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Abstract
Introduction—We performed a whole-transcriptome correlation analysis, followed by the
pathway enrichment and testing of innate immune response pathways analyses to evaluate the
hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability
during normal cerebral aging

Methods—Transcriptome and GMT data were availabe for 379 individuals (age range=28–85)
community-dwelling members of large extended Mexican-American families. Collection of
transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene
transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT
measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI.
Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with
GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific
predictors of GMT variability.

Results—Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3,
HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted
from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of
regional GMT measurements. Pathway enrichment analysis identified six functional categories
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including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The
integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate
immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins)
were significantly associated with GMT.

Conclusion—Expression activity for the genes that regulate cellular proliferation, adhesion,
differentiation and inflammation can explain a significant proportion of individual variability in
cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive
decline in regenerative capacity and increased neuroinflammation.

Introduction
The aging process is characterized by a decline in regenerative capacity, reduced repair
potential, increased susceptibility to disease and eventual loss of function (Lazarov et al.,
2011; Villeda et al., 2011). Cerebral aging is associated with a precipitous decline in adult
stem cell capacity beyond what is necessary to maintain the integrity of cerebral tissue
(Sharpless and DePinho, 2007; Shook et al., 2011; van Praag et al., 2005) and with
activation of the inflammatory pathways that prime the brain for neurodegenerative cascades
(Cribbs et al., 2011; Cunningham et al., 2005; Holmes et al., 2009). Cerebral aging
trajectories can vary greatly among individuals. Healthy cerebral aging is characterized by
the lack of cerebral atrophy and retention of normal cognitive function, with some decline in
regenerative capacity but no increase in neuroinflammation (Salthouse, 2009).
Neurodegenerative aging is characterized by an abrupt decline in cognition and is associated
with increased neuroinflammation, microglial activation, and accumulation of
neuroinflammatory proteins and beta-amyloid plaques (Capell et al., 2007; Dodge et al.,
2011; Kirkpatrick et al., 2008; Royall et al., 2011; Salthouse, 2009; Schillerstrom et al.,
2008; Wolkowitz et al., 2011). Neuroinflammation was assumed to be minimal in healthy
aging; yet more recent observations suggest that activation of innate immune pathways may
still occur even in healthy cerebral aging (Berchtold et al., 2008; Cribbs et al., 2011).
Familial history explains a very large proportion (40–80%) of the variance in individual
trajectories in many imaging-based phenotypes of in cerebral aging, including cortical gray
matter thickness (GMT) and others (Chiang et al., 2011; DeStefano et al., 2006; Kent et al.,
2012; Kochunov et al., 2010a; Kochunov et al., 2009a; Turner et al., 2005; Winkler et al.,
2010). However, the search for specific genotypes leading to aging-related disorders had so
far identified candidate genes that explain only a small proportion (1–2%) of the total risk
(Biffi et al., 2011; Chouliaras et al., 2010). The risk of neurodegenerative aging is likely to
be modulated by both genotype and environment, and genome-wide association analyses
generally cannot account for their interaction (Chouliaras et al., 2010; Kamboh et al., 2011;
Kent et al., 2012; Tanzi, 2012; Weinstein et al., 2011). In contrast, transcriptional profiling
analyses that measure the expression of genes are sensitive to both genotype and
environment and therefore may offer the potential to clarify the pathophysiology of cerebral
aging. Hence, we proposed to examine how the changes in transcriptional profiles associated
with regenerative and immune functions influence cerebral aging. We performed a
correlation analysis between gene expression data and measurements of cortical GMT,
collected seventeen years apart. We hypothesized that transcriptional profiling can be used
to identify specific genes and pathways associated with decline in cortical GMT during this
time period. Second, we hypothesized that markers of activated immune system, reported
from a brain-tissue microarray study (Cribbs et al., 2011), will predict decline in GMT. Both
hypotheses were tested in a large number of well-characterized, community-dwelling,
cognitively-normal aging Mexican-Americans from large extended families (Mitchell et al.,
1996).
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Analysis of transcriptional profiling is a promising method for identifications of risk factors
for measurements of brain aging, such as reduced GMT (Bihaqi et al., 2011; Cribbs et al.,
2011; Maloney et al., 2011; Sequeira et al., 2012; Wood et al., 2012). We chose the GMT
because it is sensitive to aging-related decline in cortical integrity (Kochunov et al., 2008;
Kochunov et al., 2007; Leritz et al., 2011; Salat et al., 2009). GMT is calculated as a
symmetric distance from the outer cortical surface to the inner cortical gray-white-matter
interface (Aganj et al., 2009; Fischl and Dale, 2000; Lerch and Evans, 2005). Cortical GMT
undergoes a significant reduction during aging, which is related to decline in neuronal
density and inter-layer myelin contents (Jelsing et al., 2005; Lerch and Evans, 2005;
Selemon et al., 1995; Sowell ER et al., 2003). During normal aging, the average thickness of
the gray matter mantle is reported to decrease from an average thickness of approximately
2.5mm during the 3rd-to-4th decades of life to less than 2mm during the 8-to-9th decades
(Kochunov et al., 2011b; Magnotta VA et al., 1999; Raz N et al., 1997). Importantly, the
rate of GMT decline is correlated with progression of neuropsychological deficits in aging
and psychiatric disorders (Carless et al., 2011; Eskildsen et al., 2012; Kochunov et al.,
2009b; Narr et al., 2007; Turner et al., 2012) and is a sensitive diagnostic factor for
neurodegenerative aging (Li et al., 2012; Risacher et al., 2009; Thompson PM et al., 2003;
Thompson et al., 2004). The whole-brain and regional GM measurements are influenced by
additive genetic factors and demonstrate high heritability (40–60%) (Panizzon et al., 2011;
Rijsdijsk et al., 2011; Turner et al., 2012; Winkler et al., 2010).

