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Heritability estimation has become an important tool for imaging genetics studies. The large number of voxel-
and vertex-wise measurements in imaging genetics studies presents a challenge both in terms of computational
intensity and the need to account for elevated false positive risk because of themultiple testing problem. There is
a gap in existing tools, as standard neuroimaging software cannot estimate heritability, and yet standard quanti-
tative genetics tools cannot provide essential neuroimaging inferences, like family-wise error corrected voxel-
wise or cluster-wiseP-values. Moreover, available heritability tools rely on P-values that can be inaccurate with
usual parametric inference methods.
In this work we develop fast estimation and inference procedures for voxel-wise heritability, drawing on recent
methodological results that simplify heritability likelihood computations (Blangero et al., 2013). We review the
family of score and Wald tests and propose novel inference methods based on explained sum of squares of an
auxiliary linear model. To address problems with inaccuracies with the standard results used to find P-values,
we propose four different permutation schemes to allow semi-parametric inference (parametric likelihood-
based estimation, non-parametric sampling distribution). In total, we evaluate 5 different significance tests for
heritability, with either asymptotic parametric or permutation-basedP-value computations. We identify a num-
ber of tests that are both computationally efficient and powerful, making them ideal candidates for heritability
studies in the massive data setting. We illustrate our method on fractional anisotropy measures in 859 subjects
from the Genetics of Brain Structure study.

© 2015 Published by Elsevier Inc.
Introduction

Combining neuroimaging data with genetic analyses is an increas-
ingly active area of research aimed at improving our understanding of
the genetic and environmental control over brain structure and function
in health and illness (see, e.g., Glahn et al., 2007). The foundation of any
genetic analysis is establishing that a trait is heritable, that is, that a sub-
stantial fraction of its variability can be explained by genetic factors. Sig-
nificant and reproducible heritability has been established for many
neuroimaging traits assessing brain structure and function, including,
for instance, location and strength of task-related brain activation
(Blokland et al., 2008; Koten et al., 2009; Matthews et al., 2007; Polk
niversity of Warwick, Coventry,

ls).
et al., 2007), white matter integrity (Kochunov et al., 2014a, b;
Jahanshad et al., 2013; Brouwer et al., 2010; Chiang et al., 2009, 2011;
Kochunov et al., 2010), cortical and subcortical volumes, cortical thick-
ness and density (Winkler et al., 2010; Rimol et al., 2010; Kochunov
et al., 2011a, b; Kremen et al., 2010; den Braber et al., 2013).

Variance component models are the best-practice approach for
deriving heritability estimates based on familial data (Almasy and
Blangero, 1998; Blangero and Almasy, 1997; Amos, 1994; Hopper and
Mathews, 1982), for allowing great flexibility inmodeling of genetic ad-
ditive and dominance effects, as well as common and unique environ-
mental influences. The model also allows the inclusion of additional
terms that allow linkage analysis, yet remaining relatively simple and
requiring the estimation of only a few parameters. Estimation of param-
eters typically uses maximum likelihood under the assumption that the
additive error follows a multivariate normal distribution. The iterative
optimization of the likelihood function requires computationally
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intensive procedures, that are prone to convergence failures, something
particularly problematic when fitting data at every voxel/element.

Typically a likelihood ratio test (LRT) is used for heritability hypothesis
testing. As the null hypothesis value is on the boundary of the parameter
space, the asymptotic distribution of LRT is not χ2 with 1 degree of free-
dom(DF), but rather approximately as a 50:50mixture ofχ2 distributions
with 1 and 0 DF, where a 0 DFχ2 is a point mass at 0 (Chernoff, 1954; Self
and Liang, 1987; Stram and Lee, 1994; Dominicus et al., 2006; Verbeke
and Molenberghs, 2003). However, this result depends on the assump-
tion of independent and identically distributed (i.i.d.) data (Crainiceanu,
2008; Crainiceanu and Ruppert, 2004a, b, c), which is violated in the
heritability problem. It has been shown that 0 values occur at a rate great-
er than 50%, producing conservative inferences (Blangero et al., 2013;
Crainiceanu and Ruppert, 2004a; Shephard, 1993; Shephard and
Harvey, 1990).

As with most statistical models, the quantitative genetic models used
here are based on an assumption of multivariate Gaussianity, and this as-
sumption is the basis of the estimation and test procedures described
above. However, the heritability test statistic's null distributionmaybe in-
accurate even when Gaussianity is perfectly satisfied, due to the limita-
tions of the 50:50 χ2 result just mentioned. Further, for neuroimaging
spatial statistics, like family-wise error (FWE) corrected inferencewith ei-
ther voxel- or cluster-wise inference, the relevant parametric null distri-
butions are intractable. While random field theory (Worsley et al., 1992;
Friston et al., 1994; Nichols and Hayasaka, 2003) results exist for χ2 im-
ages (Cao, 1999), they are not directly applicable here as the test statistic
image cannot be expressed as a linear combination of component error
fields.

Hence, there is a compelling need for alternative inference proce-
dures that make fewer assumptions. Permutation tests are a type of
nonparametric test that can provide exact control — or approximately
exact when there are nuisance variables — over false positive rates.
These tests depend only on minimal assumptions, namely, that under
the null hypothesis the data is exchangeable, that is, that the joint distri-
bution of the data remains unaltered after permutation (Nichols and
Holmes, 2002; Winkler et al., 2014).

There is relatively little work on permutation tests for variance com-
ponent inference. The typical application of variance components
models is not in quantitative genetics, but in hierarchical linear models
where observational units are nested in clusters, such repeated mea-
sures designs. Of the few permutationmethods proposed in this setting,
they all permute the residuals (after removing the covariate effects) be-
tween andwithin clusterswhile fixing themodel structure.While these
procedures use different test statistics, e.g. Fitzmaurice and Lipsitz
(2007) used the LRT as the statistic, while Lee and Braun (2012) used
the sample variance of estimated random effect, they generally require
iterative optimization of the likelihood function, and thus as permuta-
tion procedures they are yet more computationally demanding.

