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 The use of mathematical symbolism in problem
 solving: An empirical study carried out in grade
 one in the French community of Belgium

 Annick Fagnant

 Université de Liège, Belgium

 This article relates to an empirical study based on the use of
 mathematical symbolism in problem solving. Twenty-five pupils were
 interviewed individually at the end of grade one; each of them was
 asked to solve and symbolize 14 different problems. In their classical
 curriculum, these pupils have received a traditional education based on
 a "top-down" approach (an approach that is still applied within the
 French Community of Belgium): conventional symbols are presented to
 the pupils immediately with an explanation of what they represent and
 how they should be used. Teaching then focuses on calculation
 techniques (considered as a pre-requisite for solving problems). The
 results presented here show the abilities (and difficulties) demonstrated
 by the children in making connections between the conventional
 symbolism taught in class and the informal approaches they develop
 when faced with the problems that are put to them. The limits of the
 "top-down" approach are then discussed as opposed to the more
 innovative "bottom-up" type approaches, such as those developed by
 supporters of Realistic Mathematics Educations in particular.

 Introduction

 In mathematics, in contrast to other sciences, objects do not have a tangible existence and
 are not directly accessible to perception. That being the case, the only access route is via
 symbolic representation. Mathematics belongs to what Sfard (2000, p. 39) calls "Virtual
 Reality", which she opposes to tangible reality called "Actual Reality": "actual reality
 communication may be perceptually mediated by the objects that are being discussed, whereas
 in the virtual reality discourse perceptual mediation is scare and is only possible with the help
 of what is understood as symbolic substitutes of objects under consideration Symbols are
 therefore an integral part of mathematical reasoning. At the present time, a number of authors
 (see the work of Cobb, Yackle, & Mc Clain, 2000) advocate the idea according to which "the
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 356 A. FAGNANT

 ways that symbols are used and the meanings they come to have are mutually constitutive and
 emerge together" (Cobb, 2000, p. 18). In this work that sets out the dominant positions
 currently held with regard to symbolism, several authors advocate the idea according to which
 symbols represent nothing in and by themselves. Attention should not therefore be focussed
 on the symbols and their meaning but rather on the activity of symbolizing and meaning
 making (Y ackel, 2000).
 This position differs strongly from the traditional vision of teaching where conventional

 symbols are presented to the pupils immediately with an explanation of what they represent
 and how they should be used. Some authors (Gravemeijer, 1997, 2002; Gravemeijer, Cobb,
 Bowers, & Whitenack, 2000) describe this type of approach as a "top-down" one in contrast
 with the more innovative "bottom-up" approaches to which we will return at the end of this
 paper. In the traditional approach, pupils are presented with tangible models which are intended
 to help them to acquire abstract mathematics: "manipulative materials and visual models are
 used to make the abstract mathematics to be taught more concrete and accessible for the
 students " (Gravemeijer, 2002, p. 8). In this "top-down" approach, "mathematical symbols are
 treated as referring unambiguously to fixed, given referents. The teacher's role... is typically
 cast as that of exploring what symbols mean and how they are able to be used by linking them
 to referents " (Gravemeijer et al., 2000, p. 226). In the domain which concerns us, this can be
 translated by the use of materials that are more or less tangible such as blocks or counters to
 illustrate the formal adding and subtracting operations. Addition is then presented as "putting
 together" two sets of objects (or by adding one set to another), symbolized by 3+4=7 (3 and 4
 representing the two initial sets and 7 their union). In the case of subtraction, conventional
 symbolism is introduced in a similar way, after first illustrating the action of "taking away"
 using tangible objects. Today, these approaches are widely criticized in favour of approaches
 leaving pupils with much wider scope for initiative in constructing the symbols (the "bottom-up"
 approach to which we shall return later).
 The study developed in this article is set in the flourishing field of research linked with