We performed these analyses in a well-studied, community dwelling, normally aging
population of randomly selected Mexican American families. Genome-wide gene expression
measures were collected seventeen years prior to neuroimaging, hence providing a
prospective element to cortical outcomes. Prior analyses in this population established
significant heritability for both the transcriptional measurements (Goring et al., 2007; Moses
et al., 2007) and the GM thickness (Winkler et al., 2010). Here, we tested the next logical
hypothesis: that there should be a significant degree of shared variance between gene
expression and cortical integrity, and that transcriptional profiling data can be used to
identify pathways that control cerebral maintenance and repair. Additionally, we tested the
hypothesis that activation of innate immune response will be associated with reduced
cortical integrity as suggested by a microarray expression analysis in postmortem brain
samples (Cribbs et al., 2011). Innate immune response is the first line of defense in response
to pathogens and tissue damage. A microarray analysis of human brain tissue demonstrated
a strong aging-related upregulation in innate immune pathways including: complement
signaling, toll-like receptors, inflammasome, chemokine ligands and receptors, scavenger
and immunoglobulin receptors and major histocompatibility I and II pathways (Cribbs et al.,
2011). The transcripts for the gene sets identified by that analysis were used to test the
hypothesis of activated immune system involvement in contributing to reduced cortical
integrity in normal aging.

Methods
Subjects

The data are derived from 379 (40.6% male) active participants in the Getetics of Brain
Structure and Function (GOBS) study (Glahn et al., 2012), for whom gene expression and
brain imaging data were available. These individuals are of Mexican American descent from
large extended families selected randomly from the community. Subjects ranged from 28 to
85 years of age (47.1± 12.7 years) at the time of imaging and were members of 47 families
(9.3±8.3 individuals/family; range 2–38). Subjects’ demographic and health information is
detailed in Table 1. All subjects provided written informed consent on forms approved by
the Institutional Review Board of the University of Texas Health Science Center at San
Antonio (UTHSCSA) and Yale University.
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Magnetic resonance imaging and data processing
Imaging data were collected using a Siemens 3 Tesla Trio scanner located at the Research
Imaging Institute, UTHSCSA. The details of the imaging protocol specifically optimized for
measurements of GMT and data collection procedures are described elsewhere (Kochunov
et al., 2011b). In short, the protocol for measurements of GMT was designed to collect data
capable of resolving the cortical ribbon across the cerebral cortex using an isotropic spatial
resolution of 800µm (voxel volume=0.5mm3). T1-weighted contrast was achieved using a
magnetization prepared sequence with an adiabatic inversion contrast-forming pulse (scan
parameters: TE/TR/TI=3.04/2100/785 ms, flip angle=11 degrees). A retrospective motion
correction technique (Kochunov et al., 2006) was used to reduce artifacts related to subject
motion. Whole-brain average and regional measurements of cortical thickness were
performed using a freely available BrainVisa software (Kochunov et al., 2011d) (Figure 1)
(http://www.nitrc.org/projects/brainvisa_ext/). This tool uses a “normal-average” algorithm
that has been reported to be a good compromise between accuracy and performance (Lerch
and Evans, 2005). The GMT is measured as the Euclidean distance from an inner mesh
vertex to the outer mesh along the direction normal to the inner mesh polygon. The
measurement is repeated, inward, along the direction normal the outer mesh and the two
distances are averaged (Kochunov et al., 2008). The consistency of the distance
measurements is ensured by verifying that the line connecting the two surfaces does not
intersect other polygons, inner or outer, along the way. GMT measurements were averaged
for individual cortical areas across hemispheres; the whole-brain regional GMT was
calculated as average values for fourteen major cortical areas and vertex-wise as described
elsewhere (Kochunov et al., 2012; Kochunov et al., 2011b).

