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Obesity is a chronic metabolic disorder that may also lead to reduced white matter
integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were
conducted in a large cohort of Mexican American families in San Antonio (N = 761,
58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and
Function Study. Shared genetic variance was calculated between measures of adiposity
[(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain
and regional measurements of cerebral white matter integrity (fractional anisotropy).
Whole-brain average and regional fractional anisotropy values for 10 major white matter
tracts were calculated from high angular resolution diffusion tensor imaging data (DTI;
1.7 × 1.7 ×3 mm; 55 directions). Additive genetic factors explained intersubject variance
in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant
portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30),
and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and
thalamic radiation (ρG = −0.31) (all p’s = 0.043). The strongest evidence of shared variance
was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39,
p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural
correlates of obesity. This may suggest that increase in obesity and reduced white matter
integrity share common genetic risk factors.
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INTRODUCTION
Obesity is an immediate public health problem and the sec-
ond leading cause of preventable death globally (Ogden et al.,
2007). Prevalence of obesity is higher among Mexican Americans
(29%) than non-Hispanic whites (21%) (Flegal et al., 2010) and
among the Mexican American population, obesity is heritable
(Comuzzie et al., 2000; Li et al., 2006). Not only does excess
weight increase risk for a cascade of physical (Kawachi, 1999) and
psychological morbidities (Kawachi, 1999), obesity is associated
with cognitive impairments and reduced integrity of cerebral tis-
sue, especially in cerebral white matter (Ward et al., 2005; Taki
et al., 2008; Marks et al., 2010; Kazlouski et al., 2011; Stanek
et al., 2011). Adequate brain function relies on the structural
integrity of cerebral white matter, which is responsible for main-
tenance of normal connectivity among regions throughout the
brain. Obesity is associated with white matter hyperintensities

(Jagust et al., 2005) and neurochemical alterations (Gazdzinski
et al., 2008), in addition to differences in white matter volumes
(Jagust et al., 2005; Raji et al., 2010; Walther et al., 2010). Some
studies observed gray and white matter volume abnormalities of
the frontal (Walther et al., 2010), temporal (Haltia et al., 2007;
Walther et al., 2010), and parietal (Walther et al., 2010) lobes
that show partial improvement following diet-induced weight
reduction (Haltia et al., 2007). Reduced white matter volumes
have also been reported in the frontal lobes, anterior cingulum,
and corona radiata among obese older adults compared to lean
participants (Raji et al., 2010; Walther et al., 2010). Findings of
macrostructural white matter abnormalities in obesity are incon-
sistent, leading to investigations of microstructural architecture of
white matter tracts using more sophisticated imaging modalities.

Diffusion tensor imaging (DTI) is a fully quantitative tech-
nique capable of ascertaining subtle decline in white matter
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integrity (Maclullich et al., 2009). DTI is most frequently used
to assess microstructural integrity of white matter, as it has an
advantage over standard anatomical imaging techniques since
it is sensitive to subtle white matter damage that precedes
atrophic changes (e.g., decline in regional white matter volumes)
(Maclullich et al., 2009). The most frequently used index of tract
architecture is fractional anisotropy, an index of the preferential
restriction of water diffusion in directions perpendicular to the
main fibers as opposed to parallel to them. Inverse associations
of BMI and fractional anisotropy have been reported in the right
posterior cingulum among healthy older adults (Marks et al.,
2010), and in the corpus callosum among obese healthy adults
(Stanek et al., 2011; Xu et al., 2013). Significant contributions of
genetic factors on fractional anisotropy have been found for most
major white matter tracts (Kochunov et al., 2010, 2014; Jahanshad
et al., 2013) including in the splenium and genu of the corpus cal-
losum and the superior longitudinal fasciculus bilaterally in twins
(Pfefferbaum et al., 2001; Chiang et al., 2009), but the relationship
between BMI and diffusivity was not examined in these studies.
Taken together, DTI studies examining neural correlates of obe-
sity and twin studies reporting genetic contributions to fractional
anisotropy provide initial evidence of obesity-associated deficits
in white matter microstructure. Studies have separately identified
factors that contribute to phenotypic variation in white matter
integrity (Chiang et al., 2011) and obesity (Hasselbalch, 2010).
Without studies examining genetic contributions on fractional
anisotropy in family cohorts of varied BMI, this preliminary evi-
dence does not allow for interpretation of shared genetic variance
between white matter and adiposity.

