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Abstract

In this paper, we study the derived functors of projective limit functors in
quasi-abelian categories. First, we show that if £ is a quasi-abelian category
with exact products, projective limit functors are right derivable and their
derived functors are computable using a generalization of a construction of
Roos. Next, we study index restriction and extension functors and link them
trough the symbolic Hom -functor. If J : 7 — 7 is a functor between small
categories and if F is a projective system indexed by Z, this allows us to give
a condition for the derived projective limits of £ and E o J to be isomorphic.
Note that this condition holds, if 7 and J are filtering and J is cofinal.
Using the preceding results, we establish that the n-th left cohomological
functor of the derived projective limit of a projective system indexed by 7
vanishes for n > k, if the cofinality of Z is strictly lower than the k-th infinite
cardinal number. Finally, we consider the limits of pro-objects of a quasi-
abelian category. From our study, it follows, in particular, that the derived
projective limit of a filtering projective system depends only on the associated

pro-object.
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0 Introduction

It is well-known that the projective limit of a short exact sequence of projective
systems of abelian groups is not always an exact sequence. This phenomenon often
explains the problems one meets in the globalization of local results in algebra or
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analysis. To understand this loss of exactness, it is natural to study the derived
functors of the projective limit functor. This was done in the sixties by various
authors ([3, 4, 6, 8], etc.) and led to a rather good understanding of the homological
algebra of projective limits in abelian categories. However, for various applications
to algebraic analysis, it would be very useful to extend these results to non-abelian
categories such as the category of topological abelian groups or the category of
locally convex topological vector spaces. This is what we do in this paper in the
more general framework of quasi-abelian categories.

We start with a summary of the facts about the homological algebra of quasi-
abelian categories which are needed in the other sections (see [9] and [7] for more
detailed expositions). This should help the reader which has a good knowledge
of the language of homological algebra and derived categories in the abelian case
(as exposed e.g. in [5]) to understand the rest of the paper. First, we recall the
conditions a category £ has to satisfy to be quasi-abelian. Next, we explain briefly
the construction of the derived category D(£) and we give the main results about
the two canonical t-structures on D(€) and their corresponding hearts LH(E) and
RH(E). We end this section by recalling how to derive an additive functor between
two quasi-abelian categories.

Section 2 is devoted to the study of the category of projective systems in a quasi-
abelian category £. We show first that they form a quasi-abelian category. Then,
using projective systems of product type, we prove that this category has enough
injective objects when £ itself has enough injective objects. We conclude by defining
the index restriction and extension functors.

In Section 3, we explain how to derive the projective limit functor

lim : E S ¢

i€T
where £ is a quasi-abelian category and Z a small category. First, we consider the
easy case where £ has enough injective objects. Next, we treat the case where &
has exact products. In this case, we show that the derived projective limit of a
projective system of &£ is isomorphic to its Roos complex. Moreover, if J : J — T
is a functor between two small categories and FE is a projective system of £ indexed
by Z, we show how to compute the canonical morphism

Rlim B(i) — Rlim E(J(5))

1€ JjET

by means of Roos complexes. By duality, we get corresponding results for the
inductive limits. At the end of this section, we establish commutation formulas for
derived limits and the derived Hom functor.
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In Section 4, we recall a few properties of symbolic-Hom functors and show how
to derive them. Then, we prove that derived projective limits may be computed
using suitable derived symbolic-Hom functors. This allows us to give a condition
for the canonical morphism

Rlim B(i) — R lim B(J(j))
i€l JjeT
to be an isomorphism.

In the first part of Section 5, using the preceding result, we show that if a functor
J : J — T between small filtering categories is cofinal, then

Rlim E(i) ~ Rlim E(J(5))
i€l jeJ

in DT(E). In the second part, we establish that, if the cofinality of the small filtering
category 7 is strictly lower than the k-th infinite cardinal number,

LH"(Rlim E(i)) =0 Vn>k
€T
for any projective system E of £ indexed by Z.