 solving arithmetical problems (see Barrouillet & Camos, 2002; Fayol, 1990; Fuson, 1992;
 Verschaffel & De Corte, 1997; Verschaffel, Greer, & De Corte, 2000). Several research
 studies focus on exploring informal strategies for problem solving (essentially based on
 counting) developed by young children (Carpenter & Moser, 1982, 1984; De Corte &
 Verschaffel, 1985a; Dellarosa-Cummins, 1991; Riley, Greeno, & Heller, 1983). The results of
 these studies have shown that pupils had significant informal skills in this field: they develop a
 variety of strategies which, in general, model the actions or relationships described in the
 problems. Other researches (Bebout, 1990; Carey, 1991; Carpenter, Moser, & Bebout, 1988;
 De Corte & Verschaffel, 1985b; Fagnant, 2002a,b, 2005) take an interest in the abilities that
 pupils demonstrate in using mathematical symbolism. They evidence specific difficulties at
 the symbolization stage: children are not always capable of producing a correct number
 sentence when they are confronted with a problem, even if they have solved it correctly. In other
 words, these studies show that pupils experience difficulties in making connections between
 their informal approaches to problem solving and their use of mathematical symbolism.
 On the basis of the difficulties demonstrated by children, several authors (Bebout, 1990;

 Carpenter, Moser, & Bebout, 1988; Verschaffel & De Corte, 1997) have advocated early
 teaching of problems in order to give a variety of meanings to mathematical symbolism. These
 recommendations have not always been followed: why? For Resnick (quoted by De Corte,
 Greer, & Verschaffel, 1996), a persistent idea in educational thinking is that knowledge should
 be first acquired, and that applications for reasoning and problem solving should be delayed.
 As far as early experiences with learning mathematics are concerned, it can be noted that
 currently, the traditional "top-down" approach described at the beginning of this paper is still
 being applied in many classes in the French Community of Belgium: conventional symbols
 are introduced as representing the actions of "adding" and "taking away" and are illustrated by
 acting on manipulatives. Calculation techniques are thus widely developed and, too often, this
 is done outside any context of problem solving. Indeed, even if this approach to teaching is not
 officially dominant internationally, a significant number of teachers still think that mastery of
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 THE USE OF MATHEMATICAL SYMBOLISM IN PROBLEM SOLVING 357

 calculation techniques is a prerequisite for solving problems. In this context, how do children
 succeed in using the conventional symbolism that they have learned in this way?

 Problem solving at the beginning of primary school may be considered as an appropriate
 ground for a study of "the activity of symbolizing": do pupils succeed in making connections
 between problem situations put to them (or the informal counting approaches they develop to
 solve them) and the mathematical symbolism used in class to teach calculation techniques?

 The creation of links between problems and mathematical symbols is a complex process
 which cannot be reduced to a simple translation (Julo, 1995). This complexity has been
 demonstrated in a number of fields that we are not going to enumerate here (by way of very
 contrasting examples, see the work of Nunes, 1997, who took an interest in distinguishing the
 difficulties of transition between "oral and written arithmetic"; see also the work done by Julo,
 1995, and by Clément, 1982, quoted by Booth, 1984, in the field of expressing problems in
 terms of algebraic equations). Even if the difficulties associated with mathematical symbolism
 cannot be reduced to the use of conventional symbols to solve problems, it is interesting to
 analyze pupils' skills in this field. Indeed, even if the traditional approach they have received
 is immediately open to criticism, it should be noted that they have been widely confronted
 with conventional symbolism and it is consequently legitimate to ask questions about the use
 they may make of it. In this case, the ability to make links between problems and/or counting
 strategies developed to resolve them, provides an indication shedding a great deal of light on
 the issue.

 While recognizing the research results emphasized by various studies carried out
 previously in the field, we have opted for an original analysis in terms of "pupil profiles".
 Faced with a variety of problems, the aim is to see if pupils are capable of making adequate
 use of the conventional symbols they have learned in class in order to represent adding and
 subtracting operations.

 Method

 The study presented here is an empirical study focussing on 25 first graders, selected
 randomly from 6 classes from 4 schools in the French Community of Belgium. In their
 classical curriculum, these pupils have been subject to a traditional approach to teaching (a
 "top-down" type approach) as described at the beginning of this paper. They received no
 specific teaching in problem solving in grade one; problems are not therefore used to promote
 understanding of the basic operations (Verschaffel & De Corte, 1997).