One way to uncover additional information about the rela-
tionship between white matter and BMI is by examining shared
genetic factors that influence these traits. An estimated 65% of
variation in obesity is familial or genetic (Nan et al., 2012) and
large family cohorts are ideal to study shared genetic risk factors.
Previous studies have identified genes that are significantly asso-
ciated with an increased risk of obesity (Greenfield et al., 2003;
Dina et al., 2007; Cauchi et al., 2009; McCaffery et al., 2009; Li
et al., 2010; Qi et al., 2014) and factors that contribute to pheno-
typic variation in white matter integrity (Chiang et al., 2011) and
adiposity (Hasselbalch, 2010).

Some diseases may present differently in different tissues,
termed as pleiotropic effects of the same gene. There is evidence
of pleiotropic effects of genetic or environmental factors con-
tributing to obesity in Mexican Americans (Comuzzie et al., 2000;
Arya et al., 2004) and obesity-associated white matter deficits
have been reported using DTI in other populations (Marks et al.,
2010; Kazlouski et al., 2011; Stanek et al., 2011). Detailed exam-
inations of individuals with specific genes may reveal different
presentations of BMI and/or weight-related disease, some that
may be genetic and others that may be environmentally induced.
However, the majority of information on obesity-associated white
matter deficits has been acquired without the use of genetic
approaches (Marks et al., 2010; Kazlouski et al., 2011; Stanek et al.,
2011). Examination of the genetic correlations between obesity
measures and white matter integrity has not yet been reported.
Understanding the influence of shared genetic factors to pheno-
typic variation in white matter deficits and obesity can potentially

aid in the development of more focused preventive and thera-
peutic strategies. Ultimately, knowing genetic and environmental
factors that are involved in traits, such as BMI, can assist clinicians
in ruling out common and environmental causes of conditions
that may be caused by a heritable defect.

Since little is known about the shared genetic and environmen-
tal influences on obesity and white matter integrity, we assessed
the shared genetic variance between adiposity and fractional
anisotropy in a cohort of Mexican American individuals from
large extended families (Mitchell et al., 1996). We used bivari-
ate genetic correlation analyses to calculate the proportion of
shared genetic variance between BMI and waist circumference
with fractional anisotropy (Almasy and Blangero, 1998). Body
mass index (BMI; kg/m2) and waist circumference (WC; in)
are frequently used as measures of obesity risk (Frayling et al.,
2007; Rask-Andersen et al., 2011). In most people BMI corre-
lates with the amount of fat present (World Health Organization,
2000) and inverse associations of BMI and fractional anisotropy
have been reported (Marks et al., 2010). WC is a better indi-
cator of central adiposity as it is associated with an increased
disease risk and may suggest more severe physical and neural
deficits. It is recommended that BMI and WC be used in tan-
dem for clinical examination (Ferrannini et al., 2008). Average
fractional anisotropy across the white matter skeleton has been
shown to be heritable in multiple cohorts (Jahanshad et al., 2013)
and was obtained using tract-based spatial statistics (TBSS). This
was selected as the primary phenotype to assess the influence of
genetic and environmental factors on weight-related fractional
anisotropy impairments. We hypothesized that genetic factors
associated with obesity were also associated with reduced white
matter fractional anisotropy.

MATERIALS AND METHODS
Analyses were performed using participants from the Genetics
of Brain Structure and Function Study (Olvera et al., 2011), for
whom the DTI, BMI, and WC measurements on the day of the
imaging were available. Subjects were excluded for MRI con-
traindications, history of neurological illnesses (n = 5), or stroke
(n = 14), transient ischemic attack or other major neurological
event (n = 3). The participants in the study were urban-dwelling
Mexican Americans from large extended pedigrees selected ran-
domly from the San Antonio community. These subjects are
characterized by a relatively adverse body weight profile, includ-
ing increased rates of obesity, dyslipidemia, glucose intolerance,
and hyperinsulinemia, when compared with non-Hispanic whites
in San Antonio (Olvera et al., 2011). Additional recruitment
details of the sample are available elsewhere (Olvera et al., 2011;
Glahn et al., 2012). All subjects provided written informed con-
sent on forms approved by the Institutional Review Board of
the University of Texas Health Science Center at San Antonio
(UTHSCSA).

