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Abstract

We investigated the relationship between individual subjects’ functional connectomes and 280 

behavioral and demographic measures, in a single holistic multivariate analysis relating imaging to 

non-imaging data from 461 subjects in the Human Connectome Project. We identified one strong 

mode of population co-variation; subjects were predominantly spread along a single “positive-

negative” axis, linking lifestyle, demographic and psychometric measures to each other and to a 

specific pattern of brain connectivity.

The Human Connectome Project (HCP)1 is acquiring high quality in vivo macroscopic-level 

connectome imaging data from over a thousand healthy adult subjects, in an effort to 

elucidate the neural pathways and networks that underlie brain function and behavior. An 

overarching aim is to reveal much about what makes us uniquely human and what makes 

individuals different from each other, by understanding how brain networks integrate 

information through the complex pattern of neural connections. To date, datasets from 500 

subjects have been publicly released, including imaging data measuring functional and 

structural brain connectivity, as well as 280 non-imaging subject measures (SMs) including 

demographics (age, sex, income, education level, drug use, etc.), psychometrics (IQ, 

language performance, etc.) and other behavioral measures such as “rule-breaking 

behavior”.

Here we aimed to relate functional connectomes to behavior in a single integrated analysis. 

This goes further than simply investigating which SMs correlate with other SMs; we wanted 
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to discover whether any specific patterns of brain connectivity are associated with specific 

sets of correlated demographics and behavior - as brain-behavior modes of population co-

variation.

We used resting-state functional MRI data from 461 HCP subjects, and network modeling 

tools from FSL (FMRIB Software Library). A population-average brain parcellation was 

estimated using independent component analysis2, giving 200 distinct brain regions; these 

constitute the nodes in our network modeling. The functional connections (edges) between 

these nodes were estimated using Tikhonov-regularised partial correlation, resulting in a 

200×200 connectome for each subject. These connectomes were combined into a single 

large connectome matrix (containing all connectomes from all subjects; Supplementary Fig. 

1). Separately, 158 behavioral and demographic non-imaging SMs from the same set of 

subjects were formed into a subject measure matrix. We regressed potential confounds 

(including brain size and head motion) out of both matrices. Redundancies among 

connectomes and SMs were reduced by (separately) keeping just the first 100 principal 

components of each matrix.

A natural choice of method for investigating underlying relationships between two sets of 

variables is canonical correlation analysis (CCA)3, a procedure that seeks maximal 

correlations between combinations of variables in both sets. Using CCA we estimated pairs 

of canonical variates along which sets of SMs and patterns of brain connectivity co-vary in a 

similar way across subjects. We refer to each such pair of variates as a mode of co-variation. 

Strict tests were applied to avoid over-fitting and false-positive inflation. Statistical 

significance was determined with a permutation test that accounted for the family structure 

of the HCP data4. This analysis revealed a single highly significant CCA mode that relates 

functional connectomes to subject measures (r=0.87, P<10−5 corrected for multiple 

comparisons across all modes estimated). These analyses were driven by and report only 

correlations; inferring and interpreting the (presumably complex and diverse) causalities 
remains a challenging issue for the future.

Fig. 1a displays the SMs most strongly associated (positively or negatively) with the 

identified CCA mode (see also Supplementary Table 1). Also plotted (Fig. 1b) are the 

relationships of all subjects with this mode, i.e., individual subject scores in the SM 

canonical variate vs. subject scores in the connectome canonical variate (one point per 

subject). This mode of population co-variation resembles descriptions of a general 

intelligence g factor5, but extends it to include key aspects of real-life function, including 

years of education, income, and life satisfaction. Remarkably, this can be considered a one-

dimensional “positive-negative” axis, insofar as nearly all the positively correlated SMs are 

commonly considered as positive personal qualities or indicators (e.g., high performance on 

memory and cognitive tests, life satisfaction, years of education, income), and all negatively 

correlated SMs relate to negative traits (e.g., those related to substance use, rule breaking 

behavior, anger). One striking example is the strongly negative position of cannabis usage on 

the scale (though this is not on its own driving the overall results, which are almost 

unchanged if cannabis users are excluded from the CCA - see Online Methods). High-

scoring subjects (top-right points in the scatter-plot) have high relative values for “positive” 

SMs (at the top of the SM list), and low relative values for “negative” SMs (at the bottom). 
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In low-scoring subjects (bottom-left points), the pattern is reversed, with high values for 

negative SMs and low values for positive ones.

We next investigated whether this one CCA mode is indeed unique in modeling a 

substantially larger fraction of the total population variance (in the connectome and SM 

matrices) than the other 99 modes estimated. It is clear (Fig. 1c) that the first CCA mode 

explains a much larger fraction of the total data than any other mode, and is the only one to 

fall far outside the null confidence interval. Using the null distributions to normalise the 

variance explained into z-scores, the primary CCA mode has Z=7.7 for connectomes (the 

largest of any of the other 99 modes is 2.7) and Z=9.2 for SMs (the largest of any other 

mode is 2.4).