Samuhet al. (2012)presented a fast permutation test, though it is only
applicable to the random intercept model. And recently Drikvandi et al.
(2013) introduced a fast permutation test based on the variance least
square estimator, which in essence fits a regression model to squared re-
siduals. However, this approach is not based onmaximum likelihood, and
is only intended for a standard repeatedmeasuresmodel,where indepen-
dent subjects are recorded multiple times, not multiple dependent sub-
jects as in a pedigree study.

Our group presented a method to accelerate maximum likelihood
estimation by applying an orthonormal data transformation that diago-
nalizes the phenotypic covariance, transforming a correlated heritability
model into an independent but heterogeneous variance model
(Blangero et al., 2013). However, this advance doesn't eliminate itera-
tive optimization nor possible convergence problems.

In the present work, we expanded upon this work to derive approx-
imate, non-iterative estimates and test statistics based on the first iter-
ation of Newton's method. These procedures can be constructed with
an auxiliarymodel based on regressing squared residuals on the kinship
matrix eigenvalues. Then the Wald and score hypothesis tests can then
be seen as generalized and ordinary explained sum of squares of the
auxiliarymodel. In addition, as the null hypothesis of no heritability cor-
responds to homogeneous variance of the transformed phenotype, we
draw from the statistical literature on tests of heteroscedasticity for a
new and completely different test for heritability detection.We develop
permutation test procedures for each of these methods, thus providing
FWE-corrected voxel- and cluster-wise inferences.

The remainder of this paper is organized as follows. In the next section
we detail the statistical model used and describe each of our proposed
methods. The simulation framework used to evaluate the methods,
and the real data analysis used for illustration are described in the
Evaluation section. We then present and interpret results, and offer con-
cluding remarks.

Theory

In this section we detail the statistical models used, introduce our fast
heritability estimators and tests, and then propose several permutation
strategies for these tests.

Original and eigensimplified polygenic models

At each voxel/element, a polygenic model for the phenotype Y mea-
sured on N individuals can be written as

Y ¼ Xβ þ g þ ϵ ð1Þ

where X is an N × pmatrix consisting of an intercept and covariates, like
ageand sex;β is the p-vector of regression coefficients; g is theN-vector of
latent (unobserved) additive genetic effect; and ϵ is theN-vector of resid-
ual errors. In this study we consider the most common variance compo-
nents model, with only additive and unique environmental components.

The trait covariance, Var(Y) = Var(g + ϵ) = Σ can be written as

Σ ¼ 2σ2
AΦþ σ2

EI; ð2Þ

whereΦ is the kinshipmatrix;σA
2 andσE

2 are the additive genetic and the
environmental variance components, respectively; and I is the identity
matrix. The kinship matrix is comprised of kinship coefficients, half the
expected proportion of genetic material shared between each pair of
individuals (Lange, 2003).

The narrow sense heritability is

h2 ¼ σ2
A

σ2
A þ σ2

E

: ð3Þ

Maximum likelihood is used for parameter estimation with the as-
sumption that the data follows a multivariate normal distribution. The
log likelihood for the untransformed model (Eqs. (1) & (2)) is

‘ β;Σ;Y ;Xð Þ ¼ −1
2
Nlog 2πð Þ−1

2
log Σj jð Þ−1

2
Y−Xβð Þ0Σ−1 Y−Xβð Þ: ð4Þ

For large datasets with arbitrary family structure, the computational
burden of evaluating of the likelihood can be substantial. In particular, a
quadratic form of the inverse covariance, Σ−1, must be computed, along
with the determinant of Σ. We take the approach of Blangero et al.
(2013), who proposed an orthogonal transformation based on the eigen-
vectors of the kinship matrix, thus diagonalizing the covariance and
simplifying the computation of the likelihood (Eq. (4)).

The eigensimplified polygenic model is obtained by transforming
the data and model with a matrix S, the matrix of eigenvectors of Φ
which are the same as the eigenvectors ofΣ, Eq. (2). Applying this trans-
formation to Eq. (1) gives the transformed model

S0Y ¼ S0Xβ þ S0g þ S0ε
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which we write as

Y� ¼ X�β þ ε�; ð5Þ

where Y* is the transformed data, X* are the transformed covariates and
ε* is the transformed random component, where ε* now encompasses
both the genetic and non-genetic random variation. The diagonalizing
property of the eigenvectors then gives a simplified form for the
variance:

Var ε�
� � ¼ Σ� ¼ σ2

ADg þ σ2
EI; ð6Þ

where Σ* is the variance of the transformed data andDg=diag{λgi} is a
diagonal matrix of the eigenvalues of 2Φ.

The log likelihood takes on the exact same form as Eq. (4) for Y*, X*,β
and Σ*, except is much easier to work with since Σ* is diagonal:

‘ β�
;σ �

A;σ
�
E;Y

�
;X�� � ¼ −1

2
Nlog 2πð Þ−1

2

XN
i¼1

log σ2
Aλgi þ σ2

E

� �
−1

2

XN
i¼1

ε�i
2

σ2
Aλgi þ σ2

E
:

Note that, while S′ can be seen as a semi-whitening step, the trans-
formed model can also be seen as a change of variables, where the
variance is reparametrized asΣ= SΣ*S′. As a reparametrization, the in-
variance property of maximum likelihood guarantees that the same
values of β, σA

2 and σE
2 optimize both the original and transformed

likelihoods.
Use of this transformation has twomajor benefits. First, optimization

time is substantially reduced, as the inverse and determinant of the
transformed covariance are now trivial. Second, applying standard sta-
tistical inference procedures, including the score and the Wald test, to
the eigensimplified polygenic model produces simple algebraic forms
that can be harnessed for fast approximations. Both of these speed im-
provements facilitate the use of permutation tests that avoid asymptotic
approximations.