 The methodology used consists of individual interviews based around the 14 problems as
 classified by Riley, Greeno, and Heller (1983): 2 combine type problems, 6 change type
 problems and 6 compare type problems (see appendix 1 for the list of problems). The data that
 interests us here was collected at the end of the school year; it enables us to take stock of what
 pupils had learned after a year in school. The approach was fairly similar to that developed by
 De Corte and Verschaffel (1985a,b): the interviewer reads the problem aloud, the child repeats
 the problem and tries to solve it using tangible materials (dolls and blocks). The child is then
 invited to write a number sentence corresponding to the problem and/or to the strategy
 developed to solve it ( "can-you write a number sentence corresponding to the story or to what
 you counted - with the blocks, out loud or in your head"). The interviewer then repeats the
 question to the child and the child must encapsulate the answer within the number sentence.
 Finally, the last stage of the interview aims to analyze to what extent the child is capable of
 demonstrating flexibility (Carey, 1991); he/she is then invited to produce one or more further
 number sentence(s) in line with the problem and/or the strategy developed. An immediate
 drawback of the interview technique does need to be pointed out: the task of producing a
 number sentence did not constitute a real challenge for the pupils and as a consequence, some
 of them were not able to fully comprehend the purpose of this stage of the approach. It should
 be noted however that the interviewer insisted that the children should write an initial number
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 sentence after having solved the problem and that they subsequently should suggest other
 comparable number sentences (flexibility).
 The solution was considered to be correct as soon as it gave the expected result. If the child

 made a counting error, the interviewer invited them to recount so as to avoid "technical errors".
 For number sentences, several criteria were taken into account: the number sentence

 should evidence a correct structure and be built on the three expected numbers (the two data
 items in the problem and the expected answer). In addition, the answer should be correctly
 identified within the number sentence. This means that some number sentences were

 considered as being correct even if they were in no way linked with the problem or the
 strategy for solving it (i.e., even if it was neither a question of a relational number sentence
 linked to the structure of the problems, nor a standard number sentence giving an answer
 following an equal sign). For example, the number sentence "5+7=12" was considered as a
 correct solution to change 2 problem (Peter had 12 cherries. Peter gave 7 cherries to Ann.
 How many cherries does Peter have now?), even if it had been solved by a clearly subtracting
 strategy (e.g., take 12 blocks, take away 7 blocks and count the ones left).

 Results

 This article focuses on the task of producing a number sentence: are children capable of
 using mathematical symbolism in problem solving situations? In another words, can they
 succeed in making connections between the conventional symbols they have learned in class and
 the problems presented to them (and/or the informal approaches developed to solve them)?

 Overall results

 Before taking a close look at the analysis by pupil profile that constitutes the heart of this
 paper, it is important to mention several general results that shed light on the rest of our paper
 (see Fagnant, 2002b, 2005, for more details).

 First of all, it is important to note the significant abilities shown by the young pupils
 concerning the development of informal approaches to finding solutions, while recalling that
 they have not yet been subject to explicit and intensive teaching in the area of problem solving.
 Most strategies are material or verbal and consist in modelling actions or relationships
 described in the problems. These results confirm the inventiveness of young children in this
 field, already extensively described in the 80s (see principally the works of Carpenter &
 Moser, 1982,1984 and De Corte & Verschaffel, 1985a).

 Concerning the links between these informal strategies and the production of number
 sentences, the first finding to be noted is that, for all the problems, the number of correct
 number sentences is always less important than the number of correct answers. This finding
 does not just translate into an overall trend: it is a reality that is met for each problem and for
 each child. Concretely, this means that no pupil succeeded in producing a correct number
 sentence if they had not first solved the problem correctly. The difference between the number
 of correct number sentences and correct answers indicates difficulties of symbolization which
 are distinguished here by an inability to make connections between informal problem solving
 approaches (or the problems thus solved) and the mathematical symbolism used in class for
 teaching calculation techniques.

 The links between problems, strategies and number sentences were analyzed in a much
 more precise manner than in terms of the numbers of correct answers and number sentences.
 Given the type of strategies developed by pupils (direct modelling of actions or relationships
 described in the problems), most of the number sentences produced enabled problems to be
 "matched" to strategies (it was a question of relational number sentences). Faced with certain
 problems, the children nevertheless suggested number sentences that "matched" neither the
 problem nor the strategy (it was a question of "additive reconstructions"). Let's take three
 contrasting cases to illustrate our thesis:
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 - In the problems corresponding to direct addition (e.g., Change 1 - Peter had 4 apples.
 Ann gave 9 apples to Peter. How many apples does Peter have now?), pupils in general
 develop addition strategies consisting of "counting all" or of "counting on" starting with
 one of the two numbers mentioned [e.g., 9=>10(1), 11(2), 12(3), 13(4=stop)=>/?=13].
 The correct number sentences produced are 4+9=(13) or 9+4=(13); relational number
 sentences that correspond both to the problem and the strategy for solving it (possibly
 by commutation).