Section 6 is devoted to a review of the results about pro-objects we need in
Section 7. We refer the reader to [2] for details. In the first three parts of this section,
we recall basic results about pro-objects, representable functors and representation
of diagrams of pro-objects. In the last part, we show that the category of pro-
objects of an arbitrary category has filtering projective limits and we establish some
properties of these limits.

In Section 7, we prove that the category of pro-objects of a quasi-abelian category
is also quasi-abelian and has exact products. Next, we introduce the functor

L:Pro&) — &

and we establish that if the category £ is quasi-abelian and has exact products, then
the functor L is right derivable and

RLo “lim” E(i) ~ Rlim F(7)
— —
i€ i€
for any filtering projective system E indexed by Z. This shows in particular that
the derived projective limit of a filtering projective system depends only on the
associated pro-object.
Note that the theory developed in this paper may be applied to the category
of topological abelian groups or the category of locally convex topological vector
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spaces since these categories are quasi-abelian and have exact products. In these
cases, more specific results may be obtained. Work in this direction is in progress
and will appear elsewhere.

To conclude this introduction, I want to thank J.-P. Schneiders for the useful
discussions we had during the preparation of this paper.

1 Quasi-abelian homological algebra

1.1 Quasi-abelian categories
To avoid confusions, let us first recall a few basic definitions.

Definition 1.1.1. Let A be an additive category and let f : A — B be a morphism
of A.

(i) A kernel of f is the data of a pair (ker f,7) where ker f € Ob(A) and i €
Hom ,(ker f, A) are such that foi = 0 and for any g € Hom ,(C, A) verifying
fog =0, there is a unique g" € Hom ,(C, ker f) making the diagram

kerf%ALB

PN

C

commutative.

(ii) A cokernel of f is the data of a pair (coker f, q) where coker f € Ob(.A) and
q € Hom 4(B, coker f) are such that go f = 0 and for any g € Hom , (B, C') verifying
go f =0, there is a unique ¢’ € Hom ,(coker f, C') making the diagram

ALBLmokerf

DS

C

commutative.

One can check that i : ker f — A is monomorphic and that ¢ : B — coker f
is epimorphic. Moreover, two kernels (resp. two cokernels) of f are canonically
isomorphic.

(iii) If the morphism i : ker f — A has a cokernel, it is called the coimage of f
and denoted by coim f.

(iv) If the morphism ¢ : B — coker f has a kernel, it is called the image of f
and denoted by im f.
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Remark 1.1.2. There is a canonical morphism
coim f — im f.
As a matter of fact, since coim f is the cokernel of i : ker f — A, there is a unique

morphism f’ : coim f — B making the diagram

kerf%ALmoimf
\lf/
0 7
B

commutative. We have go f'oq¢’ = go f = 0. The morphism ¢’ being epimorphic, it
follows that go f/ = 0. Since im f is the kernel of ¢ : B — coker f, there is a unique
morphism coim f — im f making the diagram

-/

imf———DB T coker f

K
\\ Tf//
\\ 0

coim f

commutative.

Definition 1.1.3. A category & is quasi-abelian if
(i) it is additive,
(ii) any morphism has a kernel and a cokernel,

(iii) in a cartesian square
x -ty

T

X/ 7} Y/
f is a strict epimorphism, then f’ is a strict epimorphism,

(iv) in a cocartesian square

x Ly

| ]

f is a strict monomorphism, then f’ is a strict monomorphism.
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1.2 Derivation of a quasi-abelian category

In this section, £ will be a quasi-abelian category. We denote by C(&) the category
of complexes of £ and by K (&) the category defined by

Ob(K(€)) = Ob(C(€))

and
Hom ;¢ (X", Y") = Hom ¢ (X", V") /HU(X, V")

where
Ht(X,Y')={f : X — Y : f is homotopic to zero}.

Recall that K (€) has a canonical structure of triangulated category.
Definition 1.2.1. A sequence
AL BSC
of € such that v owu = 0 is strictly exact if u is strict and if the canonical morphism

imu — kerwv

is isomorphic.

Remark 1.2.2. Note that a sequence
EFE—F—G

of £ such that
Hom (X, F) — Hom (X, F') — Hom (X, G)

is exact for any X € Ob(E) is strictly exact.