Heritability estimation and test statistics

We segregate the transformed model parameters into fixed β and
random θ = (σA

2, σE
2) terms, and estimate them by maximizing the like-

lihood function via iterative numerical methods. Here, we consider
Newton's method because it leads to computationally efficient heritabil-
ity estimators and associated tests. Newton's method requires the score
and expected information matrix of the transformed model, which are

S β; θð Þ ¼
X�′Σ�−1ε�

−1
2

U′Σ�−11−U′Σ�−2ε�2
h i264

375 ð7Þ

and

I β; θð Þ ¼
X�′Σ�−1X� 0

0
1
2
U′Σ�−2U

264
375; ð8Þ

respectively, where U = [1, λg] is a N × 2 matrix, 1 is a N × 1 vector
of ones and λg = {λgi} is a N × 1 vector of kinship matrix eigenvalues.

It is useful towrite f* for the vectorwith elements f �i ¼ ε̂�2i , where ε̂� ¼ Y�

−X�β̂ are the transformed model residuals. Newton's method gives up-

date equations for β̂ and θ̂ at iteration j+ 1 as:

β̂ jþ1 ¼ X�′ Σ̂
�
j

� �−1
X�

� �−1
X�′ Σ̂

�
j

� �−1
Y� ð9Þ
θ̂ jþ1 ¼ max 0; U0 Σ̂
�2
j

� �−1
U

� �−1
U0 Σ̂

�2
j

� �−1
f �j

� 	
; ð10Þ

where j indexes iteration; the variance parameters θ must be positive,
hence the maximum operator. When these updates are iterated until
convergence as usual, we denote the estimates with a ML subscript, e.g.

β̂ML, θ̂ML and ĥ
2
ML ¼ σ̂2

A;ML = σ̂2
A;ML þ σ̂2

E;ML

� �
.

To allow for potential improvements on speed, we also consider a
one-step estimator. First, observe that since Σ* is diagonal, Eq. (9) is
the Weighted Least Squares (WLS) regression of Y* on X*, and Eq. (10)
is based on theWLS regression of f* onU. This immediately suggests ini-
tial values based on Ordinary Least Squares (OLS),

β̂OLS ¼ X�′X�� �−1
X�′Y�

θ̂OLS ¼ max 0; U′U
� �−1

U′ f �OLS

� 	
; ð11Þ

where fOLS⁎ is the square of the OLS residuals

ε̂OLS ¼ Y�−X�β̂OLS; ð12Þ

while not recommended as a final estimate, it also produces ĥ
2
OLS ¼

σ̂2
A;OLS= σ̂2

A;OLS þ σ̂2
E;OLS

� �
. Finally, our proposed one-step estimators are:

β̂WLS ¼ X�′ Σ̂
�
OLS

� �−1
X�

� �−1
X�′ Σ̂

�
OLS

� �−1
Y�

θ̂WLS ¼ max 0; U0 Σ̂
�2
OLS

� �−1
U

� �−1
U0 Σ̂

�2
OLS

� �−1
f �OLS

� 	
; ð13Þ

where Σ̂
�
OLS is formed by θ̂OLS ¼ σ2

A;OLS;σ
2
E;OLS

� �
, also producing ĥ

2
WLS ¼

σ̂2
A;WLS= σ̂2

A;WLS þ σ̂2
E;WLS

� �
.

Amemiya (1977) showed that such one-step maximum likelihood
estimators are asymptotically normal and consistent. Going forward,
wewill use “ML” to refer to themaximum-likelihood, iterated estimator
and “WLS” to refer to this one-step estimator.

Test statistics

In this section we describe likelihood ratio tests (LRTs), Wald tests,
and score test for hypothesis tests of nonzero heritability; we also add
an additional test based on detecting heterogeneous variance structure
to detect non-zero heritability. We only consider the transformed
model, and tests on H0 : σA

2 = 0 vs. H1 : σA
2 N 0, equivalent to inference

for heritability (Eq. (3)). Table 1 organizes themodels and test statistics
we consider.

Likelihood ratio test
The LRT (Neyman and Pearson, 1933) statistic is twice the difference

of the log-likelihoods, unrestricted minus H0-restricted. For ML this
requires optimizing the likelihood function twice, once under the null
H0 : σA

2 = 0, and once under the alternative (though the null model is
trivial, equivalent to OLS). We denote the test statistic for this test
TL,ML. In addition, a LRT can be constructed for the transformed model
in terms of the one-step WLS estimator; we denote this statistic as
TL,WLS.

Wald test
TheWald test consists of a quadratic form of the parameter estimate

(minus its null value) and its inverse asymptotic variance (i.e. expected
Fisher's information matrix). Both the estimate and its variance are
computed under the full, alternative model.



Table 1
Comparison of model and test statistic properties. Usual P-values and CI's (confidence In-
tervals) refer to the best practice inference tools used with maximum likelihood
estimation.
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The Wald test for the ML estimator (Rao, 2008) is

TW;ML ¼
1
2

σ̂2
A;ML

� �2
C U0Σ̂

�−2
ML U

� �−1
C0


 �−1

¼ 1
2

N− 10Σ̂
�−1
ML 1

� �2
10Σ̂

�−2
ML 1

� �−1
� �

where C=[0 1] is a contrast row vector, and the latter is a simpler form
found in Buse (1984). Iterative optimization is required for TW,ML,
though it can be more amenable to compute than LRT because the like-
lihood function is optimized only once.

The Wald test for our one-stepWLS estimator can be written as

TW;WLS ¼
1
2

σ̂2
A;WLS

� �2
C U0Σ̂

�−2
WLSU

� �−1
C0


 �−1

¼ 1
2

σ̂2
A;WLS

� �2
� Σ̂

�−1
OLS λg

� �0
I−Σ̂

�−1
OLS 1 Σ̂

�−1
OLS 1

� �0
Σ̂
�−1
OLS 1

� �� �−1
10Σ̂�−1

OLS

� �
Σ̂
�−1
OLS λg :

where the second line shows the computation to be half the generalized
explained sum of squares (Buse, 1973, 1979) of an auxiliary model, the
weighted least squares regression of fOLS⁎ on λg, with weights deter-

mined by Σ̂
�
OLS.