 - In problems corresponding to indirect addition (e.g., Change 3 - Peter had 5 sweets. Ann
 gave several sweets to Peter. Now Peter has 11 sweets. How many sweets did Ann gave
 to Peter?), pupils almost exclusively develop indirect addition strategies consisting in
 "counting up" from 5 to 11 [e.g., 5=>6(1), 7(2), 8(3), 9(4), 10(5), ll=stop(6)=>/?=6]. The
 correct number sentences produced as a result are 5+(6)=l 1 or possibly (6)+5=l 1 by
 commutation; relational number sentences which, as in the previous example,
 correspond both to the problem and the strategy. No subtraction strategy (consisting in
 taking 5 away from 11) was observed and, in the same way, no pupil produced a
 correct number sentence of the standard type: 11-5={6).

 - In problems corresponding to direct subtraction (e.g., Change 2 - Peter had 12
 cherries. Peter gave 7 cherries to Ann. How many cherries does Peter have now?),
 pupils almost exclusively develop subtractive strategies consisting in taking 7 away
 from 12 and in counting what is left. Two types of number sentence are encountered in
 these circumstances: the number sentence 12-7=(5) (a relational number sentence that
 "matches" the problem and the strategy) and the number sentences 7+(5)=12 or
 (5)+7=12 (number sentences that don't "match" either the problem or the strategy -
 these are number sentences we have called "additive reconstructions"). Unlike to the
 relational number sentences suggested in the previous example (faced with a change 3
 problem), these number sentences pose a question insofar as present they don't a
 connection with either the problem or the strategy. The same type of analysis may be
 carried out for problems suggesting indirect subtraction: the subtracting number
 sentences a-c=(b) and a-(b)=c generally "match" the strategy (and also the problem in
 the second case) while "additive reconstructions" of the type c+(b)=a or (b)+c=a do
 not "match" either of them.

 This way of considering number sentences goes beyond the traditional dichotomy
 between relational and numerical - or standard - number sentences (De Corte & Verschaffel,
 1985b; Vergnaud, 1982); it permits clarification of the analysis by pupil profile which is
 presented here after.

 Analysis by pupil profile

 To carry out this analysis, interest was focused on the type of number sentence produced
 by each child when confronted with the various problems. Three types of situation were
 distinguished:

 - additive situations corresponding to relational adding number sentences (direct or
 indirect addition) or standard adding number sentences (indirect subtraction);

 - subtractive situations corresponding to relational and standard subtracting number
 sentences (direct or indirect subtraction);

 - indeterminate situations in the face of which relational number sentences is difficult to
 determine.

 The following table presents the various types of situation, the problems associated with
 them, as well as the various types of number sentences produced by the pupils.
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 Table 1

 The various types of situations and problems connected with them

 Types of situations Problems Number sentences
 situations involved produced by the pupils
 Additive situations Direct addition  Combine 1

 Change 1
 Compare 3

 a+b=? orb+a=?

 Indirect addition  Combine 2

 Change 3
 Compare 1
 Change 5

 a+?=b or ?+a=b

 Indirect subtraction  Change 6  a+b=? orb+a=?
 ?-a=b

 Subtractive situations  Direct subtraction  Change 2
 Compare 4

 a-b=?
 K-?=a or ?+b=a

 Indirect subtraction  Change 4  a-?=b, a-b=?
 b+?=a or ?+b=a

 Indeterminate situations  Compare 2

 Compare 5
 Compare 6

 a+?=b, ?+a=b

 b-a=?
 a+b=? orb+a=?

 An analysis of the types of number sentence produced in these different situations has
 permitted the determination of six clearly hierarchized pupil profiles, evidencing an ever
 widening use of symbolism: no correct number sentence (profile 0)=>an addition in only one
 additive situation (profile I)=>some additions in a variety of additive situations (profile
 n)=>some additions in additive and subtractive situations (profile III)=>some additions and
 subtractions in a variety of situations (profiles IV and V).

