditions associated with atmospheric entry [1]

2. How? → Aerothermal flow simulations

Develop non-intrusive uncertainty quantification methods around numerical codes for the study of ablation phenomena. Perform uncertainty propagation through the model

Huygens Probe entry into Titan's atmosphere Source: ESA.

Ablative TPS design process

Wind tunnel experiments [2]

Numerical simulations [3]

 Uncertainties coming from experiments and physical models are affecting simulations with unknown impact on predictions!
 Objective: develop a rigorous uncertainty quantification approach for ablative TPS characterization and design

Methodology

Numerical simulations of VKI Plasmatron experiments on ablative thermal protection materials and quantification of uncertain margins

VKI Plasmatron exp. [2]

Plasmatron simulation

Preliminary results

Argo multiphysics and multidimensional CFD tool developed at Cenaero, based on a discontinuous Galerkin method

1. Which uncertainties? → Reassess physicochemical models

- New experiments on pyrolysis and oxidation of phenolic-impregnated carbon ablation
 - Carbon Fiber oxidation [4]

• Phenolic resin pyrolysis [5]

Deterministic simulations!

Ongoing work: review of stochastic inference methods (Bayesian, optimization problem with uncertainties) with application to physico-chemical models

Apply stochastic inference methods to those new experimental results for quantifying uncertainties on physico-chemical models

E.g. pyrolysis gas production model:

Université

de Liège

Acknowledgments

The author would like to acknowledge A. Turchi for the scientific guidance and P. Schrooyen for the discussions and the shared results on Argo.

References

[1] G. Duffa. Ablative Thermal Protection Systems Modeling. AIAA Education Series, 2013.
[2] B. Helber. Material Response Characterization of Low-Density Ablators in Atmospheric Entry Plasmas. PhD Thesis, VUB & VKI, 2016.
[3] P. Schrooyen. Numerical Simulation of Aerothermal Flows through Ablative Thermal Protection Systems. PhD Thesis, UCL & VKI, 2015.
[4] F. Panerai *et al.* Flow-tube Oxidation Experiments of the Carbon Preform of a Phenolic-Impregnated Carbon Ablator. Journal of Thermophysics and Heat Transfer, 28(2):181-190, 2014.
[5] H.-W. Wong *et al.* Quantitative Determination of Species Production from Phenol-Formaldehyde Resin Pyrolysis. Polymer Degradation and Stability, 112:122-131, 2015.