Score test
The score test (Rao, 2008), also known as the Lagrange multiplier

test, is a quadratic form of the score (the gradient of the log likelihood)
and the expected Fisher's information, each evaluated under the null
hypothesis. Among the tests that we consider, the score test is the
least computationally demanding procedure, as it only requires estima-
tion of the null model. For H0 : σA

2 = 0, the score test with the trans-
formed likelihood function is:

TS ¼
λ0
gΣ

�−2
OLS f �OLS−λ0

gΣ
�−1
OLS 1

CU0Σ�−2
OLS UC

0

¼ 1
2

σ̂2
A;OLS

σ̂2
OLS

 !2

λ0
g I−101

N

� �
λg ;

where σ̂2
OLS ¼ ε̂OLSð Þ0ε̂OLS=N is the OLS naive residual variance estima-

tor. Similar to the Wald test, TS can be obtained as half the regression
sum of squares of an auxiliary model, the (unweighted) regression of

f �=σ̂2
A;OLS on λg. As it only involves the fitted null model, it isn't associat-

ed with a WLS or ML estimate.
We note that Wald and score tests for a null hypothesis value

lying on the boundary of parameter space can take a special form
(Freedman, 2007; Molenberghs and Verbeke, 2007; Morgan et al.,
2007; Verbeke and Molenberghs, 2007; Silvapulle, 1992; Silvapulle
and Silvapulle, 1995; Verbeke and Molenberghs, 2003). However, for
our model (Eq. (1)), the standard version is appropriate if the score
function is positive at the boundary value and otherwise set to zero.
As any negative score values are suppressed by our non-negative

constrained estimates θ̂OLS (Eq. (11)) and θ̂WLS (Eq. (13)), our tests are
implicitly zero when needed, and thus the appropriate Wald and score
tests are as given above.

All three of the LRT, Wald, and score test procedures are asymptoti-
cally equivalent but have different small-sample performance, which
we evaluate below. These tests are considered to follow asymptotically
a 50 : 50mixture ofχ2 distributionswith 1 and 0DF,where 0 a DFχ2 is a
point mass at 0 (Chernoff, 1954; Self and Liang, 1987; Stram and Lee,
1994; Dominicus et al., 2006; Verbeke and Molenberghs, 2003), al-
though it has been shown that 0 values can occurwith a higher frequen-
cy, and the standard 50:50 result will tend to produce conservative
inferences (Blangero et al., 2013; Crainiceanu and Ruppert, 2004a;
Shephard, 1993; Shephard and Harvey, 1990).

Goldfeld and Quandt (GQ) test
Instead of standard likelihood theory, an alternative approach to

heritability hypothesis testing can be derived from tests of
heteroscedasticity. This follows for the transformed model, since the
null hypothesis of no heritability corresponds to homoscedasticity of
the transformed phenotype variance (Var(ε*) = σ2I). Thus, rejection
of the hypothesis of homoscedasticity implies a rejection of the hypoth-
esis of zero heritability. One class of such tests requires an explicit, hy-
pothesized form for the heterogeneous variance. Another type called
“nonconstructive” does not require such explicit models; one example
is the Goldfeld and Quandt (1965) (GQ) test, which we propose as a
test for non-zero heritability.

The GQ test partitions observations into 2 groups, A & B, based on a
variable that should explain any heterogeneous variance. The test statis-
tic then compares the ratio of OLS residual mean squares:

TGQ ¼ ε̂�0A ε̂
�
A= nA−1ð Þ

ε̂�0B ε̂
�
B= nB−1ð Þ ð14Þ

where subscript A refers to the high variance group, subscript B to low
variance group, ε̂�Arefers to the residuals from regressing elements of
Y* in group A on corresponding rows of X*, and likewise for ε̂�B, finally,
nA and nB are the number of observations in each respective group.
With Gaussian errors and under a null hypothesis of homoscedasticity,
TGQ follows a F-distribution with degrees of freedom ν1 = nB − p and
ν2 = nA − p, where p is the number of columns in X*.

For the transformed data Y*, the kinship eigenvalues order the vari-
ance of the observations when σA

2 N 0. Thus we propose to define the
two groups based on λgi N 1 and λgi ≤ 1, where we make use of the
fact ∑iλgi/N = trace(2Φ)/N = 1.

This test is only able to detect non-zero heritability and cannot pro-
duce estimates of h2. On the other hand, the parametric null distribution
of (Eq. (14)) does not depend on the mixture approximation and large
sample properties, and its implementation is straightforward. To our
knowledge, this is the first proposed use of a heteroscedasticity test to
create an exact (non-asymptotic), non-iterative test of heritability.

Permutation test for heritability inference

Permutation methods can be used to construct the null sampling
distribution which can be used to produce P-values and thresholds.
For the model with only additive genetic and environmental variance
components, the null hypothesis of no heritability implies fully inde-
pendent data. Thus, if there were no nuisance variables (X), a permuta-
tion test could be conducted by freely permuting the data (Y). With
covariates, we must permute suitable residuals, as detailed below.



Table 2
Comparison of tests for heritability inference.