Gene expression measurements
Transcriptome-wide gene expression data consisted of 20,413 individual, significantly
heritable transcript measurements (Goring et al., 2007). Transcriptome-wide gene
expression data consisted of 20,413 individual, significantly heritable transcript
measurements generated by Göring and colleagues (Goring et al., 2007). Gene expression
measures were derived from untransformed leukocytes collected seventeen years prior to
imaging and stored in liquid nitrogen until technology for transcriptional profiling became
readily available (Goring et al., 2007). The details of synthesis, amplification, purification
and gene expression measurement protocols are described elsewhere (Goring et al., 2007).
In short, lymphocytes were obtained from blood samples collected in the morning after an
overnight fast. Lymphocytes were isolated from a 10-ml sample using Histopaque (Sigma
Chemical Co.), following the suggested protocol of the manufacturer. The isolated and
washed lymphocytes were frozen and transferred to liquid nitrogen tanks to prevent RNA
degradation during long term storage. Total RNA was isolated from lymphocyte samples
using a modified procedure of the QIAGEN RNeasy 96 protocol for isolating total RNA
from animal cells using spin technology (QIAGEN, Inc.). Its integrity was verified and anti-
sense RNA was synthesized, amplified and purified. Hybridization of anti-sense RNA was
carried out using Illumina’s BeadChip 6×2 protocol. Total isolated RNA was hybridized to
Illumina Sentrix Human Whole Genome (WG-6) Series 1 BeadChips as previously
described (Moses et al., 2007). Processing of the sample was performed in a single batch,
thereby eliminating the batch effect. Expression levels were z-normalized to make the
expression phenotypes comparable among individuals and across transcripts (Goring et al.,
2007; Moses et al., 2007). Finally, each transcript’s residual expression scores were
normalized by using an inverse Gaussian transformation across individuals to ensure
normality (Goring et al., 2007; Moses et al., 2007). The final dataset consisted of 20,413
transcripts that passed quality control and assurance (Goring et al., 2007).
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Data analyses
Variance component, mixed-model analysis methods, as implemented in SOLAR version
6.61 (Almasy et al., 1997) and optimized for binary imaging data (http://www.nitrc.org/
projects/se_linux/) were used to calculate the degree of shared variability between gene
expression measurements and indexes of cerebral integrity.

Step 1. Whole-transcriptome correlation analysis—Bivariate correlation analysis
was used to calculate the magnitude and significance of phenotypic correlation coefficient
between GM thickness and the 20,413 individual heritable transcripts. A transcriptome-wide
Bonferroni threshold (p=0.05/20413=2.44•10− 6) was set for the significance of the
correlation. Age and sex were included as covariates in all analyses. The health screening
data shown in Table 1 were not used as covariates due to the loss of statistical power to
detect genetic relationships caused by the overlap in risk factors (Kochunov et al., 2010b;
Kochunov et al., 2011c).

Step 2. Factor analysis—Factor analysis was performed on transcript data that passed
the statistical threshold for multiple comparisons to produce the smallest network. The
purpose of this step was to reduce the number of correlated variables and to produce non-
collinear estimates of transcriptional activity. The results of the factor analysis were used to
estimate the proportion of variance explained by the transcriptional activity and to test its
regional specificity. Factor analysis used principal components analysis (PCA) to extract
linear composites of correlated variables with eigenvalues greater than one. PCA yielded
eigenvalues describing the amount of variance among variables explained by a factor. A
varimax rotation was then used to remove co-linearity, for example to orthogonalize
individual eigenvectors. Results of the factor analysis yielded factor loadings (correlations
between a variable and a factor) and factor scores (transcript’s standardized score on each
factor).

Step 3. Regression analysis—A two-stage regression was performed to probe the
multivariate effects of transcriptional factors on variability in the global and regional GMT.
The GMT values were used as dependent variable, transcript data was inserted at the first
step and age was inserted at the second step as predictor variables. This yielded the degree
of variance described at each entry step and whether the change was significant. It also
produced standardized significance estimates of the linear associations between GMT (the
dependent) and transcriptional factors (the predictors). The threshold for statistical
significance for this analysis was set at p≤1.62•10−5, which corresponded to a 1% FDR
value for the correlation between GMT and transcriptome data.

Step 4. Pathway analysis—Genes whose expression levels were correlated with GMT at
10% (this corresponded to p≤2•10−3) false discovery rate (FDR) (Benjamini and Hochberg,
1995), as suggested by others (Lee et al., 2011; Purcell et al., 2009) were analyzed using
Ingenuity Pathway Analysis (www.ingenuity.com) by mapping them to objects within the
Ingenuity Knowledge Base. IPA uses literature-curated data to identify over-representation
of functional classes and canonical pathways within the imported set of genes. The right-
tailed Fisher’s exact test was used to calculate a p-value determining the probability that
each biological function, canonical pathway or disease assigned to that dataset was due to
chance alone; by comparing the number of user-imported genes in a given function or
pathway relative to the expected number of occurrences based on the reference set. For these
analyses the entire set of 20,413 detected transcripts was used as the reference set. The genes
of interest were overlaid onto a global molecular network developed from literature reported
connectivity recorded in the Knowledge Base, allowing the generation of gene networks;
graphical representation of the molecular relationships between genes/gene products.
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Step 5. Innate-Immune pathway analysis—Expression levels for sixty genes in seven
innate immune response pathways that showed a significant aging-related change in brain
tissue(Cribbs et al., 2011) were used as predictors of GM variability (Table S1, see
supplement). The details of the genes and pathways selection are described in the original
study (Cribbs et al., 2011). This analysis was performed using the Affymetrix Human
Genome Hg-U133 chip, precluding an exact match with our transcriptional probes; therefore
the match was made by selecting transcripts within the same genes from the Illumina array.
The gene sets that were included in the analysis are shown in Table S1. The complement
signaling pathway was represented by fourteen genes that modulate antibody response. The
toll-like receptors (TLR) pathway was represented by twelve genes that regulate the
activation of microglia and perivascular macrophages. The inflammasome and the scavenger
and immunoglobulin pathways were represented by genes (six and eight respectively) that
regulate initiation of inflammation. The chemokine receptor pathway was represented by six
genes that recruit immune cells to the site of inflammation. The major histocompatibility II/I
pathways were represented by nine and seven genes respectively that that mediate
interaction between leukocytes and other cells. Two sets of analyses were performed; first,
we calculated correlation coefficients between individual transcripts and whole-brain
average GM thickness and second, we calculated the degree of variability explained by each
of the pathways in the whole-brain and three regional GMT measurements for the superior,
post-central and fusiform gyri. The regional measurements were chosen to match the
location of brain tissue where the original microarray study was performed (Cribbs et al.,
2011).