BMI AND WC MEASUREMENT
BMI is a clinical measure of obesity based on body weight scaled
to height. In most people BMI correlates with the amount of fat
present (World Health Organization, 2000). WC is a measure of
central obesity that indexes relative risk for metabolic diseases
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without requiring height. WC is a better indicator of central adi-
posity as it is associated with an increased disease risk and may
suggest more severe physical and neural deficits. WC is typically
measured while standing with arms hanging down loosely, at
the level of the abdomen. The National Heart, Lung, and Blood
Institute (NHLBI) has adopted values of WC >102 cm (40 inches)
in men and >88 cm (35 inches) in women as meeting criteria for
increased metabolic syndrome risk. WC measurements are highly
reproducible for both men and women (e.g., r = 0.998 at the
iliac crest site). Still, the measurement site that best correlates to
disease risk has yet to be established.

DIFFUSION TENSOR IMAGING AND PROCESSING
Diffusion tensor imaging was performed at the Research Imaging
Institute, UTHSCSA, on a Siemens 3T Trio scanner equipped
with a phase-array head coil. A single-shot, single refocusing
spin-echo, echo-planar imaging sequence was used to acquire
diffusion-weighted data with a spatial resolution of 1.7 × 1.7
×3.0 mm. The sequence parameters were: TE/TR = 87/8000 ms,
FOV = 200 mm, 55 isotropically distributed diffusion weighted
directions, two diffusion weighting values, b = 0 and 700
s/mm2 and three b = 0 (non-diffusion-weighted) images. These
parameters were calculated using an optimization technique that
maximizes the contrast to noise ratio for fractional anisotropy
measurements (Jones et al., 1999).

Details for the processing of DTI scans are described else-
where (Kochunov et al., 2010, 2012). In short, the tract-based
spatial statistics (TBSS) software (Smith et al., 2006) as part of
FSL (http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/tbss/index) was used for
multi-subject analysis of fractional anisotropy images. Fractional
anisotropy images were created by fitting the diffusion tensor
to the raw diffusion data. All fractional anisotropy images were
non-linearly aligned to a group-wise, minimal-deformation tar-
get (MDT) brain. Next, individual fractional anisotropy images
were averaged to produce a group-average anisotropy image. This
image is used to create a group-wise skeleton of white matter
tracts that encodes the medial trajectory of the white matter
fiber-tracts. Finally, fractional anisotropy values from each image
were projected onto the group-wise skeleton of white matter
structures. This step accounts for residual misalignment among
individual white matter tracts. Fractional anisotropy values are
assigned to each point along a skeleton using the peak value
found within a 20 mm distance perpendicular to the skeleton
inversely weighted by their distance from the template skeleton.
By assigning the peak value to the skeleton, this procedure effec-
tively maps the center of individual white matter tracts on the
skeleton.

The whole-brain average fractional anisotropy value for each
subject was calculated as the average fractional anisotropy value
for the entire white matter skeleton of about 300 × 103 voxels.
Next, the tract-wise average fractional anisotropy measurements
were calculated for 10 major white matter tracts as described
in our previous publications (Kochunov et al., 2010, 2012). The
population-based, 3D, DTI cerebral white matter tract atlas devel-
oped in John Hopkins University (JHU) and distributed with the
FSL package (Smith et al., 2006) was used to calculate popula-
tion average diffusion parameter values along the spatial course of

10 white matter tracts: corpus callosum sub-regions (genu, body,
splenium), the corona radiata, cingulum, external and internal
capsule, posterior thalamic radiation, superior longitudinal fas-
ciculus, and fronto-occipital fasciculus. The JHU atlas was non-
linearly aligned to the MDT brain and image containing labels
for individual tracts was transferred to MDT space using nearest-
neighbor interpolation. Per-tract average values were calculated
by averaging the values along the tracts in both hemispheres.

DEMOGRAPHIC ANALYSES
Demographics and analyses of fractional anisotropy were con-
ducted using the Statistical Package for the Social Sciences (SPSS)
version 22.0 software package. All statistical tests were two-tailed
with α < 0.05 unless otherwise stated.

Analyses were conducted on 761 participants (58% female)
between the ages of 18 and 81 years (M = 41.3, SD = 14.5), all
with BMI and WC data. Participants were categorized according
to BMI into underweight (BMI <18.5 kg/m2; n = 10), healthy-
weight (BMI 18.5–24.9 kg/m2; n = 128), overweight (BMI 25–
29.9 kg/m2; n = 237) and obese (BMI = 30 kg/m2; n = 386) to
assess fractional anisotropy differences between current clinical
classifications for adiposity.