Tests h2 estimates Distribution Type Optimization Permutation

TL,ML 50:50 χ1
2 and 0 Asymptotic ML P1, P2, P3, P4

TW,ML 50:50 χ1
2 and 0 Asymptotic ML P1, P2, P3, P4

TW,WLS 50:50 χ1
2 and 0 Asymptotic WLS P1, P2, P3, P4

TS 50:50 χ1
2 and 0 Asymptotic OLS P1, P2, P3, P4

TGQ Fn2−p;n1−p Exact OLS P1, P2, P3, P4

Proposed test procedures: The score test (TS), the Wald test and its variants in terms of
WLS estimators (TW,WLS) and ML estimators (TW,ML), and the LRTs in terms of the trans-
formed model (TL,ML). ML optimization denotes iterative optimization until convergence;
WLS a 1-step of Newton's method; and OLS an estimate based on (unweighted) least
squares.
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To conduct inference on σA
2 in the presence of the nuisance parame-

ters β and σE
2, we draw inspiration from various methods for permuta-

tion methods for the GLM (Winkler et al., 2014). For example, there
are several different permutation schemes when testing a strict subset
of all GLM regression parameters. One approach is to permute only
the column of interest in the design matrix. This approach, due to
Draper and Stoneman (1966) could be restated as isolating the portion
of the model affected by the null hypothesis, and then only permuting
that portion. This is the motivation for our first permutation strategy
(P1), wherewe repeatedly fit themodel, but randomly permute kinship
each time.

Another approach is to use the reduced, null hypothesis model to
generate residuals, permute these residuals, and use them as surrogate
null data to be re-analyzed (Freedman and Lane, 1983). For the GLM,
this is the recommendedapproach (Winkler et al., 2014), and corresponds
to an ideal test where nuisance effects are removed from the data, leaving
what should be only unstructured data (under the null) ready to be per-
muted. This is the motivation for permutation scheme (P2).

Finally, another approach to GLM permutation testing is to use the
full, alternative hypothesis model to generate residuals, and then use
these residuals as surrogate null data to be re-fit (ter Braak, 1992).
This approach has the merit of removing all systematic variation from
the data before permutation. This is the motivation for our third and
fourth strategies (P3 & P4).

Partial model permutation (P1)
We implement approach P1 by permuting just the aspect of the

model tested by the H0. For the untransformed model this corresponds
to permuting the model's covariance term to be

2σ2
APΦP0 þ σ2

EI;

where P is one ofN ! possibleN×N permutationmatrices. For the trans-
formed model, the permutated covariance takes the form

σ2
APDgP

0 þ σ2
EI:

Null model residual permutation (P2)
For P2we generate residuals underH0 :σA

2=0, i.e. OLS residuals ε̂OLS
(Eq. (12)). Then we permute these residuals, and add-back nuisance
(fixed) effects to generate new H0 realizations Ỹ*:

eY� ¼ X�β̂OLS þ Pε̂�OLS; ð15Þ

where the tilde (~) accent denotes one of many realizations, which in
turn are fit with the model under consideration.

Full model residual permutation (P3)
For P3, we start with full model residuals, i.e. either ε̂ML or ε̂WLS, de-

pending on the estimator used. Then we permute these residuals, and
add-back nuisance to generate new null hypothesis realizations;
e.g., for WLS:

eY� ¼ X�β̂WLS þ Pε̂�WLS: ð16Þ

and analogously for ML. Again, each realization Ỹ is fit to the current
model.

Full model whitened residual permutation (P4)
P4 is like P3, but we go a step further and create residuals that are

whitened before permutation. For example, for WLS:

eY� ¼ P Σ̂
�−1=2

ε̂�WLS

� �
; ð17Þ
and analogously for ML. Again, each realization is fit to the current
model.

In total we have introduced five different test procedures and four
permutation strategies, summarized in Table 2.

Multiple testing correction
Whether inference is conducted voxel-wise or cluster-wise, the use

of use of an uncorrected α = 5 % level leads to an excess of false posi-
tives. False discovery rate correction, controlling the expected propor-
tion of false positives among all detections, is easily applied based on
uncorrected P-values alone (Genovese et al., 2002). As uncorrected per-
mutation cluster-wiseP-values require an assumption of stationarity
(though see Salimi-Khorshidi et al. (2010)), FDR is generally only ap-
plied with voxel-wiseP-values. Familywise error rate (FWE) correction,
controlling the chance of one or more false positives across the whole
set (family) of tests (Nichols and Hayasaka, 2003) requires the distribu-
tion of themaximum statistic, easily computed for either voxels or clus-
ter size with permutation (Nichols and Holmes, 2002).

Evaluation

Simulation studies

We conduct various simulation studies to evaluate proposed
methods for heritability inference on the transformed model. The first
study considers estimator bias and variance for the different methods.
The second studymeasures the accuracy of parametric and permutation
inference methods. Finally, the third study evaluates FWE control in an
image-wise setting for voxel and cluster-wise inferences.

In all simulations, the response variable is assumed to be Y= Xβ+ ε
where ε follows N(0, Σ), Σ = h2(2Φ) + (1− h2)I. The design matrix X
consists of an intercept, a linear trend vector X1 and a quadratic vector
X2 between 1 and −1, with β = [0, 0, 10]. Kinship structure Φ is
based on real pedigrees (each described below), and the simulations
considered a range of true heritabilities (h2 = 0, 0.2, 0.4, 0.6, 0.8).

Simulation 1
This simulation evaluates the bias, standard deviation and mean

squared error (MSE) of the heritability estimators (ML and WLS).
The pedigrees and sample sizes used are shown in Table 3;we usedped-
igrees from the 10th Genetics AnalysisWorkshop (GAW10) (Mac-Cluer
et al., 1997) and from the GOBS dataset (described below). Univariate
data Y was simulated as per the Gaussian model described above, and
10,000 realizations were used.

Simulation 2
This simulation assesses the false positive rates for each method, on

the basis of both parametric and permutationmethods. For this analysis
we used 2 pedigrees from the GAW10 dataset with 138 subjects; the
small sample size was used to ‘stress test’ the methods. Univariate
data Y was simulated as per the Gaussian model described above,
10,000 realizations were used, and 500 permutations for each



Table 4
Simulation 2 result, comparing parametric rejection rates (percent), 5% nominal. For
GAW10 data with 2 families, 138 subjects, 10,000 realizations. GQ test has the most accu-
rate false positive rate, LRTwith ML (TL,ML) is themost powerful; both GQ (TGQ) and score
(TS) test have good power (95% MC CI for 0.05, i.e. for the null case is (4.57%, 5.42%)).