Fig. 2a displays the brain connections most strongly associated with the CCA mode. The 

thickest curves represent connections with largest CCA weights; for more quantitative 

results, see Supplementary Fig. 2. Red indicates stronger connections and blue weaker, for 

high-scoring subjects (and vice versa for low-scoring subjects). There is positive overall 

correlation (across edges, r=0.20) between the CCA connectome-modulation weights and 

the original population mean connectome shown in Supplementary Fig. 3, meaning that 

subjects that score highly in this CCA mode have stronger connectivity overall than low-

scoring subjects – reflected in the dominance of red-colored edges.

When the data is summarised according to brain regions that most strongly contribute to 

these connections, a striking pattern emerges (Fig. 2b and Supplementary Table 2) that 

includes bilaterally symmetric peaks in medial frontal and parietal cortex, in the temporo-

parietal junction and in anterior insula and frontal operculum. These areas, taken together, 

have high spatial overlap with the default mode network6,7. While precise anatomical 

dissociations and functional specialisations among these regions is the subject of debate in 

cognitive neuroscience, they have been associated with many higher-level aspects of human 

cognition, including episodic and semantic memory7,8, imagination and construction8, 

value-guided decision-making9, delay discounting10, spatial reasoning11 and high order 

social process such as theory of mind12. With deference to the caution required when 

making reverse inferences13, it may be expected that these aspects of cognitive function 

would have an influence on life in a complex society. While there are peaks in dorsal 

prefrontal cortex, it is notable that the highest node strengths are not centered on the 

dorsolateral prefrontal regions often associated with fluid intelligence14,15.

An obvious exception to the positive-negative interpretation of SMs is peg-board dexterity 

(time-taken), where high-scoring subjects perform worse. That exception, however, is 

consistent with the connectome result (Fig. 2) insofar as the within-early-visual connections 

are weaker in high-scoring subjects, as are connections with two sensory/motor nodes (23 

and 26 - likely Brodmann areas 4 and 5 respectively).

In summary, we found one significant mode of population variation that links a specific 

pattern of brain connectivity to a specific pattern of covariance between many behavioral 

and demographic subject measures. The vast majority of the SMs that correlate positively 

with this mode are “positive” subject traits/measures (education, income, IQ, life-
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satisfaction); those that correlate negatively are mostly “negative” subject measures. 

However, while strongly resembling the known general intelligence g factor for many of the 

subject measures, this mode does not trivially map onto just the strongest single principal 

component of the subject measures (see Supplementary Fig. 4; the CCA mode maps 

strongly onto the top three SM principal components and not just the first). It is plausible 

that the CCA mode includes a neural correlate of g, but is a more general mode of positive 

brain function, and is more directly tied into to the underlying biology (specifically, 

connectivity between brain regions), given that it is driven both by structured population 

covariance in behavioral measures and by intrinsic brain connectivity. We note a common 

criticism of the g factor, that there could be many distinct uncorrelated neural systems 

underlying high-level cognitive function, and that different cognitive tasks will involve 

different but overlapping sets of these latent processes, resulting in “artificial” correlation 

between subject measures, and hence the appearance of a g factor16. In future work it will be 

important to determine whether this known “unresolvable” ambiguity in g factor 

interpretation might be resolved through more fine-grained analysis of the data source newly 

available – the subject-specific functional connectomes – potentially even allowing direct 

investigation of the latent neural systems17, which may help us understand the coordinated 

interactions among brain systems that give rise to a general mode of positive function in 

humans.

ONLINE METHODS

Data

We used resting-state functional magnetic resonance imaging (rfMRI) data from 461 

subjects taking part in the Human Connectome Project. All subjects were healthy adults 

(ages 22-35 y, 271 females) scanned on a 3 T Siemens connectome-Skyra scanner 

(customised to achieve 100 mT/m gradient strength). For each subject there were 4 × 15-

minute runs of rfMRI timeseries data with temporal resolution 0.73 s and spatial resolution 2 

mm isotropic. This high spatial and temporal resolution was made possible through the use 

of multiband echo-planar imaging, with a simultaneous-multi-slice acceleration factor of 

818. To aid in cross-subject registration and surface mapping, T1-weighted and T2-weighted 

structural images of resolution 0.7 mm isotropic were also acquired, and B0 field mapping 

was also carried out to aid in correcting EPI distortions. The original set of subject measures 

was all the behavioral, demographic and other measures reported in the “open access” and 

“restricted” subject information spreadsheets available from the HCP database website 

(http://humanconnectome.org/data).