QUANTITATIVE GENETIC ANALYSES
Heritability of each imaging and obesity-related trait was esti-
mated using SOLAR (Sequential Oligogenic Linkage Analysis
Routines: http://solar.txbiomedgenetics.org (Almasy and
Blangero, 1998). SOLAR uses variance component methods
to analyze family-based quantitative data by partitioning the
observed covariance into genetic and environmental compo-
nents. Heritability (h2) is defined as the proportion of total
phenotypic variance that is explained by additive genetic factors.
An inverse-normal transformation was applied prior to variance
decomposition analysis.

The difference in magnitude of shared genetic variance
between BMI and WC with fractional anisotropy was calcu-
lated using bivariate genetic correlation analysis methods, also
implemented in SOLAR. Bivariate genetic correlation analysis is
performed to calculate the proportion of common genetic vari-
ance that influences both adiposity and white matter integrity.
If the genetic correlation coefficient (ρG) is significantly differ-
ent from zero, then a significant portion of the variability in
the two traits is considered to be influenced by shared genetic
factors (Almasy et al., 1997). Analyses were performed to study
the genetic overlap between whole-brain and regional tract-wise
fractional anisotropy values and adiposity measurements (BMI,
WC). First, the magnitude of shared genetic effect between BMI
and fractional anisotropy values was analyzed. This was repeated
with the substitution of WC for BMI. Regional calculations were
subsequently conducted for each tract and for corpus callosum
components (genu, body, splenium). Bivarate genetic correlations
between tract-wise regional fractional anisotropy values and adi-
posity measures (BMI, WC) were calculated separately. P-values
were considered significant under a false-discovery rate (FDR)
<5% across the 10 tracts of interest, and are reported under
the lowest FDR at which they remain significant. The standard
Benjamini–Hochberg method was used to control the FDR and
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increase the chance of identifying all the differentially expressed
genes/traits (Benjamini and Hochberg, 1995).

All genetic analyses were conducted with age, sex, age × sex,
age2, age2 × sex included as covariates. The covariates were
chosen based on our prior findings of a quadratic (inverse-
U) trajectory for FA and other neuroimaging measurements
(Kochunov et al., 2011a, 2012; McKay et al., 2014). Health status
was accounted for but was removed from the final models as it did
not significantly impact results. Additional details of the bivari-
ate correlation analysis are described elsewhere (Kochunov et al.,
2011b).

RESULTS
DEMOGRAPHICS
Table 1 presents the sample characteristics. Overall, more than
half (51%) of the sample was obese (BMI ≥ 30 kg/m2), one-
third (31%) of the sample was overweight, 17% of the sample
were healthy-weight and 1% of the sample was underweight.
Underweight participants (n = 10) were 28.3 years old on average
(SD = 10.9) with mean BMI of 17.4 kg/m2 (SD = 0.84) and WC
of 29.4 in (SD = 3.5). No demographic variables significantly dif-
fered between the underweight and healthy-weight groups (p’s >

0.05) and underweight and healthy-weight categories were com-
bined for all subsequent analyses. Mean BMI of the sample was
30.6 (SD = 6.4) kg/m2, average WC was 39.8 (SD = 6.0) in, and
42% (n = 320) of the sample was male. Overall, males had a sig-
nificantly lower mean BMI (M = 29.9, SD = 6.1) than females
(M = 31.1, SD = 6.6) [t(759) = 2.602, p = 0.009] and WC was
significantly lower among females (M = 39.3, SD = 5.9) than
males (M = 40.5, SD = 6.1). There were significantly more obese
females than males [χ2

(2) = 14.43, p = 0.001]. Between healthy-
weight, overweight, and obese groups there were no significant
differences in employment or education (all p’s > 0.05). Healthy-
weight participants were significantly younger (M = 35.4, SD =
15.3) than participants in the overweight (M = 43.3, SD = 14.8)

and obese (M = 42.2, SD = 13.5) groups, [F(2, 758) = 14.88, p <

0.001].
Whole-brain fractional anisotropy values did not differ

between healthy-weight (M = 0.535, SD = 0.03), overweight
(M = 0.532, SD = 0.03) or obese (M = 0.529, SD = 0.03)
groups [F(2, 758) = 14.88, p < 0.001].

Fractional anisotropy across BMI groups
Controlling for age and sex, analysis of covariance (ANCOVA)
showed a significant difference in fractional anisotropy values
in the SFO [F(2, 754) = 4.29, p = 0.014]. Bonferroni-corrected
post-hoc tests revealed significantly higher values in the SFO
among healthy-weight than obese individuals, p = 0.014, d =
0.46. There were no other significant differences in fractional
anisotropy values between weight groups.