Test True effect (h2)

0 0.2 0.4 0.6 0.8

TS 3.76 40.66 76.76 94.32 98.94
TW,WLS 1.56 26.94 73.46 95.62 99.64
TW,ML 2.50 33.00 77.74 94.84 97.54
TL,ML 3.16 42.28 81.80 96.40 98.90
TGQ 4.36 35.60 78.22 96.50 99.70

Table 3
Datasets used in simulation 1.

Datasets Number of pedigrees Sample size

GAW10 2 138
GAW10 9 626
GOBS 73 858
GAW10 23 1497
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nonparametric procedure. On the basis of Simulations 1 and 2, ‘winner’
tests and a permutation strategy were chosen and fed into the 3rd sim-
ulation study.

Simulation 3
Image simulations were conducted under the null hypothesis

(h2 = 0) on a 96 × 96 × 20 image that the response variable for each
voxel are simulated as described above, smoothedwith a Gaussian filter
with a Full Width at Half Maximum of 4 mm. To avoid edge effects,
larger images were simulated, smoothed and then truncated. For each
realizationwe collected empirical null distributions of maximum statis-
tic and maximum cluster size to compute FWEP-values; we considered
different cluster forming thresholds (parametric uncorrected P-value
= 0.05, 0.01, 0.005, 0.001). We generated 5000 realizations and used
500 permutations with each synthetic dataset.

Application in diffusion tensor imaging data

We used data from the Genetics of Brain Structure and Function
Study (GOBS) (Olvera et al., 2011; McKay et al., 2014) to perform
voxel and cluster-wiseFA heritability inference in healthy subjects.
The sample comprised 859 Mexican–American individuals from 73
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Fig. 1. Simulation 1 results, comparingML andWLS behavior in terms ofmean estimate (top lef
left), andmean squared error (MSE; bottom right). See Table 3 for details of each pedigree; nS d
leading to quite similar MSE for large samples.
extended pedigrees (average size 17.2 people, range = 1–247). The
sample was 59 % female (351 men/508 women) and had a mean age
of 43.2 (SD = 15.0; range = 19–85). All participants provided written
informed consent on forms approved by the Institutional ReviewBoards
at theUniversity of TexasHealth Science Center SanAntonio (UTHSCSA)
and Yale University.

Diffusion imaging was performed at the Research Imaging Center,
UTHSCSA, on a Siemens 3 T Trio scanner using a multi-channel phased
array head coil. Asingle-shot single refocusing spin-echo, echo-planar
imaging sequence was used to acquire diffusion-weighted data with a
spatial resolution of 1.7 × 1.7 × 3.0 mm. The sequence parameters
were: TE/TR=87/8000ms, FOV=200mm, 55 isotropically distributed
diffusion weighted directions, two diffusion weighting values, b = 0
and 700 s/mm2 and three b = 0 (non-diffusion-weighted) images.

ENIGMA–DTI protocols for extraction of tract-wise average FA
values were used. These protocols are detailed elsewhere (Jahanshad
et al., 2013) and are available online http://enigma.ini.usc.edu/
protocols/dti-protocols/. Briefly, FA images from HCP subjects were
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(4.57%,5.43%). Permutation schemes P2–P4 generally seem to work well, while TW,ML

tends to be conservative.
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non-linearly registered to the ENIGMA–DTI target brain using FSL's
FNIRT(Jahanshad et al., 2013). This target was created as a “minimal de-
formation target” based on images from the participating studies as pre-
viously described (Jahanshad et al., 2013b). The data were then
processed using FSL's tract-based spatial statistics (TBSS; http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/TBSS) analytic method (Smith et al., 2006)
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Fig. 3. Simulation 2 results, power for heritability permutation inference. For GAW10 data with
Carlo confidence interval varies with true rejection rate; for 40% it is (39.0%,41.0%), for 80% it i
modified to project individual FA values on the hand-segmented ENIG-
MA–DTI skeleton mask. The protocol, target brain, ENIGMA–DTI skele-
ton mask, source code and executables, are all publicly available
(http://enigma.ini.usc.edu/ongoing/dti-working-group/). The FA values
are normalized across individuals by inverse Gaussian transform
(Servin & Stephens, 2007; Allison et al., 1999) to ensure normality as-
sumption. Finally, we analyzed the voxel and cluster-wiseFA values
with applying along the ENIGMA skeleton mask. To validate our pro-
posed methods for heritability estimation and inference for imaging
data, we applied them on GOBS dataset.

Results

Univariate heritability simulation results

Simulation 1
Fig. 1 compares WLS and ML heritability estimators for various de-

signs and effect sizes, in terms of mean, standard deviation (SD) and
mean squared error (MSE), for 10,000 Monte Carlo realizations. Large
sample theory dictates that ML should provide best performance, and
indeed it has least bias and smallest standard deviation, but the (non-it-
erative) WLS has MSEs that are only slightly larger. As expected, when
the sample size is increased WLS and ML heritability estimators reach
almost the same performance. While the WLS estimator bias is worse
(more negative) than that of ML, the absolute magnitude of bias is
small in large samples.

Simulation 2
This simulation assesses the accuracy of parametric null distribu-

tions, either a 50:50 χ2 mixture or F distribution, and power. Under
H0, all false positive rates (Table 4) are conservative except TGQ. The
LRT and score tests have Type I error rates that are closer to the nominal
level than theWald tests for the simulated null data (h2 = 0) but none
Test Statisics, h2 =0.4
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2 families, 138 subjects, 10,000 realizations, and 500 permutations each realization.Monte
s (79.2%,80.8%).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
http://enigma.ini.usc.edu/ongoing/dti-working-group/


Theoretical -log(P-values) 
0 0.5 1 1.5 2 2.5 3 3.5 4

O
bs

er
ve

d 
-lo

g(
P

-v
al

ue
s)

0

0.5

1

1.5

2

2.5

3

3.5

4
PP plot for Maximum Statistic

T
S

T
W,WLS

T
GQ
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of them in the MC confidence interval (4.57%–5.42%). Also, the WLS
Wald tests had lower error rates than ML Wald tests. In terms of
power, the same pattern exists between tests and the LRT and TGQ are
the most powerful ones.