 Profile 0-No problem is correctly symbolized (3 pupils)

 Pupils in this profile did not suggest any correct number sentence; they demonstrated no
 adequate use of mathematical symbolism in problem solving situations. Two children were
 only able to solve 1 or 2 problems, leading to questions concerning their understanding, even
 uniformal, of adding and subtracting operations. The third child really constitutes an atypical
 case: he was able of solving 10 of the 14 problems correctly. The strategies developed are
 generally material strategies which consist in acting on the actions or relationships described
 in the problem (e.g., "counting everything" for change 1, "taking away" for change 2, "counting
 up from a to b" for change 3, etc.). One may really wonder why a pupil who shows such informal
 skills was not able of suggesting any correct number sentence, despite repeated requests from
 the interviewer. Should this be seen as a criticism of the insufficiently "challenging" nature of
 the task or is it a sign of fundamental difficulties, indicating a huge gap between the
 conventional symbolism used in class and the more "tangible" activities put forward here?

 Profile I-Addition is only used in a classical additive situation (direct addition) (2pupils)

 Both pupils in this profile were able to solve several problems (combine 1, change 1, change
 2, change 5, compare 1 for one of them and combine 1, change 1, 2, 3 and 4 and compare 2 for
 the other one) by developing counting strategies consisting in acting on the actions or relation
 ships described in the problem. However, they just suggested a single correct number sentence
 when faced with a situation involving direct addition: combine 1 for one pupil and change 1 for
 the other one. The capacities for symbolization demonstrated by these pupils make one think that
 for them, addition corresponds only to a single type of situation and covers a single meaning:
 "combine meaning" for one, and "change add to meaning" for the other (Fuson, 1992).
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 Profile II - Addition is used in a variety of additive situations (1 pupil)

 The pupil in this profile solved and symbolized five additive situations correctly: three
 involving direct addition (a+b=? faced with combine 1, change 1 and compare 3, linked with the
 various adding strategies), one involving indirect addition (a+?=b faced with compare 1, linked
 with a strategy of counting up from a to b) and one of the indirect subtraction type (a+b=? faced
 with change 6, linked with an adding strategy representing a degree of abstraction in relation to
 the problem - inversion of the action involved?). Addition is therefore used correctly in a variety
 of situations, and linked with the problem solving strategies. Alongside this relatively significant
 mastery of addition, the pupil shows much lower skills when faced with subtractive situations: he
 is not able to symbolize change 2 and 4 problems while he solved them correctly by material
 strategies of the take away type (direct or indirect), corresponding to modelling the problem.

 Profile III - Addition is used in a variety of addive situations and in subtractive situations
 ("additive reconstructions") (6pupils)

 As in profile n, the six pupils in this profile displayed good mastery of addition, which
 they used adequately in a variety of additive situations: they all solved and symbolized
 correctly the two "classical" additive situations involving direct addition (combine 1 and
 change 1, linked with an adding strategy) and several situations involving indirect addition
 (combine 2 and change 3 for five pupils and only combine 2 for the sixth - linked with
 strategies of counting up from a to b). Several pupils also solved and symbolized change 5
 and/or 6 correctly, as well as compare 1, 3 and/or 5 (using direct or indirect adding strategies -
 counting up from a to b - and using adding number sentences linked to these strategies: a+b=?
 or a+?=b, depending on the situation).

 The "new feature" of profile III in comparison with II is that a degree of "adaptability" of
 the adding (which we have called "additive reconstruction") allowed the children to suggest
 correct number sentences in subtractive situations (change 2 and 4 for four pupils and change
 4 alone for the two others). The strategies used for solving these problems are clearly
 subtracting: mainly material strategies of the direct take away type for change 2 (take away 7
 blocks from a pile of 12, then count what is left) and indirect taking away for change 4 (take
 some blocks away from the pile of 11 so that 7 of them remain, then count the ones that have
 been taken away). "Additive reconstructions" of the type b+?=a or ?+b=a "match" the
 configuration of the blocks that the pupils have in front of them after having solved the problem,
 but they do not correspond either to the strategies for solving the problems, or to the
 problems themselves.