White matter integrity by BMI, age, and gender
Partial correlations suggest that higher BMI was significantly
associated with lower fractional anisotropy values globally and in
all regions studied, though coefficients were small (r = −0.047 to
−0.145, p = 0.05 to <0.001). WC was negatively correlated with
all regions (r = −0.077 to −0.142, p = 0.04 to < 0.001) except
the splenium and cingulum nor with global anisotropy values.

HERITABILITY ANALYSES
Additive genetic factors explained a significant proportion of the
intersubject variance in BMI (heritability, h2 = 0.58; p = 1 ×
10−25) and WC (h2 = 0.57; p = 1 × 10−27) (Table 2). Age and
age2 were significant covariates for BMI and WC. Sex also sig-
nificantly covaried with WC, but not BMI. Together, covariates
explained 4.9 and 5.4% of variance in BMI and WC, respec-
tively.

Whole-brain (h2 = 0.49; p = 1 × 10−12) and regional (h2 =
0.41–0.60; p’s 1 × 10−7 to 1 × 10−16) fractional anisotropy values
were similarly significantly heritable (Table 2).

Table 1 | Sample demographics (N = 761).

Total Normal weight Overweight Obese

n = 761 n = 138 n = 237 n = 386

AGE (YEARS) 41.3 ± 14.5 35.4 ± 15.3 43.3 ± 14.8 42.2 ± 13.5

MEASURES OF OBESITY

BMI 30.6 ± 6.4 22.1 ± 2.1 27.4 ± 1.4 35.7 ± 4.5

WC 39.8 ± 6.0 32.6 ± 3.3 37.3 ± 3.8 43.8 ± 4.5

SEX

Male n = 320; 42.0% n = 61; 8.0% n = 121; 15.9% n = 138; 18.1%

Female n = 441; 58.0% n = 77; 10.1% n = 116; 15.2% n = 248; 32.6%

STATUS

Employed n = 491; 64.5% n = 82; 10.8% n = 160; 21.0% n = 249; 32.7%

Education (years) 12.0 ± 3.0 11.9 ± 2.7 12.0 ± 3.3 12.1± 2.9

HEALTH STATUS

Heart disease n = 17; 2.2% n = 3;0.04% n = 5;0.07% n = 9; 1.2%

Diabetes n = 104; 13.7% n = 9; 1.2% n = 29; 3.8% n = 66; 8.7%

Hypertension n = 190; 25.0% n = 17; 2.2% n = 47; 6.2% n = 126; 16.6%

BMI, body mass index (kg/m2); WC, waist circumference (in). Mean ± SD; n (%).
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BIVARIATE GENETIC CORRELATION ANALYSES
Genetic overlap between BMI/WC and whole-brain/regional frac-
tional anisotropy values was calculated using bivariate genetic
correlation analysis. Whole brain fractional anisotropy values

Table 2 | Heritability estimates for BMI, WC and fractional anisotropy

values, all values significant at p ≤ 0.001.

Trait h2 (p)

BMI 0.58 (1E-25)a,c

Waist circumference 0.57 (1E-27)a,b,c

Average FA 0.49 (1E-12)a,c

Genu of corpus callosum FA 0.43 (1E-11)a

Body of corpus callosum FA 0.54 (1E-7)a

Splenium of corpus callosum FA 0.52 (1E-14)a

Corona radiata (CR) 0.49 (1E-10)a

Cingulum 0.47 (1E-11)a

External capsule (EC) 0.49 (1E-11)a

Internal capsule (IC) 0.45 (1E-9)a

Thalamic radiation (TR) 0.42 (1E-10)a

Superior fronto-occipital fasciculus (SFO) 0.41 (1E-9)a

Superior longitudinal fasciculus (SLF) 0.60 (1E-16)a

FA, fractional anisotropy.

The pattern of significant (p ≤ 0.001) covariates is coded as age ( a), sex ( b),

age2 ( c ).

shared significant genetic variance with BMI (ρG = −0.25, p =
0.032) but not WC (ρG = −0.15, p = 0.194). By-tract genetic
correlation analyses between BMI/WC and fractional anisotropy
values indicated statistically significant (p = 0.05) genetic cor-
relations with BMI in six of the 10 tracts studied and with
WC in one tract but no environmental correlations between
fractional anisotropy and either index of adiposity. Significant
region-specific correlations between BMI/WC and fractional
anisotropy are reported below. Phenotypic, genetic, and envi-
ronmental correlations are provided in Table 3. The strength of
phenotypic and genetic correlations for BMI and WC appear in
Figures 1–4.