The conservative false positive rates are attributable to asymptotic
null distributions. In particular, the 50:50 mixture approximation has
recently been shown to be conservative, which we confirm here. On
the other hand, parametric null distribution of TGQ does not depend on
a mixture approximation and, under a normality assumption, it follows
F-distribution exactly; this is likely why GQ had the most accurate false
positive rate (4.36%).

Figs. 2 and 3 show the performance of permutation inference, with
rejection rates and power for different effect sizes under the various
permutation strategies. Fig. 2 shows that, generally permutation strate-
gy P1 is more conservative than P2, P3 and P4. Moreover the error rates
in terms of P2 are close to the nominal level. Although the permutation
strategy P4 has higher rejection rates, they still fall within the Monte
Carlo confidence interval (4.57%–5.43%) except for TW,ML.

With respect to power, Fig. 3 shows that again P2, P3 and P4 are gen-
erally superior to P1 for various effect sizes. In addition P2, P3 and P4
have almost same performance, all within the Monte Carlo confidence
bounds.

Based on all of these results, we selected TS, TW,WLS and TGQ and P2 as
the computationally most efficient tests to be considered in the image-
wise simulations.

Image-wise simulation results

Simulation 3
This simulation evaluates false positive rate control in themore chal-

lenging image-wise setting, for both voxel and cluster-wise heritability
inference. Fig. 4 shows the P–P plot of uncorrected P-values, plotted
as − log10P-values. Except for modest conservativeness (P ≈ 10−2.5),
and of course the truncation due to limited permutations (500
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permutation P-value for the 500 permutations used. The permutation P-values are
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≈ 50 % P-values of 1 (0 in − log10P). Results based on GAW10 data with 2 families, 138
subjects, 5000 realizations, 500 permutations each realization, and 96 × 96 × 20 images
with 4 mm FWHM smoothing.
permutations, minimal P-value of 0.002, maximum − log10P-value of
2.69), the accuracy is quite good over-all. Fig. 5 show that FWE-
correctedP-values are also accurate, with slight conservativeness with
the GQ test. For the 5% level specifically, voxel-wiseFWE for the score,
the Wald and the GQ tests were 5.08 %, 5.44 % and 5.4 % respectively,
well within the Monte Carlo 95% CI, (4.40%–5.60%).

Fig. 6 shows cluster-wiseFWE rates for different cluster forming
thresholds. All rates are nominal except for the higher cluster forming
thresholds of TW,WLS(P = 0.005 & P = 0.001). The cluster-forming
thresholds come from the parametric null distribution, and Fig. 4
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Fig. 6. Simulation 3 results, FWE error rates for cluster-wise permutation heritability infer-
ence under the null hypothesis, for three of our proposed test statistics. Score and GC test
have nominal false positive rates, while theWald test is anticonservative for high (uncor-
rected P of 0.005 & 0.001) clustering forming thresholds. This is likely due to use of para-
metric cluster-forming threshold; see text for more discussion. Results based on GAW10
data with 2 families, 138 subjects, 5000 realizations, 500 permutations each realization.
Monte Carlo 95% confidence interval (4.40%,5.60%).
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shows severe conservativeness for TW,WLS's parametric P-values. For ex-
ample, that figure shows that when a P = 0.001 uncorrected threshold
is used for TW,WLS, the actual false positive rate is less than 0.0001. This
effect, combined with variation of effective false positive rate of the
cluster-forming threshold over permutations, could explain this slight
anticonservativeness.

Fig. 7 compares the selected test maximum cluster size P-values
based on different cluster forming thresholds with their theoretical
values; again TW,WLSbehavior for large cluster forming thresholds
shows slightly inflated rejection rates.

Real data analysis

Voxel-wiseFA heritability estimation and inference for the GOBS
study are shownwithML andWLS estimators, creating four test statistic
images: TL,ML, TS, TW,WLS, and TGQ; permutation scheme P2 was used to
compute uncorrected and FWE-correctedP-values. Fig. 8 shows histo-
grams of hML

2 (top) and hML
2 (bottom), showing generally the same dis-

tribution of heritability over the white matter skeleton. Fig. 10 shows
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Fig. 8. Real data results, comparison of voxel-wise heritability estimates fromML andWLS
estimates. The histograms show that the estimates from the two methods are largely
similar.
h2 estimates on the TBSS skeleton. Fig. 9 directly compares WLS and
MLheritability estimateswith a scatter plot, showing a slight but consis-
tent trend towards underestimation of hML

2 relative to hML
2 , consistent

with simulation (Fig. 1).
Voxel-wise uncorrected − log10P-values from TS, TW,WLS, TGQ and

TL,ML based on P2 are compared in Fig. 11. Considering TL,ML as a refer-
ence (on the abscissa), TW,WLS and TGQ are generally less sensitive than
TL,ML(Fig. 11 middle and right panels), consistent with the simulations
above. However, TS was more comparable with TL,ML(Fig. 11 left
panel). Level 5% FWE-corrected statistic thresholds for TS, TW,WLS, TL,ML

and TGQ are 39.92, 18.31, 24.27 and 1.72, respectively, producing signif-
icant voxel counts of 8521, 1043, 7418 and 2446, respectively, out of
117,139 voxels.

Cluster-wise inference results for cluster forming thresholds
corresponded to uncorrected P-value = 0.01 % are shown in Table 5
the tests that we consider. Level 5% FWE-corrected cluster size thresh-
olds for TS, TW,WLS, TL,ML and TGQ are 265, 98, 142 and 135 voxels, respec-
tively. For voxel-wise inference, Fig. 12, the score test was most similar
to ML's LRT, and likewise for cluster-wise inference, Fig. 13.
Fig. 9. Real data results, scatterplot of voxel-wise heritability estimates fromML andWLS
estimates. The two methods are largely similar, though ML is almost always larger than
WLS estimates.