Data pre-processing

Data pre-processing was carried out with tools from FSL19, FreeSurfer20 and HCP 

workbench tools21. Each 15-minute run of each subject’s rfMRI data was preprocessed 

according to22; spatial preprocessing was applied23, and structured artefacts were then 

removed using ICA+FIX (independent component analysis followed by FMRIB’s ICA-

based X-noiseifier24,25). FIX removes more than 99% of the artefactual ICA components 

found in each dataset. The rfMRI data was represented as a timeseries of grayordinates - a 

combination of cortical surface vertices and subcortical standard-space voxels23.
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Group-ICA parcellation

Group-ICA was performed to generate a set of group-average nodes (or parcels). For this, 4 

15-minute runs from 468 HCP subjects were temporally demeaned and had variance 

normalisation applied2. These were fed into the MIGP algorithm26, which carried out a 

4500-dimensional principal component analysis (PCA) from the 4×468 timeseries. The 

output of MIGP is a very close approximation to PCA applied to temporal concatenation of 

the 4×486 timeseries, but can be calculated even when the full concatenated matrix is too 

large to form. The MIGP output (PCA spatial eigenvectors) was fed into group-ICA, run 

using FSL’s MELODIC tool2, applying spatial-ICA at several different ICA 

dimensionalities (D = 25, 50, 100, 200, 300). The dimensionality determines the number of 

distinct ICA components (spatial maps); a higher dimensionality typically means that the 

regions within individual spatial component maps will be smaller. A set of ICA maps can be 

considered as a parcellation, though it lacks some properties often assumed for parcellations: 

ICA maps are not binary masks but contain a continuous range of weight values, and a given 

map can include multiple spatially separated peaks/regions.

Node timeseries (individual subjects)

For a given group-ICA parcellation, the set of ICA spatial maps was mapped onto each 

subject’s rfMRI timeseries data to derive one timeseries per ICA component per subject. For 

these purposes we consider each ICA component as a network “node”. For each subject, 

these 25 (or 50, 100, 200 or 300) timeseries can then be used in network analyses. The 

method used to estimate the node-timeseries was “dual-regression stage-1”, in which the full 

set of ICA maps was used as spatial regressors against the full timeseries data, estimating 

one timeseries for each ICA map27. This results in 25-300 nodes’ timeseries of 4800 

timepoints for each subject.

Network matrices (individual subjects and group averages)

Network matrices (also referred to as netmats or parcellated connectomes) were then derived 

from the node-timeseries. For each subject, the D (25-300) node-timeseries were fed into 

network modeling, creating a D×D matrix of connectivity estimates. Network modeling was 

carried out using the FSLNets toolbox (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). Netmats 

were estimated for the 461 subjects that have fully complete timeseries of 4800 timepoints 

(7 subjects whose data were fed into the group-ICA were missing some timepoints, and so 

were excluded from the subsequent quantitative subject-level network modeling). We 

applied network modeling using partial temporal correlation between nodes’ timeseries. This 

aims to estimate direct connection strengths more accurately than is achieved by full 

correlation28. To improve the stability of the estimates of partial correlation coefficients, a 

small amount of L2 regularization is applied (setting rho=0.01 in the Ridge Regression 

netmats option in FSLNets). Netmat values were converted from Pearson correlation scores 

(r-values) into z-statistics with Fisher’s transformation. Partial correlation z-statistic netmats 

were estimated separately for each 15-minute dataset, and then averaged across the 4 runs 

for each subject, resulting in a single netmat (for a given group-ICA dimensionality) per 

subject. Group average partial and full correlation network matrices were estimates by 

averaging the z-statistic netmats across all subjects.
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For display/interpretational purposes (Fig. 2, Supplementary Figs. 2, 3), hierarchical 

clustering of the group-average full correlation network matrix was carried out using Ward’s 

method implemented in Matlab. This was applied to all 200 nodes (from the 200-

dimensional group-ICA). For more quantitative evaluation of specific connectivities (e.g., as 

used for our CCA), partial correlation is preferable, as it is more successful (than full 

correlation) in identifying the strengths of connections that are considered direct in a 

functional sense28. However, for display of hierarchical network matrix clustering, we 

consider full correlation to be useful because of the extra robustness in identifying densely 

connected clusters that is achieved by also considering indirect connections. Additionally, 

this approach can help interpretability of the hierarchy/clustering, because it better matches 

the information that drives a low-dimensional clustering (e.g., a low-dimensional ICA that 

identifies a small number of gross resting-state networks, where there is no equivalent 

process to partial correlation occurring in the within-cluster modeling); hence this helps 

relate the results to typical low-dimensional network representation in the literature. Because 

this is a hierarchical clustering (see Supplementary Fig. 3), there is no single dimensionality 

(number of clusters) identified, but rather a continuum of clustering levels. However, large-

scale clustering into 4 clusters allows simple interpretation relative to the literature: one 

cluster (blue) relates to sensory, motor and dorsal attention network (“task positive 

network”) areas6; the other dominant cortical cluster (yellow) identifies the default mode 

network6, and the two others (brown and red) relate to extended/secondary default-mode 

areas and subcortical/cerebellar areas.

The PTN data release

The above-described Parcellations, node Timeseries and Netmats (PTN) were publicly 

released via the central HCP ConnectomeDB database in late 2014. These same subject-

specific netmats were used for the current study.

CCA modeling of many SMs and functional connectomes

We carried out a single integrated multivariate analysis using CCA, to simultaneously co-

analyse a full set of functional networks (from all subjects) along with a large subset of the 

SMs. This aims to identify symmetric linear relations between the two sets of variables. 