BMI shared a significant proportion of genetic variance
with fractional anisotropy in the genu (r = −0.11, p = 0.017;
ρG = −0.25, p = 0.043; ρE = 0.08, p > 0.05), the body (r = −
0.08, p = 0.018; ρG = −0.30; p = 0.043; ρE = 0.09, p > 0.05),
and the splenium (r = −0.06, p = 0.13; ρG = −0.26, p = 0.043;
ρE = 0.17, p > 0.05) of the corpus callosum. Genetic relation-
ships between BMI and fractional anisotropy were also observed
in the internal capsule (r = −0.10, p = 0.036; ρG = −0.29, p =
0.043; ρE = 0.11, p > 0.05) and thalamic radiation (r = −0.13,
p = 0.005; ρG = −0.31, p = 0.043; ρE = 0.06, p > 0.05). The
strongest evidence of a genetic relationship between BMI and
regional fractional anisotropy was in the superior fronto-occipital
fasciculus (r = −0.13, p = 0.005; ρG = −0.39, p = 0.020; ρE =
0.12, p > 0.05). No other effects were significant for BMI or WC.

Table 3 | Phenotypic (ρP), genetic (ρG), and environmental (ρE) correlations between BMI, WC, and fractional anisotropy values.

Traits ρP p (ρP) ρG p (ρG) ρE p (ρE) p (ρP) FDR p (ρG) FDR p (ρE) FDR

BODY MASS INDEX

Average FA −0.06 0.108 −0.25 0.032* 0.16 0.145

Genu of CC −0.11 0.005* −0.25 0.026* 0.08 0.488 0.017* 0.043* 0.542

Body of CC −0.08 0.007* −0.30 0.017* 0.09 0.351 0.018* 0.043* 0.542

Splenium of CC −0.06 0.104 −0.26 0.026* 0.17 0.112 0.13 0.043* 0.542

Corona radiata −0.08 0.050* −0.23 0.066 0.11 0.397 0.071 0.079 0.542

Cingulum −0.02 0.529 −0.18 0.119 0.14 0.175 0.529 0.119 0.542

External capsule −0.08 0.043* −0.21 0.067 0.08 0.456 0.071 0.079 0.542

Internal capsule −0.10 0.018* −0.29 0.024* 0.11 0.299 0.036* 0.043* 0.542

Thalamic radiation −0.13 0.001* −0.31 0.014* 0.06 0.562 0.005* 0.043* 0.562

SFO −0.13 6.0 ×10−4* −0.39 0.002* 0.12 0.259 0.005* 0.020* 0.542

SLF −0.03 0.379 −0.24 0.071 0.16 0.115 0.421 0.079 0.542

WAIST CIRCUMFERENCE

Average −0.00 0.901 −0.15 0.194 0.19 0.101

Genu −0.02 0.534 −0.10 0.408 0.07 0.565 0.763 0.408 0.628

Body −0.05 0.13 −0.21 0.112 0.09 0.411 0340 0.262 0.514

Splenium −0.00 0.999 −0.13 0.276 0.16 0.167 0.999 0.333 0.514

Corona radiata −0.01 0.853 −0.112 0.131 0.11 0.369 0.948 0.262 0.514

Cingulum −0.01 0.821 −0.13 0.30 0.16 0.146 0.948 0.333 0.514

External capsule −0.04 0.323 −0.16 0.179 0.10 0.357 0.646 0.298 0.514

Internal capsule −0.03 0.513 −0.16 0.234 0.11 0.31 0.763 0.333 0.514

Thalamic radiation −0.09 0.017* −0.24 0.071 0.05 0.652 0.085 0.237 0.652

SFO −0.10 0.010* −0.39 0.003* 0.18 0.11 0.085 0.030* 0.514

SLF −0.06 0.136 −0.21 0.064 0.15 0.222 0.340 0.237 0.514

FA, fractional anisotropy; CC, Corpus callosum; SFO, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus. *p < 0.05.
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FIGURE 1 | Phenotypic (ρP) correlations between BMI and fractional anisotropy values.
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FIGURE 2 | Genetic (ρG) correlations between BMI and fractional anisotropy values.
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FIGURE 3 | Phenotypic (ρP) correlations between WC and fractional anisotropy values.
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FIGURE 4 | Genetic (ρG) correlations between WC and fractional anisotropy values.
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A large portion of intersubject variance in fractional
anisotropy of the superior fronto-occipital fasciculus and WC
were influenced by shared genetic factors (r = −0.10, p = 0.085;
ρG = −0.39, p = 0.030; ρE = 0.18, p > 0.05). No other effects
were significant.