 Profile IV - Addition is used in a variety of situations and subtraction is used correctly at least
 once (4 pupils)

 The particular nature of this profile in comparison with the preceding ones is that there is
 at least one correct number sentence using the minus sign; there is, therefore, the correct use
 of two conventional symbols which constitutes an advance for this profile in comparison with
 the preceding one. As with profile HI, a suitable use of addition can be noted in additive situatio
 ns, linked with the problem solving strategies developed: a+b=? faced with problems involv
 ing direct addition (combine 1 and change 1, as well as compare 3 for some); a+?=b for prob
 lems involving indirect addition (combine 2, change 3 and 5, as well, possibly, as compare 1);
 a+b=? faced with change 6 for one pupil. The new feature in comparison with the preceding
 profile is that one or more subtractive situations are symbolized by subtraction linked to the
 problems and to the strategies for solving them: a-b=? for change 2 (and possibly compare 4 -
 linked with a direct take away type strategy) and a-?=b or a-b=? for change 4 (linked with a
 direct or indirect take away type strategy). Several difficulties remain however with pupils in
 this profile because some problems were solved correctly and were not symbolized or badly
 symbolized (it is a specific question of combine or change type problems because errors
 concerning the more complex compare type problems still occur in profile V): change 4 for
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 one pupil, change 6 for two pupils and combine 1 and change 5 for the last one. It is not easy
 to explain these difficulties: why were pupils not able to link a number sentence with their
 problem solving strategy while they were able to do so when faced with other problems that
 were sometimes more complex? These difficulties indicate a certain form of instability in the
 use of symbols; this is what distinguishes pupils in this profile from those in the next profile.

 Profile V-Addition and subtraction are used adequately - All the problems correctly solved are
 correctly symbolized (5 pupils)

 The particular feature of profile V is that all the combine and change type problems are
 symbolized correctly. Some problems of the compare type may be also correctly symbolized
 but not necessarily all of them (some difficulties occur here when pupils are faced with these
 particularly complex problems - Lewis & Mayer, 1987; Stern, 1993). Four pupils in this
 profile always suggest number sentences linked with the problem solving strategies and with
 the problems: a+b=? for combine 1 and change 1 (+ possibly compare 3, linked with adding
 strategies); a+?=b or ?+b=c for combine 2, change 3 and 5 (+ possibly compare 1, 2 and 5,
 linked with indirect adding strategies involving counting up from a to b); a-b=? for change 2
 (and possibly compare 4, linked with direct take away strategies) and a-?=b for change 4
 (linked with direct or indirect take away strategies). The change 6 problem itself produces two
 types of correct number sentence: a+b=? linked with adding strategies and ?-a=b linked with
 the story and strategies of the hypothetical test type.
 The fifth pupil displays similar skills concerning adding, but he demonstrates an

 "ambiguous" use of subtraction which, curiously, he only uses when faced with the compare 2
 problem, preferring "additive reconstructions" when faced with change 2 and 4, and compare
 4. All the problems are, nevertheless, symbolized correctly, which means that he is allocated
 to this profile.
 The pupils in this profile can be considered as proving good use of mathematical

 symbolism in problem solving. They succeeded in creating a number of connections between
 conventional symbols and the problems and therefore, in using mathematical symbolism in
 situations where various meanings are encountered (Fuson, 1992).

 Particular cases

 Four pupils constitute particular cases and do not come within any of the profiles: the
 simplest additive situations (direct addition - change 1 and combine 1) are not symbolized
 correctly, while one or several more complex situations are (compare 1 for one pupil, change
 4 for two pupils and combine 2 and change 5 for the last). These results are difficult to
 explain: on the one hand, instability in the use of symbols is doubtless the sign of very
 imperfect mastery of their use; on the other hand, the lack of "challenge" in the task perhaps
 also contributed to destabilizing some pupils.

 A difficult use of subtraction...

 The 12 pupils in profiles 0,1, II and III (as well as the 4 that are unclassified, that is 16
 pupils out of a total of 25) did not suggest any single correct number sentence using the sign.
 The difficulties relating to the use of this sign are clearly demonstrated thanks to the last stage of
 the interviews having to do with pupils' capacity for flexibility (Carey, 1991). When the child
 suggested an "additive reconstruction" when faced with a subtractive situation [for example
 7+(5)=12 when faced with a change 2 problem], we asked him to produce another number
 sentence, closer to the problem and/or the strategy developed to solve it (almost always a
 subtracting strategy: take a pile of 12 blocks, take away 7 blocks from this pile and count the
 blocks left). Some children were able to develop the commutative property of the addition
 [here, (5)+7=12], but none of them who had produced an "additive reconstruction" was able to
 demonstrate sufficient flexibility to produce the corresponding subtracting number sentence
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 [here, 12-7=(5)]. These pupils seemed, therefore, to experience real difficulties in using the
 minus sign in problem solving situations (put another way, to make connections between this
 symbol and a problem or problem solving strategy).