Results
The transcriptome-wide correlation analysis identified eight transcripts that satisfied the
threshold (p≤2.44•10−6) for significant correlation with whole-brain GM thickness (Table
2). The most significant was a negative correlation with the insulin-like growth factor-
binding protein 3 (IGFBP3), followed by positive correlation with the transcript for the
leucine-rich repeat neuronal protein 3 (LRRN). The factor analysis of the eight transcripts
produced four orthogonal factors (eigenvalues>1) that captured 71% of the variability
(Tables 3). Factor 1 loaded equally on the transacting T-cell-specific transcription factor
(GATA3) and cysteine-rich intestinal protein (CRIP) gene transcripts and explained 23.8%
of variability. Factor 2, loaded the iduronate-2-sulfatase (IDS) gene transcript, explained
17.9% of variability. Factors 3 and 4 loaded on the stearoyl-CoA desaturase (SCD) and the
transcription factor 4 (TCF4) gene transcripts and explained 16.5% and 13.2% of the
variability in the eight transcripts, respectively (Table 3).

Regression analysis where the four orthogonal factors were used as predictors at the first
step, explained 31.9% of the variability in the whole-brain average GM thickness and
between 23.4 and 35% of regional GM thickness measurements (Table 4). These factors
fully accounted for variability captured by age as its insertion at the second step did not
significantly add to the model. Whole-brain GMT measurement showed the strongest
association (t=−8.94, p<1•10−18) with the GATA/CRIP-Factor. This factor also explained
the largest proportion of variability for eight out of fourteen regional GM measurements,
followed by the SCD-factor, which explained the largest proportion of variability in four
regional measurements. The TCF4-factor explained the smallest proportional of variability
and was only nominally significant (1.6·10−5<p≤.05) in association with the GMT
measurements (Table 4). The results of the vertex-wise GMT analysis (Figure 2) closely
mirrored this pattern.

IP A analysis of whole-brain average GMT was performed using the 474 gene transcript
significant at the 10% FDR threshold (Table S2, see supplement). GMT correlated
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transcripts showed significant (p≤1.6×10−5) enrichment for seven functional categories
(Table 5); including proliferation and aggregation of cells, quantity of blood cells, cell
differentiation, viral infection, free radical scavenging and vascular diseases (Table 5).
Transcripts for five of the genes significant at the Bonferroni level were enriched in the cell
proliferation category (CRIP2, GATA3, IGFBP3, LNRN3 and TCF4; Table 5). Analysis of
canonical pathway enrichment identified a strong signal for the integrin signaling pathway
(p=3.2·10−6), which included seventeen significant genes primarily negatively correlated
with GM thickness (Figure S1).

The predictive power for the transcripts of genes involved in the regulation of the innate
immune response was analyzed in two ways. First, we performed a correlation analysis for
whole-brain GM thickness (Table 2S). The correlation coefficients for two transcripts, the
clusterin gene (CLU) from the signaling pathway and the Fc fragment of IgG binding
protein (FCGBP) gene from the scavenging pathway passed the threshold of statistical
significance (p=8·10−4) after correcting for multiple (N=60) comparisons. The correlation
with the CLU transcript was negative (r=−0.23; p=3.1•10−5), while the correlation with the
FCGBP transcript was positive (r=0.22; p=5.2•10−5). Ten more transcripts (C1QA, C1QB,
C4A, TLR2, TLR4, TLR8, CASP1, CD163, HLA-DPA1, HLA-DRA) showed nominally
significant correlations (8·10−4<p≤.05). Regression analyses for the whole-brain and
regional GM thickness were significant for the complement signaling and scavenger and
immunoglobulins pathways (Table 6). In addition, the toll-receptors pathway demonstrated
significant association with GM thickness of the fusiform gyrus.

Discussion
This is the first study, to our knowledge, to examine the effects of gene expression on the
variability of cortical GMT during normal aging. Our results demonstrated that expression
activity for the genes that regulate cellular proliferation, adhesion, differentiation and
inflammation can explain a large (20–30%) proportion of individual variability in cortical
GMT. Overall, our findings agree with conclusions derived from animal literature that
define cerebral aging as the product of a progressive downregulation in the adult
neurogenesis and upregulation in neuro-inflammatory pathways (Cribbs et al., 2011;
Lazarov et al., 2011; Villeda et al., 2011). Specifically, the top four functional categories
that predicted GMT decline (cellular proliferation, aggregation and differentiation,
metabolism and the quantity of blood cells) are reported to regulate adult stem cell
neurogenesis in mice (van Praag et al., 2005; Villeda et al., 2011). The same functional
categories were also implicated in development of Alzheimer’s disease (Silva et al., 2011).
This age-related downregulation of adult cellular proliferation pathways is a natural strategy
to prevent unregulated cell growth. Uncontrolled upregulation of cellular proliferation
pathways is observed in neoplasm (Beausejour and Campisi, 2006; Fumagalli and d'Adda di
Fagagna, 2009) and in fact, the integrin-signaling pathway, that showed the strongest
association with GMT, is upregulated in invasive glial tumors (Kobayashi et al., 2012;
Tchaicha et al., 2011). Finally, the analysis of seven innate immune regulation pathways
supports the hypothesis that neuroinflammation plays a role in cerebral decline even during
normal aging. Five out of seven immune activation pathways predicted GMT variability at
p<0.05 level and the pattern of association suggested that upregulation of these pathways
corresponded to lower GMT values.

The eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) whose
expressions were significantly correlated with GMT at the transcriptome-wide level have
relevant functions that include regulation of neural development, angiogenesis,
transcriptional activity and metabolism. The network constructed from these transcripts
using the factor analysis explained a large proportion of the global (31.9%) and regional
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(23.4–35%) of variability in GMT. GMT was negatively correlated with the expression
levels of five genes (IGFBP3, CRIP2, IDS, GATA3 and HN1). IGFBP3, GATA3 and HN1
play a regulatory role in proliferation and differentiation of neural progenitor cells during
development and in response to brain injury, and their expression is known to be
upregulated with age and downregulated in tumors (Achim et al., 2012; Ajo et al., 2003;
Goto et al., 2012; Hong et al., 2008; Ishii et al., 1996; Kalluri and Dempsey, 2011; Kizil et
al., 2011; Tang et al., 1997). CRIP2 is upregulated during angiogenesis, including
development of cerebral vasculature (Kihara et al., 2011; Wei et al., 2011). IDS gene codes
an enzyme that is essential for normal metabolism of large sugars in CNS (Calias et al.,
2012) and its haploinsufficiency is associated with abnormal brain development and
cognitive impairment (Muenzer et al., 2012). Upregulation of IDS expression was recently
reported as a transcriptome-wide significant finding in Alzheimer’s disease patients (Lunnon
et al., 2011). There were three significant genes (LRRN3, SCD and TCF4) whose expression
was positively correlated with GMT. LRRN3 codes for a leucine-rich repeat neuronal
protein 3 that organizes synaptic connections and therefore is highly expressed in the
cerebral cortex and its expression level declines with age (Hong et al., 2008; Tang et al.,
1997). It confers susceptibility to autism, presumably because of its role in cortical
development (Hutcheson et al., 2004). SCD codes for Stearoyl-CoA desaturase-1; an
enzyme involved in production of essential phospholipids, including myelin, and its
expression also declines with age (Castro et al., 2011; Cermenati et al., 2011; Hong et al.,
2008; Lengi and Corl, 2007). TCF4 encodes a transcriptional factor that is highly expressed
in the brain and its haploinsufficiency causes mental retardation and severe structural brain
abnormalities (Van Balkom et al., 2011).

Increasing the threshold for statistical significance to 10% FDR threshold (p=2×10−3)
yielded 474 transcripts including these for four genes (SELP, RORA, CLU, CCL5) that
were previously identified as candidates for brain integrity using genome-wide-association
and quantitative-trait loci (QTL) analyses of cerebral integrity traits by this and other
groups. Specifically, the Selectin-P gene (SELP) was identified, by this and other groups as
a potential candidate gene that can pleiotropically influence blood-pressure and the cerebral
integrity (Kochunov et al., 2010b; Kochunov et al., 2012; Melville et al., 2012). Likewise,
the Retinotopic Acid Receptor (RAR)-Related Orphan Receptor Alpha (RORA) was
previously identified as a possible candidate gene responsible for a significant bivariate QTL
at 15q23 for GMT and fractional anisotropy of water diffusion measurements (Kochunov et
al., 2011a). A common polymorphism in the CLU gene (rs11136000) is involved in
activation of neuroinflammatory cascades and confers a 1.16 greater risk of developing late-
onset Alzheimer’s dementia (Kamboh et al., 2012), as initially identified and replicated in
two genome wide association studies of Alzheimer’s disease patients (Harold et al., 2009;
Lambert et al., 2009). Its polymorphic variability was shown to be associated with higher
rate of cognitive decline(Rodriguez-Rodriguez et al., 2012), lower WM integrity (Braskie et
al., 2011) and higher brain atrophy and faster cognitive decline (Thambisetty et al., 2012b).
Plasma levels of plasma clusterin, the protein product of CLU transcription was shown to
play a role in amyloid clearance and accumulation (DeMattos et al., 2004) and is associated
to rates of brain atrophy in elderly individuals (Thambisetty et al., 2012a; Thambisetty et al.,
2010). Similarly, functional polymorphisms of the Chemokine (C-C motif) ligand 5 (CCL5)
gene were shown to influence the course of neuroinflammation in multiple sclerosis and
Gaucher's disease (van Veen et al., 2007; Vitner et al., 2012).