DISCUSSION
Shared genetic variance between adiposity and integrity of cere-
bral white matter was studied in a large, well-characterized
sample of Mexican American families in the Genetics of Brain
Structure and Function Study. We indexed adiposity using the
body mass index (BMI) and waist circumference (WC) mea-
surements. Integrity of cerebral white matter was indexed using
whole-brain average and regional fractional anisotropy measure-
ments for ten major white matter tracts. We used the genetic
correlation analysis to measure shared genetic variance between
traits (Almasy et al., 1997) to assess the degree of shared genetic
variance of adiposity with whole brain and regional measures of
fractional anisotropy independently.

We found that BMI and WC shared 6 and 2%, respec-
tively, of genetic variation in global and up to 15% variation in
region-specific fractional anisotropy values. The highest shared
genetic variance was observed between fractional anisotropy and
BMI/WC in the superior fronto-occipital fasciculus (15%) and
between BMI in the internal capsule (8%), thalamic radiation
(10%), and sub-regions of the corpus callosum (genu: 6%; body:
9%; splenium: 7%). Results suggest that the same genetic factors
that are associated with higher BMI were linked to progressively
lower fractional anisotropy values in these regions.

Evaluation of heritability estimates for two adiposity mea-
surements and the fractional anisotropy revealed that additive
genetic factors explained 58% and 57% of BMI and WC, respec-
tively and nearly 50% of inter-subject variance in global fractional
anisotropy. Population heritability estimates range from 40 to
70% (Barsh et al., 2000; Challis and Yeo, 2002), and heritability
values of many obesity-related phenotypes that explain inter-
subject variability by individual genetic factors falling within the
same range (between 40 and 70%) (Hasselbalch, 2010). Similarly
high heritability values are observed for structural brain phe-
notypes (Kochunov et al., 2010; Winkler et al., 2010; Chiang
et al., 2011). These include white matter integrity, regional and
total brain volumes (Posthuma et al., 2000; Hulshoff Pol et al.,
2006), and cortical thickness (Thompson et al., 2001; Schmitt
et al., 2008). Evidence from twin and adoption studies support the
important role of genetic factors (Maes et al., 1997), demonstrat-
ing that genetic factors jointly influence up to 46% of phenotypic
variation in indices of white matter integrity (Kochunov et al.,
2010). Such heritabilities support the pursuit of information on
the interplay of genes and environment to better determine those
who are more likely to develop obesity in a given environment
(Maes et al., 1997).

By-tract genetic correlation findings demonstrated that tract-
wise fractional anisotropy values in the internal capsule, thalamic
radiation, genu, body, and splenium of the corpus callosum
and the superior fronto-occipital fasciculus shared a significant
proportion of genetic variance with BMI. The highest genetic
correlation was observed between adiposity measurements and

the superior fronto-occipital fasciculus. This is a long tract that
carries axons interconnecting frontal, occipital, and the poste-
rior temporal and parietal lobes. To our knowledge, no previous
relationships have been reported between obesity and white mat-
ter deficits in this region. However, an examination of a younger
cohort of females with anorexia nervosa by Kazlouski et al. (2011)
demonstrated reduced FA in both the cingulum and fronto-
occipital fasciculus among underweight participants compared to
females in a healthy weight range. Findings of reduced bilateral
fractional anisotropy in anorexia nervosa patients compared to
controls have also been reported in the posterior thalamic radia-
tion (Frieling et al., 2012), which connects the thalamus with the
occipital and parietal lobes through cerebral white matter regions
including the posterior limb of the internal capsule. Findings in
patients with anorexia are in line with our results that a large por-
tion of intersubject variance in BMI and fractional anisotropy of
the posterior thalamic radiation and internal capsule were influ-
enced by shared genetic factors. Occipitotemporal and frontal
results may suggest relationships between distorted body image
and white matter alterations connecting regions involved in body
image perception (Frieling et al., 2012). It is possible that white
matter changes are not directly due to weight gain in obesity, and
are instead a symptom of behavior common to both obesity and
eating disorders such as impaired impulse control, drastic changes
in eating habits, or distorted body perception.