 Conclusion and discussion

 The empirical study described in this article was carried out within the French Community
 of Belgium, in grade 1 classes subject to a traditional teaching approach of the "top-down" style
 as described at the beginning of this paper. The aim was to see how pupils succeeded in using
 conventional symbolism learned in this way. As we have shown at the beginning of this paper,
 the problems associated with mathematical symbolism cannot be reduced to the use of
 conventional symbols when faced with problems. Linking a number sentence to a problem is
 not simply an act of translation; the ability to make connections between symbols learned in
 class and problem solving strategies developed when faced with a variety of problems
 constitutes an indication that enables light to be shed on pupils' understanding of conventional
 symbols and on the use they can make of them. We have tried to shed this light by focusing on
 an analysis "by pupil profile". If this analysis provides evidence of hierarchization regarding the
 abilities demonstrated by the children at the level of the use of symbols, it should be pointed out
 that the low number of children interviewed (as a reminder: 25) does not allow the results to be
 generalized. Additional studies would be necessary to refine these profiles and attest to their
 relevance. The aim was not to create a model, but to provide some "original" analysis of the
 abilities and difficulties demonstrated by the children.

 The results observed may be briefly summarized as follows: the 9 pupils in profiles IV and
 V demonstrate relatively accurate use of conventional symbols (mainly children in profile V); as
 far as the other 16 pupils are concerned, making connections with problems and/or strategies
 proves to be clearly more problematic. For 9 pupils (the 5 in profiles 0 and I, but also including
 the 4 that are unclassifiable), even the use of addition proves problematic; for the other 7
 (profiles II and HI), adding symbols are used adequately but subtraction is never suggested.

 The overall results are therefore somewhat mitigated and show the limits of the
 traditional approach to which the children questioned had been subject.

 In the past, a number of studies (for an overall view, see Barrouillet & Camos, 2002;
 Fayol, 1990; Fuson, 1992; Verschaffel & De Corte, 1997) had already shown the informal
 skills of young pupils in problem solving before receiving any formal teaching. Our results
 confirm this finding. As some have already advocated (see in particular Bebout, 1990;
 Carpenter, Moser, & Bebout, 1988; Verschaffel & De Corte, 1997), it would be appropriate to
 rely on the informal skills thus demonstrated in order to build learning and therefore, to
 develop an earlier approach to problem solving with a view giving a variety of meanings to
 the symbols.

 But would developing problem solving to help children make connections be enough?
 Wouldn't there be a risk of continuing to develop a "top-down" approach in which pupils are
 told how to link the conventional symbols (the meaning of which has been predefined) to the
 informal strategies they develop? Would it not be better to leave them more room to build the
 symbols as well? From this perspective, several authors currently advocate the so-called
 "bottom-up" approach, as opposed to the traditional "top-down" type approach (Gravemeijer
 et al., 2000). In the "bottom-up" approaches, Gravemeijer (1997) states that learners'
 knowledge and informal strategies should constitute the starting point for more formal
 mathematical learning; a significantly greater share in the initiative is thus granted to the
 pupils. Problem solving in which pupils are able to develop personal and meaningful
 approaches constitutes the starting point favoured by these approaches. From this perspective,
 "the challenge is to support individual students ' transition to forms of mathematical activity in
 which the use of conventional symbols carries the significance of acting on experientially real
 mathematical entities" (Gravemeijer et al., 2000, p. 226). It's in this "bottom-up" perspective
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 that you can put the "inventive" approaches such as those developed by Bednarz, Dufour
 Janvier, Poirier, and Bacon (1993): "Instead of presenting symbolizations as external
 representation of preexisting mathematical relationships, they argued that symbolizations
 should come to the fore as tools constructed by the students themselves... The starting point
 should be communicative situations in which students symbolize their mathematical
 understanding" (Gravemeijer et al., 2000, p. 232). The study by Bednarz et al. (1993) was
 carried out among first grade pupils, based on a situation involving passengers getting on and
 off a bus. The children had to invent symbolization allowing them to keep track of the
 movements in the bus, in such a way as to be able to communicate them to the other students.
 The results of the study showed that the pupils succeeded in inventing a variety of
 symbolizations, combining conventional symbols with which they were familiar with different
 stylized representations of the bus. This type of approach seems promising but some questions
 remain unanswered, in particular the question of how conventional ways of symbolizing might
 eventually emerge (Gravemeijer et al., 2000, p. 232-233).
 It is also in the "bottom-up" perspective that the Realistic Mathematics Education theory