Further analysis of the association between individual transcripts was performed by studying
the functional relationship between GMT and the networks of genes. The network analyses
can clarify the relationships between traits and transcripts because it accounts for epistatic,
gene-to-gene, regulations in functional networks and pathways. The smallest network was
constructed based on the relationships between GMT and transcripts by performing a factor
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analysis of the eight transcripts that passed transcriptome-wide correction and did not
account for potential epistatic and gene-to-gene regulations. Three out of four factors
showed a significant (p≤1.6•10−5) association with the whole-brain average and regional
GMT measurements. The highest association was observed for the factor that loaded equally
on the CRIP2 and GATA3 genes both of which have regulatory function that involves cell
proliferation and differentiations. This factor predicted the highest degree of variance in the
multimodal functional areas including frontal and superior parietal lobes and the cingulate
gyrus. SCD and IDS-factors showed the second and third highest association with GMT
suggesting that reduction in phospholipids and myelin production and large sugar
metabolism enzymes also have stronger effect on the multimodal cortical areas.

A broader set of networks was obtained by performing pathway enrichment analyses. Cell-
proliferation and aggregation were two functional categories that most significantly
associated (p=1.3·10−8 and 2.1·10−8, respectively) with GMT. The direction of the
correlation suggests that downregulation in both categories was associated with lower GMT
values. The pathway analysis identified significant (p= 3.2×10−6) over-representation of
GMT correlated transcripts in the integrin signaling pathway (Figure S1). The seventeen
significant genes involved in this pathway include one alpha integrin (IGRA2B) and two
beta integrins (IGTB1 and ITGB3), as well as two components of the calpain complex
(CAPN1 and CAPNS1) and two members of the actin related protein complex (ARPC3 and
ARPC5L). The integrin signaling pathway is involved in cell-cell and cell-extracellular
matrix (ECM) interactions; allowing rapid response to changes in environment (Berman et
al., 2003; Danen and Yamada, 2001). While integrins are generally associated with cell
proliferation, movement and attachment, integrin signalling plays an important role in
modulating neuronal survival by protecting against oxidative stress and apoptosis (Gary and
Mattson, 2001). Interactions between integrins and the ECM play a major role in
neurogenesis such as adult neurogenesis, axonal outgrowth and path finding(Myers et al.,
2011). The primarily negative direction of the correlation between GMT and the expression
of genes in this pathway suggested that a downregulation of this important signaling
pathway that responds to environmental stress and facilitates remodeling and apoptosis co-
occurred with a decline in cerebral integrity in our data.

Neuroinflammation plays a pivotal role in both the development and progression of
Alzheimer’s dementia (AD) (McGeer et al., 2006; Rogers, 2008). Innate immune pathways
may also play a role in normal cerebral aging (Cribbs et al., 2011). Upregulation of innate
immune pathways causes the release of proinflammatory factors, activation of
inflammasome and recruitment of immune cell. This can be neuroprotective in response to
exogenous pathogens and brain trauma (Rivest, 2009; Wyss-Coray, 2006). However,
chronic activation of immune pathways by the endogenous amyloid-beta peptide is thought
to be the chief contributing factor to neurodegeneration in AD (Perry et al., 2007; Rivest,
2009). Our findings support the hypothesis that innate immune activation play a role in
normal aging. We observed a highly significant association between GMT and the cascade
of three pathways implicated in AD neurodegeneration: complement signaling, the Toll
Receptors pathways and the scavenger and immunoglobulins. The complement signaling
pathway showed the strongest association with GMT (p=1.8·10−9). This pathway has long
been in the center of attention, being investigated as a potential culprit for the neurotoxicity
of amyloid-beta peptide in AD (Rogers et al., 1992). This association replicates the findings
that AD-like neurodegenerative processes may be present to a some degree in subjects who
undergo normal aging (Cribbs et al., 2011). In particular, CLU inhibits complement system
activation and may potentially prevent the recognition of fibrillar structures by the immune
system (Nuutinen et al., 2009; Sleegers et al., 2010).
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Conclusions and limitation
Our findings in a cohort of normally aging, community-dwelling, Mexican Americans
demonstrated the utility of lymphocyte-based expression level measurements to predict
individual variability in GMT. The cross-sectional nature of these data and the long gap
between transcriptional and imaging data is suboptimal and there are limits to the
interpretations that can be made about longitudinal processes from cross-section data. For
instance, individual differences in cerebral integrity associated with regenerative and
inflammatory pathways may have also arisen from development rather than aging. However,
our observation that subjects with downregulated regenerative pathways demonstrated lower
GMT values agrees with findings from longitudinal animal studies on normal aging
(Sharpless and DePinho, 2007; Shook et al., 2011; van Praag et al., 2005). Moreover,
expression measurements performed on human brain and lymphocytes demonstrate that
transcriptome activity for several of the genes identified in our analysis, including IGFBP3,
LRRN3 and SCD shows significant decline with age, supporting the hypothesis of the age-
related downregulation in the regenerative potential (Hong et al., 2008). Further,
longitudinal studies that include cerebral integrity measurements in conjunction with
transcriptome profiling, such as those proposed by the Alzheimer's Disease Neuroimaging
Initiative (Walhovd et al., 2010), will be necessary to replicate our findings and help identify
the genetic factors contributing to cerebral aging.