Each significant CCA component (or mode) identifies a linear combination of netmat-edges 

(connectome connections) and a linear combination of SMs, where the variation in strength 

of involvement across subjects is maximally correlated. That is, we used CCA to find modes 

that relate sets of functional brain connections to sets of subjects’ demographics and 

behavioral measures.

In our main analysis, we used the netmats from the 200-dimensional group-ICA. This was a 

somewhat arbitrary choice, as all dimensionalities within reason are valid, but we also found 

that the other dimensionalities gave very similar CCA results (see below). As the parcellated 

network matrices (netmats) are symmetric, we only kept values on one side of the diagonal, 

resulting in 19900 unique edges (200×199/2). Combining across subjects resulted in a 

461×19900 (s×edges) matrix N1.

From the original set of 478 SMs, we formed a 461×478 matrix S1.
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Whereas CCA ignores variable scaling of individual variables, the PCA dimension-reduction 

step used prior to CCA (see below) is influenced by the relative scaling of each variable. In 

particular, PCA would not equally treat edges showing strong absolute variation versus 

edges showing strong fractional variation (relative to the population mean), and strong 

variations of both kinds are arguably of interest. Hence we formed additional matrix N2 

where each column was normalised (scaled) according to its mean value, removing resulting 

columns that were badly conditioned due to a very low (z<0.1) mean value. We then 

demeaned (columnwise) and globally variance-normalised (matrixwise, separately for the 

two matrices) N1 and N2 before concatenating them horizontally to give N3, a matrix that 

therefore includes both preferences. (Nevertheless, we show below that this gave almost 

identical CCA results to only using N1 or N2.)

We used a rank-based inverse Gaussian transformation29, to enforce Gaussianity for each of 

the SMs, producing S2. This transformation was used to avoid undue influence of potential 

outlier values, although we later confirmed that this normalisation made almost no 

difference to the final CCA results (see below).

We identified 9 confound SMs, whose potential effect we wished to remove from our main 

analysis:

1. Acquisition reconstruction software version (as an improved MRI 

reconstruction method was implemented in the third quarter of acquisition 

year 1).

2. A summary statistic quantifying average subject head motion during the 

resting-state fMRI acquisitions (this is the average, across all timepoints, 

of the timepoint-to-timepoint head motion, that measure being the linear 

distance moved, averaged across the head).

3. Weight.

4. Height.

5. Blood pressure – systolic.

6. Blood pressure – diastolic.

7. Hemoglobin A1C measured in blood.

8. The cube-root of total brain volume (including ventricles), as estimated by 

FreeSurfer.

9. The cube-root of total intracranial volume, as estimated by FreeSurfer.

In addition to identifying these 9 confound SMs, we also demeaned and squared measures 

2-9 (the first is a binary indicator), to create additional confound measures, to help account 

for potentially nonlinear effects of these confounds. All confounds were demeaned, and any 

missing data treated as zeros. We then regressed the 17 resulting confounds out of both data 

matrices (resulting in N4 and S3). (The CCA result was virtually unchanged if we did not 

regress the confounds out of N and S, or if we only regressed them out of N.)
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We excluded any SMs from any further consideration (including post-hoc reporting) where 

fewer than 60 subjects had valid measures (6 SMs). We also excluded race (partly because 

the race measure is not quantitative, but consists of several distinct categories).

To focus our primary CCA on core behavioral measures of most interest, we excluded from 

the CCA a further set of SMs (but did include these in the final post hoc testing):

1. All 9 confound SMs.

2. 69 SMs, which were quantitatively poor measures according to one or 

more of the following criteria:

a. An SM contained very extreme outlier values, as measured 

by most extreme value from the median. Specifically, if xs 

is an SM value for subject s, and ys=(xs-median(xs))2, we 

consider an SM to have extreme outliers if max(ys) 
>100×mean(ys) .

b. Fewer than 250 subjects had valid measures (too much 

missing data).

c. Discreteness with severe imbalance, defined as >95% of 

all subjects having the same SM value.

3. 191 supplied measures from the T1-weighted structural brain analysis 

using FreeSurfer (including volumes of subcortical structures, and average 

thickness and surface area of many cortical regions). These are of course 

imaging-derived, but are supplied along with all the other SMs in the HCP 

database. We did not want these to drive the CCA, as we wanted the only 

imaging-derived measures utilised to be the functional connectomes.