In addition to the fronto-occipital fasciculus, we observed sig-
nificant decline in sub-divisions of the corpus-callosum. Corpus
callosum fibers traverse the left and right hemispheres, facilitat-
ing contralateral communication. Region-specific differences in
the heritability of white matter integrity have previously been
reported in the genu, splenium, frontal, parietal, and occipital
regions (Pfefferbaum et al., 2001; Chiang et al., 2009). Our finding
parallels previous reports that corpus callosum microstructure is
under significant genetic control (Pfefferbaum et al., 2000, 2001).
Findings among late life adults indicated joint genetic and envi-
ronmental influence on the genu and splenium (Pfefferbaum
et al., 2001), however, we did not find evidence that microstruc-
tural coherence of the corpus callosum was jointly influenced
by genetic and non-genetic (i.e., environmental) factors in the
population studied. We found no evidence of environmental cor-
relations between BMI or WC and fractional anisotropy in any
regions. Corresponding decline in white matter volume in the
genu, splenium, and whole corpus callosum are documented
among obese adults (Stanek et al., 2011; Xu et al., 2013). One
mechanism by which the integrity of the cerebral white matter
is influenced may be via the same genetic and epigenetic mech-
anisms that lead to metabolic dysregulation and development of
obesity.

It is of interest the rate of obesity in our sample (51%)
was higher than 2009–2010 National Health and Nutrition
Examination Survey (NHANES) rates for Mexican American men
(37%) and women (45%) (Flegal et al., 2012). It is feasible that a
large portion of the variation in adult bodyweight in the current
energy-rich environment is due to genetic factors, albeit allowed
to thrive due to the presence of environmental triggers. Epigenetic
research posits that the human genome responds to environ-
mental changes through altered gene expression, potentially
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influencing obesity. Chemicals (e.g., food) in the environment
trigger epigenetic changes in hundreds of genes in the brain
(Kumar, 2008; Kochunov et al., 2013) potentially influencing
white matter fractional anisotropy with changes in body weight.
This hints at a potential gene-environment interface, in which
environmentally-triggered alterations to genes in the brain that
may be associated with obesity become ingrained in the genome
and passed on to future generations. If paired with overeating
and/or sedentary behavior the risk of continued increases in adi-
posity rises, particularly among genetically-linked communities.

Genetic factors impact white matter development, which may
subsequently impair decision-making and increase risk of diet-
associated weight gain. Alternatively, metabolic dysregulation due
to hormonal activity of the adipose tissue is considered to be a
potential culprit (Despres, 2006). Visceral adipose tissue, in par-
ticular, is a key correlate of metabolic abnormalities present in
obesity and produces inflammatory molecules which promote
insulin resistance (Despres, 2006). WC is considered the best
marker of abdominal visceral fat (Pouliot et al., 1994) and has
been used as an index of diabetes prevalence among Mexican
Americans in San Antonio (Lorenzo et al., 2007). Reductions in
WC resulting from weight loss may be a promising means of
improving white matter deficits, particularly in this population.

CONCLUSIONS
Genetics and environment contribute to intersubject variance
in obesity-related phenotypes and to white matter integrity
(Stoeckel et al., 2008; Hasselbalch, 2010; Chiang et al., 2011)
but the mechanisms of the genetic effects remain poorly under-
stood. Our data demonstrate a shared genetic variance among
phenotypic differences in obesity and brain integrity; however,
the precise pathophysiology of obesity is unknown. Individual
differences in food preferences, as a consequence of either genetic
or experiential factors, may increase one’s vulnerability to overeat
when placed in a food-rich setting. Whereas environmental influ-
ences that can override factors involved in satiety are known to
play a role (Stoeckel et al., 2008), there is a substantial genetic
component to white and gray matter volume (Hulshoff Pol et al.,
2006) and measures of obesity (Hasselbalch, 2010).

The present study sample was much larger than previous pub-
lished studies and confirms that excess weight is associated with
region-specific frontal and occipitotemporal white matter deficits
in adults across a wide age range. This is an important first step
to uncovering the mechanism for obesity-associated deficits in
brain integrity. While advanced statistical genetic methods for
family-based data allow for the formal detection of such interac-
tions within cross-sectional data, longitudinal family studies will
be required to establish if there is any causality between the two
genetically influenced variables. Understanding the influence of
shared genetic and environmental factors on phenotypic varia-
tion in white matter deficits and obesity could hold promise for
future preventive and therapeutic strategies to combat obesity.
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