This research was conducted in Mexican Americans, a population with significant Native
American admixture. If relatively rare variants are involved in the determination of
quantitative variability, we may expect considerable population differences across
populations (Blangero et al., 2003). Our analytical methods explicitly considered and
exploited the relatedness among participants. Estimates of mean effect parameters are
unbiased even in the presence of relatedness but their error covariance structure is biased
low. Our approach which explicitly models biological relatedness among individuals
eliminates this bias and leads to valid hypothesis testing that exhibits appropriate asymptotic
behavior. Our data are made available on collaborative basis through the imaging genetics
consortium, known as the Enhancing Neuro Imaging Genetic through Meta Analysis
(ENIGMA) group (http://enigma.loni.ucla.edu/). Our group has already contributed the
imaging and genetic data to the ENIGMA study of hippocampal and intracranial volumes
(Stein et al., 2011) and to ENIGMA-DTI study (Jahanshad et al., 2013). In addition, both
imaging and genetics data will be made available through the NIMH Genetics Repository.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
T1-w image processing pipelines. A T1-w image is skull-stripped, globally spatially
normalized, and RF-inhomogeneity corrected (A). Next, cerebral hemispheres and
cerebellum and identified and tissue classified (B); cortical surfaces for GM and WM are
calculated (C;D) and homotopic erosion operation and crevasse detector are used to
reconstruct sulcal surface as the medial surface of the two opposing gyral banks (E). Sulcal
identification pipeline uses a congregation of 500 artificial neural network-based pattern
classifiers to identify (F) sulcal landmarks and to perform gyral segmentation of the cortex
(G). GM thickness (GTM) was calculate as the distance between the pial (C) and GM/WM
interface surfaces (H). Analyses are performed by measuring GMT for fourteen cortical
areas (I) and vertex-wise (K).

Kochunov et al. Page 19

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The pattern of significant (FDR-corrected p-values of 0.05) correlation between four
transcriptional factors and regional GMT measurements.
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Table 2

Results of the whole-transcriptom correlation analysis (r (p)) for three global measurements of cerebral
integrity. Bolded values indicate correlations coefficients that satisfied correction for whole-transcriptome
multiple comparison (p<2.5•10−6 ).

Transcript Gene
Whole-brain GM
thickness

GI_19923110-S IGFBP3 −.35 (1.1•10−10)

GI_37059785-S LRRN3 .35 (1.4•10−10)

GI_31542322-S CRIP2 −.32 (8.7•10−10)

GI_31982900-S SCD .31 (1.8•10−9)

GI_5360215-I IDS −.28 (8.6•10−8)

GI_4507398-S TCF4 .29 (1.5•10−7)

GI_4503928-S GATA3 −.26 (5.8•10−7)

GI_7705876-S HN1 −.27 (8.4•10−7)
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Table 5

Functional categories for the gene significantly associated with GMT that were identified by the Inginuity
pathways analysis.

Function
Annotation

Enrichment
(p-value)

Effect on
function (z

score)

Number
of

genes

Genes correlated with GMT at a 10% FDR

Proliferation of
cells

1.3·10−8 −1.88 143 ABCC3, ACRBP, ADORA2A, ALDH1A1, ALOX12, ATP2A2, BAD,
BATF, BCL2L1
BMP6, CAMK2N1, CAPN1, CAPNS1, CBX7, CCDC92, CCL5, CD163,
CD2, CD320
CD38, CD99, CDCA7L, CDKN2D, CELA1, CLECL1, CLU, CNR2, CRIP1,
CRIP2
CRLF3, CTBP2, CTSL1, CXCL5, E2F2, E2F5, EFEMP1, EGF, EIF2AK1,
ENTPD1
FABP5, FBLN2, FDXR, FGF18, FHL1, FHL2, FLNA, FXYD1, GAPT,
GATA3
GDPD5, GFI1, GLCE, GRAP2, HRAS, IFNGR1, IGFBP3, IL10RA,
IL12RB1
IL13RA1, IL2RA, IL32, IL6ST, ILK, INPP4B, IRF1, ITGA2B, ITGB1,
ITGB3
KIDINS220, LCN2, LMNA, LRRN3, LTBP4, MCM5, MEF2C, MEIS1,
MGAT4B
MORC3, MPL, MSI2, MVP, MYL9, MYLK, NFIB, NRCAM, NREP,
NRIP1, OPTN
PAK1IP1, PARVB, PCBP4, PDIA5, PDZK1IP1, PF4, PFKP, PIM1, PLCD1,
PNPT1
POLD4, PPBP, PPP1CA, PRKCSH, PRKD3, PTGS1, PURA, RALGDS,
RAPGEF1
RARRES3, RHOC, RORA, SELP, SERPINF1, SERTAD2, SH2D2A,
SLC9A3R1
SMOX, SNCA, SPARC, SPTAN1, STUB1, TAGLN2, TAL1, TAX1BP3,
TCF4, TFAM
TFPI, TIMP1, TJP3, TNFRSF17, TNFRSF21, TNFRSF4, TRADD, TRPV2,
TSPAN3
TXNDC5, VASH1, VAV1, VWF, WBP2, WDR12, XBP1, XPC, XRCC5

Aggregation of
cells

2.1·10−8 −3.35 26 ADORA2A, ALOX12, CAPN1, CCL5, CD2, CD38, CLEC1B, CLU, EGF,
ENTPD1
ESAM, FERMT3, GP1BA, GP5, GP6, ITGA2B, ITGB1, ITGB3, MPL,
SELP, SEPT5,
SERPINF1, TIMP1, TREML1, VAV1, VWF