4. 45 variables considered undesirable to feed into the core CCA, in some 

cases because they are not sufficiently likely to be measures relating to 

brain function, and in some cases where “minor” measures are highly 

correlated with more major related measures. For example, some measures 

would not necessarily be considered a confound, but we did not want them 

to be driving the main CCA result, to avoid complicating later 

interpretation. Thus we removed: “Is the subject in college?”; “Is the 

subject in a live-in relationship?”; “Is the subject born in Missouri?”; BMI 

(body mass index) and BMI self-report (note that as height and weight are 

confounds, BMI is essentially a confound and already removed); thyroid/

hypothyroid/endocrine measures; menstruation-related measures; fluid 

intelligence secondary measures of skipped tests and reaction time (as we 

included the highly correlated major measure of correct responses); all 

minor Delayed Discounting measures (i.e., all except for the two major 

ones of area-under-the-curve for $200 and $40,000); all minor Sustained 

Attention (Short Penn Continuous Performance Test) measures (keeping 

the major measures of sensitivity and specificity; the minor Verbal 

Episodic Memory (Penn Word Memory Test) measure of reaction time; 
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the minor Emotion Recognition (Penn Emotion Recognition Test) measure 

of Correct Responses Median Response Time; the minor visual Contrast 

Sensitivity (Mars Contrast Sensitivity) measure of error count; Sex; Age; 

Handedness; Employment status; Income level; Education level; “Whether 

blood was drawn for testing and measured hematocrit levels?”; Walking 

Endurance and Gait Speed; Physical Grip Strength.

This resulted in a 461×158 matrix S4 (which still included some missing data). These 158 

SMs fed into the CCA are now listed using their formal database naming; see 

wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release for detailed descriptions of these measures:

PicVocab_Unadj PicVocab_AgeAdj PMAT24_A_CR DDisc_AUC_200 THC 

LifeSatisf_Unadj ListSort_AgeAdj ReadEng_Unadj SCPT_SPEC 

ReadEng_AgeAdj ListSort_Unadj DDisc_AUC_40K 

Avg_Weekday_Any_Tobacco_7days Num_Days_Used_Any_Tobacco_7days 

Total_Any_Tobacco_7days PicSeq_AgeAdj FamHist_Fath_DrgAlc PicSeq_Unadj 

Avg_Weekday_Cigarettes_7days Avg_Weekend_Any_Tobacco_7days 

Total_Cigarettes_7days Dexterity_AgeAdj Avg_Weekend_Cigarettes_7days 

Dexterity_Unadj Times_Used_Any_Tobacco_Today PSQI_Score AngAggr_Unadj 

Taste_AgeAdj ASR_Rule_Raw Taste_Unadj ASR_Thot_Raw EVA_Denom 

SSAGA_TB_Still_Smoking FamHist_Fath_None ASR_Thot_Pct 

PercStress_Unadj ProcSpeed_AgeAdj ASR_Rule_Pct ProcSpeed_Unadj 

DSM_Antis_Raw ER40_CR NEOFAC_A ASR_Crit_Raw VSPLOT_TC 

NEOFAC_O ER40ANG VSPLOT_OFF SSAGA_Times_Used_Stimulants 

ASR_Soma_Pct SSAGA_Mj_Times_Used DSM_Antis_Pct CardSort_AgeAdj 

ASR_Extn_Raw ASR_Oth_Raw ASR_Totp_T ASR_Extn_T ASR_Totp_Raw 

EmotSupp_Unadj DSM_Anxi_Pct PercReject_Unadj ER40NOE DSM_Anxi_Raw 

ASR_TAO_Sum SSAGA_TB_Smoking_History CardSort_Unadj PosAffect_Unadj 

SSAGA_ChildhoodConduct Odor_AgeAdj ASR_Witd_Raw 

SSAGA_Alc_Hvy_Frq_Drk ASR_Soma_Raw DSM_Depr_Pct ASR_Aggr_Pct 

SSAGA_Alc_12_Max_Drinks DSM_Depr_Raw Mars_Final PercHostil_Unadj 

DSM_Somp_Pct SSAGA_Alc_Age_1st_Use ASR_Witd_Pct IWRD_TOT 

PainInterf_Tscore MMSE_Score SSAGA_Alc_12_Frq_Drk Odor_Unadj 

SSAGA_Alc_D4_Ab_Sx SSAGA_Mj_Use ASR_Aggr_Raw SSAGA_Mj_Ab_Dep 

DSM_Somp_Raw FearSomat_Unadj SSAGA_Alc_12_Drinks_Per_Day 

Mars_Log_Score SelfEff_Unadj SCPT_SEN NEOFAC_N SSAGA_Agoraphobia 

ASR_Intn_T AngHostil_Unadj Num_Days_Drank_7days 

SSAGA_Times_Used_Cocaine Loneliness_Unadj ASR_Intn_Raw 

SSAGA_Alc_Hvy_Drinks_Per_Day MeanPurp_Unadj DSM_Avoid_Pct 

NEOFAC_E Total_Beer_Wine_Cooler_7days DSM_Avoid_Raw 

Avg_Weekday_Wine_7days Flanker_AgeAdj ASR_Anxd_Pct 

Avg_Weekend_Beer_Wine_Cooler_7days SSAGA_Alc_D4_Ab_Dx 

Total_Drinks_7days SSAGA_Alc_Hvy_Max_Drinks FearAffect_Unadj 

Total_Wine_7days Avg_Weekday_Drinks_7days ER40SAD Flanker_Unadj 

ER40FEAR Avg_Weekday_Beer_Wine_Cooler_7days 
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SSAGA_Times_Used_Illicits Avg_Weekend_Drinks_7days 