(a) Voxel wise ML heritability Estimation

(b) Voxel wise WLS heritability Estimation

Fig. 10. Real data results, voxel-wise heritability estimates for ML (top) and WLS (bottom). Heritability shown in hot-metal color scale, intensity range [0,0.5] for both, overlaid on MNI
reference brain. Differences only apparent in highest FA areas.
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Discussion & conclusions

We have proposed a number of computationally efficient tests for
heritability with family data. To our knowledge this is the first work
that enables practitioners to study brain phenotype heritability in each
voxel without confronting an intense computational burden. Our
methods are based on the eigensimplified model of Blangero et al.
(2013), most of which can be implemented with auxiliary models, cor-
responding to regressing squared OLS residuals on the kinship matrix
eigenvalues.

For heritability estimation our WLS method, based on one step of
Newton's method, was a fast and reasonable approximation to fully
iterated ML, ideal for application to brain image data.

For heritability inference, we found that parametric P-values for LRT,
Wald and score methods were all conservative, likely due to the unten-
able i.i.d. assumption underlying the 50:50 χ2 mixture approximation.
As an alternative, permutation test error rates were much closer than
Fig. 11. Real data results, scatter plots of voxel-wise uncorrected− log10P-values for score,WLSW
ML LRT P-values, while WLS Wald P-values tend to be more conservative; GQ P-values are mu
parametric one to the nominal level. Notably, all of our simulations in-
cluded fixed effects covariates (X).

The GQ heteroscedasticity test, adapted here for heritability detec-
tion, had good performance in simulation, with the best false positive
control and respectable power, but on the real data was dramatically
different (see Fig. 12) and apparently less powerful.

Image wise simulation results showed that FWE-correctedvoxel-
and cluster-wise inference was valid at the 5% level for TS and TGQ, per-
mutation scheme P2. In real data, the P-values for TGQ were less similar
to the LRT results than the score orWald test, andwas less sensitive over
all. The GQ test's power depends on the cut point used to define the two
groups, though we did not investigate further. On balance we suggest
the use of TS for standard neuroimaging inference tool including voxel
and cluster-wise inference.

Running time for different test statistics that were presented in
Table 6 based on a benchmark with Intel(R) core(TM) i7-2600CPU @
3.4 GH and 16 GB RAM feature confirms that the empirical null
ald andGQ tests vs. theML LRT test. Score P-values aremost faithful representation of the
ch more different and generally more conservative.



Table 5
Real data results, cluster-wise inferences with different methods.

Method Total # of
clusters

# of significant
clusters

Largest cluster
size

Smallest corrected
P-value

TL,ML 1770 22 24,246 0.0005
TW,WLS 1725 19 3643 0.0003
TS 1689 11 31,250 0.0003
TGQ 1751 20 4383 0.0003

Cluster-wise inference for TL,ML, TW,WLS, TS and TGQ. Based on 858 subjects from GOBS and
3000 permutations.
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distribution of explained sum of squares of auxiliary model (TS) under
the permutation scheme P2 can be derived substantially faster than
TL,ML, the classic test statistic for heritability inference. Although the sam-
ple size plays an important role in running time,we believe that TS can be
derived significantly faster than the other tests, since it does not depend
on numerical optimization. Hence, the whole permutation distribution
can be derived easily, either for a univariate trait or a multivariate
(a) LRT for ML es

(b) Score T

(c) WALD test for WLS

(d) GQ Te

Fig. 12. Real data results, voxel-wise 5% FWE significant heritability, for 4 different methods. Fu
test gives very similar results to the ML (fully iterated) LRT, with the other 2 methods being le
spatially dependent neuroimaging data accounting explicitly for family
wise error.

Finally, we note that yet-more computationally efficient estimates
can be obtained by conditioning on the over-all variance estimate, σ̂2,
which leads to a 1-parameter variance model. However, in initial simu-
lationswe found that this lead to greater bias in h2 and specifically h2 es-
timates in excess of 1.0. Thus we retained the 2-parameter variance
model.

In conclusion, our results present a novel inference technique to be
implemented in the genetic imaging analysis software like SOLAR-
Eclipse(http://www.nitrc.org/projects/se_linux). These methods provide
fast inference procedure onmillions of phenotypes, filtering a small num-
ber of elements for further investigation with more computational in-
tense tools. In future work we will extend these tools for inference on
covariates, in particular permutation-based tests for voxel-wiseGWAS
analysis for family based data.

The methods in this work will soon be found in the SOLAR and
SOLAR-Eclipse packages, and a Matlab implementation is available at
http://warwick.ac.uk/tenichols/FPHI.
timator (TL,ML)

est (TS)

 estimator (TW,WLS)
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ll skeleton and significant voxels are in green and red, respectively. The non-iterative score
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(a) LRT for ML estimator (TL,ML)

(b) Score Test (TS)

(c) WALD test for WLS estimator (TW,WLS)

(d) GQ Test (TGQ)

Fig. 13. Real data results, cluster-wise 5% FWE significant heritability, for 4 different methods, cluster-forming threshold parametric uncorrected P = 0.01. Full skeleton and significant
voxels are in green and red, respectively. Methods appear more similar, but again the non-iterative score test is most similar to the ML LRT result.
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Table 6
Computation times. Comparison of running times for a dataset with 138 subjects, 2 fami-
lies, (GAW10 kinship) and 184,320 voxels. Run on Intel(R) core(TM) i7-2600 CPU @ 3.4
GH and 16 GB RAM.

Statistics Univariate trait Image-wise trait

TL,ML 1 s 8 h
TW,WLS 0.005 s 2 s
TS 0.005 s 2 s
TGQ 0.004 s 1.5 s
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