Quantity of blood
cells

5.8·10−8 −0.12 58 ABCC10, ADORA2A, AHSP, BAD, BATF, BCL11A, BCL2L1, CAPNS1,
CCL5, CD38
CFH, CLEC1B, CNR2, E2F2, EIF2AK1, ENTPD1, EPB49, FABP5,
FERMT3, FLNA
GAPT, GATA3, GFI1, GP1BA, GPR68, GRAP2, HBA1/HBA2, HBB,
HRAS, IFNGR1
IGJ, IL10RA, IL12RB1, IL13RA1, IL2RA, IL6ST, IRF1, ITGA2B, ITGB3,
LCN2, MAF
MEIS1, MPL, PF4, PIM1, PURA, SELP, SNCA, TAL1, TCF4, TIMP1,
TNFRSF17
TNFRSF21, TNFRSF4, TREML1, VAV1, XBP1, XRCC5

Differentiation of
cells

7.9·10−8 −3.21 90 ADORA2A, AHSP, ALOX12, BAD, BATF, BCL11A, BCL2L1, BMP6,
CA2, CAPNS1
CCDC92, CCL5, CD2, CD38, CDKN2D, CELA1, CLU, CNR2, CRIP2,
CTBP2, E2F2
EGF, FABP5, FGF18, FHL2, GATA3, GDPD5, GFI1, GP1BA, GPR68,
GRAP2, HBB,
HDAC9, HEMGN, HRAS, IFITM2, IFNGR1, IGFBP3, IL10RA, IL12RB1,
IL2RA, IL32
IL6ST, ILK, INPP4B, IRF1, ITGB1, ITGB3, ITM2C, L3MBTL1, LCN2,
LMNA, LTBP4
MAF, MEF2C, MEIS1, MME, MPL, NDST1, NFIB, NREP, PACSIN1,
PBXIP1, PF4
PIM1, PLCD1, PPP1CA, PRKD3, PTGS1, RAB23, RALGDS, RARRES3,
RDH10
RORA, SCAND1, SCD, SELP, SERPINF1, SLA2, SNCA, SPARC, TAL1,
TCF4
TFAM, TIMP1, TMBIM1, TNFRSF4, VAV1, XBP1, XRCC5
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Function
Annotation

Enrichment
(p-value)

Effect on
function (z

score)

Number
of

genes

Genes correlated with GMT at a 10% FDR

Viral Infection 2.1·10−7 −1.56 82 ABCE1, ABLIM3, ALOX12, APOL1, ARPC3, ATP6V1A, BCL11A,
BCL2L1, CA2
CACNA2D3, CCL5, CD38, CLU, CTBP2, CTSL1, CXCL5, DDX10,
DLGAP4, E2F2
EGF, EXOSC5, FERMT3, FGD6, FLNA, HEMGN, HIST2H2BE, HRAS,
IFITM2
IFNGR1, IGJ, IL10RA, IL12RB1, IL2RA, IL32, IRF1, ITGA2B, ITGB1,
ITGB3
KATNB1, KBTBD11, LCN2, LMNA, LRRN3, MARCH2, MED16, MGLL,
MPL, OPTN
PARVB, PF4, POLR2I, PPBP, PTGS1, PURA, RAPGEF1, RARRES3,
RHOC
RNF214, SBF2, SLC9A3R1, SNRPA, SNX10, SPARC, SPATS2L, SPTAN1
TAGLN2, TAL1, TCFL5, TECR, TIMP1, TNFRSF4, TRADD, TRPV2,
TUBA4A
TUBB4B, UBE2E2, VAV1, VPS4A, VWF, XBP1, ZNF594, ZSCAN16

Metabolism of
reactive oxygen
species

4.1·10−7 −2.23 30 AHSP, BCL2L1, CCL5, CFH, CTTN, EGF, ENTPD1, FAAH, FDXR,
GZMH
HBA1/HBA2, HBB, HRAS, IL32, ILK, ITGB1, ITGB3, MYLK, PIM1,
PNPT1, PTGS1
RALGDS, RAPGEF1, RRAS, SELP, SERPINF1, SMOX, SNCA, TFAM,
XBP1
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Table 6

Results of the regression analysis for the whole-brain and three regional GMT measurement and seven innate-
immune response pathways. Bolded values are significant at p<1.610−5

Innate Inflammation
Pathways

Whole-brain, %
variance
explained (p)

Superior
Frontal Gyrus%
variance
explained (p)

Post-Central
Gyrus, %
variance
explained (p)

Fusiform
gyrus, %
variance
explained (p)

Complement
Signaling

10.1 (1.8•10 −9) 11.7 (8.1•10 −11) 7.26 (4.2•10−7) 5.71 (7.9•10 −6)

Toll Receptors 4.10 (1.6•10 −4) 3.51 (5.6•10−4) 4.2 (1.710 −4) 5.91 (5.2•10 −6)

Inflammatosome 0.01 (0.6) 0.00 (0.8) 0.00 (0.7) 2.12 (0.02)

Chemochimes 0.15 (0.6) 0.09 (0.7) 0.02 (0.9) 0.11 (0.6)

Scavenger and
Immunoglobulins

8.15 (8.510 −8) 9.53 (5.5•10−9) 7.6 (1.1•107) 5.27 (2.4•10−6)

MHI 4.2 (1.710 −4) 3.61 (4.1•10 −4) 3.15 (0.001) 1.91 (0.01)

MHII 2.31 (0.004) 2.46 (0.003) 1.67 (0.01) 1.93 (0.01)
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