SSAGA_Alc_D4_Dp_Sx NEOFAC_C Total_Hard_Liquor_7days Correction 

SSAGA_Alc_Hvy_Frq_5plus DSM_Adh_Pct ASR_Attn_Pct VSPLOT_CRTE 

SSAGA_Depressive_Ep AngAffect_Unadj SSAGA_PanicDisorder 

Avg_Weekend_Hard_Liquor_7days FamHist_Moth_Dep ASR_Anxd_Raw 

SSAGA_Times_Used_Opiates SSAGA_Times_Used_Sedatives 

SSAGA_Alc_Hvy_Frq SSAGA_Alc_12_Frq_5plus Friendship_Unadj 

SSAGA_Depressive_Sx ASR_Attn_Raw ASR_Intr_Raw SSAGA_Alc_12_Frq 

FamHist_Fath_Dep InstruSupp_Unadj ASR_Intr_Pct 

SSAGA_Times_Used_Hallucinogens Avg_Weekend_Wine_7days 

FamHist_Moth_None Sadness_Unadj DSM_Hype_Raw DSM_Adh_Raw 

DSM_Inat_Raw

To avoid overfitting in the CCA, we used PCA to reduce the dimensionality of both N4 and 

S4 to c=100, reducing each to size 461×100 (i.e., keeping the top 100 subject-weight-

eigenvectors N5 and S5 to feed into the CCA). In the case of applying PCA to S, we 

accounted for missing data in the SMs (4% of matrix entries) by estimating the 

subjects×subjects covariance matrix one element at a time, where, for any two subjects, SMs 

missing for either subject are ignored. This approximation to the covariance matrix was 

projected onto the nearest valid (positive-definite) covariance matrix using the nearestSPD 

(http://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd) matlab toolbox; 

this projection was extremely mild, with the correlation between the before vs after 

covariance values being very high (r=0.99996), but is important in order for the covariance 

matrix to be valid. The resulting covariance was therefore formed without any need to 

impute missing SM values. It was fed into an eigenvalue decomposition (of order 100) to 

estimate the top 100 subject-wise SM eigenvectors S5, for feeding into the CCA, which 

represented 98.5% of the total SMs variance in S4. The top 100 subject-wise connectome 

eigenvectors (N5) represented 41.5% of the total connectomes population variance in N4.

CCA (via canoncorr in Matlab) estimated 100 components (modes), optimising de-mixing 

matrices A and B such that the resulting U=N5 A and V=S5 B (461×100) matrices were 

maximally similar to each other. The correlation between a corresponding pair of columns 

(one each from U and V) indicates the strength with which a mode of population variation is 

common to both brain networks and behavioral measures; significance was estimated via 

100,000 permutations of the rows of one matrix relative to the other. CCA was then re-run 

after each permutation. There are many related subjects in the HCP data, and family 

structure was kept intact when permuting the data4, therefore building up a valid null 

distribution of CCA results.

We identified just one CCA mode that related functional connectomes to SMs with high 

significance (r=0.8723, P<10−5, corrected-p 5% critical r threshold = 0.840). This mode was 

by definition the one component (out of 100 estimated) whose correlation between the 

connectome-subject-weights and the SM-subject-weights was maximal, and as this is 

compared against the null distribution of maximal correlation values, the quoted p-value is 

explicitly corrected for multiple testing (searching across all CCA modes estimated). This 

CCA mode represents one significant mode of population co-variation, for which individual 
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subjects’ strength of involvement with this mode is highly similar for both a subset of the 

functional connectome and a subset of the SMs. The mode comprises 4 vectors:

• U1, a 461×1 vector of individual subject weights derived from the 

connectomes matrix (in which each value describes the extent to which a 

given subject is positively or negatively correlated with this mode of 

population variation with respect to brain connectivity)

• V1, a 461×1 vector, also of individual subject weights, derived from the 

SMs matrix (and which is highly correlated with U1, r=0.87)

• A1, a 100×1 vector of CCA mode weights relating to the 100 connectome 

PCA components fed into the CCA (i.e., the extent to which combinations 

of edge strength relate to mode weights-vector U1)

• B1, a 100×1 vector describing the extent to which each SM PCA 

component relates to mode weights-vector V1.

CCA finds the A and B that maximise the correlation between U and V. To obtain relative 

weights (and signs) of involvement of the original sets of connectome edges and SMs, we 

correlated U1 and V1 respectively against N and S, even for those SMs not used for the 

CCA, resulting in “full length” edge/SM weight vectors AF1 and BF1. This simple approach 

for mapping CCA modes onto the original data matrices (to get connectomes and SM 

weights) allows for the estimation of the same test statistic for those SMs included in the 

CCA and those that were excluded.

In order to generate the CCA edge strength “increase” and “decrease” maps shown in Figs. 