Definition 1.2.3. (i) A complex X of £ is strictly exact in degree k if the se-
quence

Xk—l dk-1 Xk d_k)Xk—i—l
is strictly exact.

(ii) A complez of £ is strictly exact if it is strictly exact in every degree.

(iii) We denote by N(&) the full subcategory of K (&) whose objects are the strictly
exact complexes of £.
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(iv) A morphism f": X* — Y of K (&) is called a strict quasi-isomorphism if there
is a distinguished triangle

X =Y =7 — X[1]
of K(€) such that Z* € Ob(N(£)).

Proposition 1.2.4. The subcategory N'(E) of K (&) is a null system, i.e. it verifies
the following conditions:

(i) 0 € N(&),
(ii) X € N(€) if and only if X [1] € N (&),
(iii) if
X =Y =7 — X[1]
is a distinguished triangle of K(E) where X', Y € Ob(N(E)), then Z €
Ob(N(€)).

Definition 1.2.5. The derived category of £ denoted by D(E) is the localization of
the triangulated category K (&) by N(E). Then,

D(&)=K(&)/N(E).
Remark 1.2.6. Note that as in the abelian case, a strictly exact sequence
0—-X =Y —2 —0
of C(€) gives rise to a distinguished triangle
X =Y —- 7 — X'[1]
of D(E).

1.3 t-structure and heart of the derived category

First, let us recall some usual results about t-structures on a triangulated category.

Definition 1.3.1. Let 7 be a triangulated category and let 7<% and 72° be two
strictly full subcategories of 7. We set

T=" =T —n] and T=" =T —n].

Then, the pairs (7=°,72%) forms a t-structure on 7 if it verifies the following
conditions:
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(i) TS C T<0 and T © T2,
(i) Hom,(X,Y) = 0if X € Ob(T<°) and Y € Ob(T2),
(iii) for any X € Ob(7T), there is a distinguished triangle
Xo — X — X7 — Xol[1]
such that X € Ob(7=) and X; € Ob(7=1).

The heart of the t-structure (T=°,7=Y), denoted by H, is the full subcategory of
T defined by
H=TNT>

Theorem 1.3.2. The heart of any t-structure is an abelian category.

Proposition 1.3.3. Let (7=°,72%) be a t-structure on a triangulated category T .
(i) There is a functor
ey g

such that
Hom ;. (X, 75"(Y)) ~ Hom (X, Y)

for any X € Ob(7=") and any Y € Ob(7T). In the same way, there is a functor
2T — T="

such that
Hom -, (TZ”(X), Y) ~ Hom (X,Y)

for any X € Ob(7) and Y € Ob(7="). These functors 7=" and 72" are the
truncation functors associated to the t-structure (7=°,7=0).
(ii) For any n € Z, the functor

H": T —H

defined by
H"(X) = (=" o 72"(X))[n]

is a cohomological functor, i.e. any distinguished triangle
X =Y —7— X[1]

of T gives rise to the long exact sequence

H'(X)——H"(Y)—— H"(Z) ﬂ

L H" "N X)) —— H"TNY) —— H"Y(2)
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Definition 1.3.4. Let &£ be a quasi-abelian category. We denote by
D=Y(&) (resp. D=°(&))

the full subcategory of D(E) whose objects are the complexes which are strictly
exact in degree k > 0 (resp. k < 0).

Proposition 1.3.5. Let £ be a quasi-abelian category. The pair (D=°, D=%) forms
a t-structure on D(E). We call it the left t-structure of D(E).

Remark 1.3.6. The heart of the left t-structure is denoted by
LH(E) = D=°(&) N DZ°(&).

We call it the left heart of D(E). Of course, the objects of LH(E) are the complexes
which are strictly exact in every degree but zero.
The cohomological functors are denoted by

LH* : D(&) — LH(E).