 is situated (see the various works by the Gravemeijer team) for which one of the key concepts
 relating to the problematic nature of symbolization that is our concern, is the emergence of
 meanings shared by the learner's community (taken-as-shared meanings) that emerge when
 learners and teacher negotiate the different interpretations and solutions possible when faced
 with a problem. Here, the transition towards conventional symbols is envisaged through a
 learning trajectory which is thought through in advance; the teacher may play a proactive role
 that might involve introducing ways of symbolizing that fit with students ' activity (Gravemeijer
 et al., 2000, p. 248).
 These various innovative approaches give a completely different status to symbolization:

 "the metaphors of 'transmission ' of knowledge with help of symbols that functions as 'carriers
 of meaning' are replaced by the image of students constructing their own way of symbolizing
 as part of their mathematical activity " (Gravemeijer, Lehrer, van Oers, & Verschaffel, 2002,
 p. 1). If these approaches seem promising, the jury is still out on the question of knowing how
 to bring such change into classroom practice...

 Appendix 1

 The 14 types of problem suggested

 Combine 1 Peter has 4 apples. Ann has 9 apples. How many apples do Peter and Ann have together?
 Combine 2 Peter has 5 sweets. Ann also has some sweets. Together Peter and Ann have 11 sweets. How many

 sweets does Ann have?

 Peter had 4 apples. Ann gave 9 apples to Peter. How many apples does Peter have now?
 Peter had 12 cherries. Peter gave 7 cherries to Ann. How many cherries does Peter have now?
 Peter had 5 sweets. Ann gave several sweets to Peter. Now Peter has 11 sweets. How many sweets did
 Ann give to Peter?
 Peter had 11 lollipops. Peter gave several lollipops to Ann. Now Peter has 7 lollipops. How many
 lollipops did Peter give to Ann?
 Peter had several books. Ann gave 6 books to Peter. Now Peter has 11 books. How many books did
 Peter have to start with?

 Peter had several pencils. Peter gave 5 pencils to Ann. Now Peter has 9 pencils. How many pencils
 did Peter have to start with?

 Peter has 5 sweets. Ann has 11 sweets. How many more sweets does Arm have than Peter?

 Peter has 7 lollipops. Ann has 11 sweets. How many less lollipops does Peter have than Ann?
 Peter has 4 apples. Ann has 9 apples more than Peter. How many apples does Ann have?
 Peter has 12 cherries. Ann has 7 cherries less than Peter. How many cherries does Ann have?

 Ann has 11 books. Ann has 6 more books than Peter. How many books does Peter have?
 Ann has 9 pencils. Ann has 5 pencils less than Peter. How many pencils does Peter have?
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 Cet article relate une étude empirique centrée sur l'utilisation du
 symbolisme mathématique en résolution de problèmes. Vingt-cinq
 élèves ont été interviewés individuellement en fin de première année
 primaire; ils ont chacun été amenés à résoudre et à symboliser
 14 problèmes différents. Dans leur curriculum classique, ces élèves
 ont reçu un enseignement traditionnel basé sur une approche de type
 "top-down" (approche encore couramment développée en
 Communauté française de Belgique): les symboles conventionnels sont
 proposés d'emblée aux élèves à qui on explique ce qu'ils représentent
 et comment ils doivent les utiliser. L'enseignement se focalise alors sur
 les techniques de calculs (considérées comme un pré requis à la
 résolution de problèmes). Les résultats présentés ici montrent les
 capacités (et difficultés) démontrées par les élèves pour créer des
 connexions entre le symbolisme conventionnel enseigné en classe et les
 démarches informelles qu 'ils développent face aux problèmes qui leur
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 sont proposés. Les limites de l'approche "top-down" sont alors
 discutées en opposition avec des approches plus novatrices de type
 "bottom-up", telles que celles développées par les tenants de la
 Realistic Mathematics Education notamment.
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