2b and 2d, we carried out the following. Using vector AF1 (CCA edge modulation weights), 

we multiplied each element by the sign of the population mean edge connectivity, converting 

the modulation weights into measures of edge strength modulation. We reshaped the 

resulting vector into a square nodes×nodes matrix containing the same values (i.e., reversing 

the reshaping depicted top-left in Supplementary Fig. 1). For each column (node), we then 

estimated the average of the lowest 25% of values, and also the average of the highest 25% 

of values. This gave us estimates of the mean (across edges involving each node) strength 

decrease and increase, respectively. These values were then plotted spatially by multiplying 

each nodes’ spatial map by its edge strength decrease/increase, and averaging across all 

nodes for a given grayordinate. Note that a given node could in theory have both strong edge 

strength decreases (i.e., for certain edges involving that node) as well as strong increases (for 

other edges), but in general the maps of decrease and increase show little overlap.

Code availability

The full CCA script is freely available at: http://www.fmrib.ox.ac.uk/analysis/HCP-CCA .

Additional CCA validation tests

Several additional analyses were performed to further increase confidence that the CCA 

mode is a, robust, interpretable, mode of variation associating factors internal to the brain 

and subject measures. In general each test is evaluated in terms of 4 correlations [1 2 3 4]:
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1. CCA mode 1 subject weights (connectomes): U1(original) vs U1(alternative)

2. CCA mode 1 subject weights (SMs): V1(original) vs V1(alternative)

3. CCA mode 1 connectome weights: AF1(original) vs AF1(alternative)

4. CCA mode 1 SM weights: BF1(original) vs BF1(alternative)

We now list the additional tests carried out:

• If we did not Gaussianise the distributions of all SMs before the PCA (and 

hence CCA), there was almost no change in the results – the correlations 

are: [0.86 0.86 0.85 0.96].

• If we changed the connectome normalisation to only use N1 or N2 instead 

of N3 (feeding into the pre-CCA PCA), there was almost no change in 

results – the two sets of correlations are: [0.75 0.69 0.84 0.93] (N1) and 

[0.74 0.70 0.84 0.93] (N2).

• The pre-CCA SVD reduction of netmats and SMs was run using a much 

smaller number of PCA components for each (30 instead of 100), with 

almost no change in the results – original vs alternative correlations: [0.68 

0.69 0.82 0.93].

• The CCA result was virtually unchanged if we did not regress the 

confounds out of N and S [0.75 0.76 0.78 0.92], or if we only regressed 

them out of N [0.82 0.84 0.82 0.94].

• If we use the 50-dimensional group-ICA parcellation to derive netmats 

and re-run the CCA, the results are very similar [0.61 0.68 - 0.88] (the 

third correlation cannot be computed as the netmats are not compatible 

between the analyses). Also, if we combine across all 5 dimensionalities, 

concatenating the matrices of netmats across all, again we get a very 

similar CCA output [0.88 0.91 - 0.97].

• If we added age into the confounds, which subsumes the effect of 

removing all the age-adjusted SMs from feeding into the CCA, the results 

were almost unchanged [0.99 0.99 0.99 1.00].

• Similarly, in order to explicitly determine whether there was a strong 

effect of feeding in both age-adjusted and non-adjusted SMs into the CCA, 

we carried out two additional CCA tests. In the first we excluded all age-

adjusted measures previously fed into the CCA, for which non-adjusted 

SMs were also being used; this removed 10 SMs. In a second test we did 

the opposite, removing 10 non-adjusted SMs. In both cases we re-ran the 

CCA and compared the 4 primary CCA weight vectors against the original 

vectors. The results were virtually unchanged, with the smallest 

correlation across the 8 new-old vector pairs (two CCA re-runs and 4 

weight vectors) being r=0.997.

• THC is the strongest-involved negative SM; hence, we tested the effect of 

removing THC from feeding into the CCA. The result is virtually 
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unchanged [1.00 1.00 1.00 1.00]. More stringently, if we further remove 

all subjects who tested positive for THC, the results are still almost 

unchanged [0.78 0.78 0.79 0.81].

• In order to evaluate whether information similar to that in the connectomes 

might also be present in structural volume measures, we re-ran the CCA 

using the 47 FreeSurfer structural measures (volumes of individual tissue 

components and brain sub-structures) instead of the functional 

connectomes. Because this number of variables was much smaller, it was 

necessary to reduce the number of PCA components to 30. The correlation 

between U1 and V1 (from the resulting dominant CCA mode) was reduced 

to 0.56 (p=0.002). The correlations between the original V1 and BF1 and 

the volumetric-feature-based estimates of these were 0.51 and 0.78 

respectively, i.e., lower than the corresponding connectome-based 

correlations reported above when reducing the number of PCA 

components from 100 to 30 without making any other changes. Thus, 

while the relationship between “brain” and SMs is weaker when using 

volumetric brain measures instead of functional connectivity measures, the 

results are still partially present. We also re-ran the original CCA, but after 

adding the 47 FreeSurfer structural volumes as additional confounds (to be 

regressed out of the connectomes and SMs). The correlation between U1 

and V1 was 0.86 (i.e., nearly as high as in the original result), and the CCA 

weight vectors were similar to the original results [0.59 0.63 0.70 0.81]; 

these values are quite similar to the those reported above when re-running 

the original analysis with a reduction of PCA components to 30. We 

conclude that there is some shared variance between brain sub-volumes 

and functional connectomes (and hence the primary CCA result is to a 

limited extent recapitulated when co-modeling structural volumes and 

SMs), but the original CCA result (using functional connectomes) is 

stronger, and is largely unchanged when regressing out the brain structure 

volumes.

• As a simple sanity check of the permutation scheme that respects family 

structure, we replaced all rows (in both connectomes and SMs matrices) 

from a given family with the average row across all family members, for 

each family, and re-ran the CCA. We reduced the number of PCA 

components kept to 40, given the greatly reduced new “subject” numbers 

(157). The result is virtually unchanged [- - 0.74 0.88], and the 

significance of this first CCA mode remains at p~1/Npermutations.

• Although we have no reason to doubt the validity of the permutation-based 

significance test (of the main CCA result), we carried out a separate train-

test validation analysis in which the CCA was only run on a subset of the 

data, and the outputs tested against the rest. We randomly kept 

approximately 80% of the subjects in a “train” analysis, leaving the other 

20% as a test validation subset, without splitting any families across the 

train/test subsets. We ran the CCA on the train dataset, and confirmed that 
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the main CCA mode estimated was virtually the same as the main original 

result (with weight vector similarities in the range r=0.85:0.99). We then 

took the CCA SM and connectome weight vectors from the train dataset 

and multiplied those into the left-out test dataset SM and connectome 

matrices, in order to estimate subject weight vectors U1 and V1 for the test 

dataset. We correlated U1 and V1, and carried out a (within the test 

dataset) permutation test (again respecting family structure, 1000 

permutations) in order to measure the significance of the test dataset 

subject weight vectors’ correlation. We ran this train-test process 10 times, 

each with a randomly different set of subjects in the train and test subjects. 

The mean correlation between the left-out (test) U1 and V1 was 0.25 

(Nsubjects~90); the mean correlation in the null (permuted data) was 0.03 

and the standard deviation was 0.1. In all 10 cases the correlation between 

the test dataset subject weight vectors was maximally significant at p=1/

Npermutations (i.e., p=0.001). Hence the main CCA mode result is strongly 

supported by these train/test evaluations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) The set of SMs (subject measures) most strongly associated with the CCA mode of 

population variability. SMs included in the CCA are colored blue, while others (grey) were 

correlated with the CCA mode post-hoc. Vertical position is according to correlation with 

the CCA mode, while font size indicates SM variance explained by the CCA mode. Here we 

do not report “secondary” SMs that are highly redundant with those shown here 

(Supplementary Table 1 shows the complete set of SMs that correlate highly with the CCA 

mode). See wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release for details of the SMs. (b) The principal CCA mode - a scatter-plot 

of SM weights versus connectome weights, with one point per subject, and an example 

subject measure (fluid intelligence) indicated with different colors. The high correlation 

visualised here indicates significant co-variation between the two datasets. (c) The total 

variance explained of the original data matrices (shown separately for connectomes and 

subject measures) is plotted for the first 20 CCA modes. In black/grey is shown the mean 

and the 5th to 95th percentiles of the null distribution of the same measures, estimated via 

permutation testing. Using the null distributions to normalize variance explained accounts 

for the fact that the initial modes are expected to have higher correlations, even in the null 

scenario, but, as can be seen from the nulls, this is in any case a very small effect.
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Figure 2. 
(a) The 30 brain connections most strongly associated with the CCA mode of population 

variability. To aid interpretation, the CCA edge modulation weights are multiplied by the 

sign of the population mean correlation; hence red indicates stronger connections and blue 

weaker, for high-scoring subjects (and vice versa for low-scoring subjects). (b) Map of CCA 

connection strength increases (each node’s parcel map is weighted by CCA edge-strength 

increases, summed across edges involving the node). (c) Group-mean functional clustering: 

4 clusters from a hierarchical analysis of all 200 nodes’ population-average full correlation 

(Supplementary Fig. 3). These fall into two groups: one cluster (blue) contains sensory, 

motor, insula and dorsal attention regions, and a group of 3 correlated clusters (brown, red, 

yellow) primarily covering the default mode network and subcortical/cerebellar areas. (d) As 

b, but showing CCA connection strength decreases. Maps d and b are largely non-

overlapping except in insula. b has spatial correlation of +0.40 with the default-mode areas 

in c (i.e., high overlap), while d shows negative correlation (−0.12). The average 

connectivity strength increase is approximately double that of the average decrease (as 

reflected in the predominance of red edges in a; also, a single map averaging across all 200 

edges for each node shows a pattern of overall increase highly similar to b; finally, both b 
and d are thresholded at the 80th percentile of their respective distributions, and if the 
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threshold applied to b were applied to d, none of the strength reductions shown would 

survive).
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