Proposition 1.3.7. Let £ be a quasi-abelian category. Let X' be an object of
D(€). The truncation functors are given by

T=M(X):ie = X" — kerd” — 0
where ker d" is in degree n and
72M(X) 0 — coimd" ' — X" — X" ..
where X™ is in degree n. Hence, the cohomological functors are given by
LH"(X'):0 — coimd"" — kerd" — 0

where ker d" is in degree 0.

Proposition 1.3.8. Let £ be a quasi-abelian category. The functor
I:&— LH(E)
which associates to any object E of £ the complex
0—EFE—0

where F is in degree 0 is fully faithful.
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Remark 1.3.9. Let X be an object of LH(E). By an abuse of notations, we will
write

X e
if X" is isomorphic to I(E) for some object F of £.

Proposition 1.3.10. Let £ be a quasi-abelian category:.
(a) Any object of LH(E) is isomorphic to a complex

0—A55B—0

where B is in degree 0 and w is a monomorphism. Moreover, such an object is in
the essential image of I if and only if u is strict.
(b) A sequence
F—F—G

of £ is strictly exact if and only if the sequence
I(E) — I(F) — I(G)

of LH(E) is exact.

Corollary 1.3.11. Let £ be a quasi-abelian category and let X' be an object of
D(E). Then,

(i) LH*(X") =0 <= X' is strictly exact in degree k,
(i) LH*(X') € & <= d ! is strict.

Remark 1.3.12. Replacing the notion of strictly exact sequence by the notion of
costrictly exact sequence, we may define a second t-structure on D(E). We call it
the right t-structure and its associated heart (the right heart) is denoted by RH(E).
1.4 Derivation of functors between quasi-abelian categories

In this section, F': £ — £’ will denote a functor between quasi-abelian categories.

Definition 1.4.1. Let
Q:K+(5) —>D+(5) and Q’:K+(5') —>D+(5')

be the canonical functors. A right derived functor of F'is the data of a pair (7, s)
where

T:D*(&) — D ()
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is a functor of triangulated categories and
s:Q oKYNF)—ToQ
is a morphism of functors such that for any pair (7”,¢) where
T': DY(&) — DT (&)
t:Q o KT(F)— T oQ,
there is a unique morphism « : T" — T” of functors making the diagram

Q' o KT (F)

t
s

TOQTT/OQ

(a9}

commutative.
Definition 1.4.2. A full subcategory I of £ is F-injective if
(i) for any E € Ob(E), there is a strict monomorphism E — I where I € Ob(Z),

(i) 0 - Y — F — E” — 0 is a strictly exact sequence of £ such that F’,
E € Ob(Z), then

(a) E” € Ob(Z),
(b) 0 — F(E') — F(F) — F(E") — 0 is strictly exact.

Proposition 1.4.3. If7 is an F-injective subcategory of £, then for any object X
of C* (&), there is a strict quasi-isomorphism

u X — T

such that, for any k, I* € Ob(Z) and u* : X* — I* is a strict monomorphism.
We call I' an F-injective resolution of X".

Proposition 1.4.4. If £ has an F-injective subcategory I, the functor
F:&—=¢&
is right derivable and its derived functor
RF : DT (&) — D (&)

is given by
RF(X')=F(I)

where I is an F-injective resolution of X .
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Definition 1.4.5. (i) An object I of £ is injective if for any strict monomorphism
u: E — F and any morphism v : £ — I, there is a morphism ¢’ : F' — [ making
the diagram

AF

i’/

(ii) The category &€ has enough injective objects if for any object E of £, there is

commutative.

a strict monomorphism E — [ with [ injective.

Proposition 1.4.6. If £ has enough injective objects, then the full subcategory T
of €& formed by the injective objects is F-injective for any functor F : £ — &'.
In particular, any functor F : € — &' is right derivable.

Now, let us explain how to derive a bifunctor.

Proposition 1.4.7. Let
F(,):ExE =&

be a bifunctor between quasi-abelian categories. Assume that there are full subcat-
egories T and J of € and &' respectively such that

(i) for any J € Ob(J), T is F (-, J)-injective,
(ii) for any I € Ob(Z), J is F(I,-)-injective.
Then, the functor F(-,-) is right derivable and its derived functor
RF : DY (&) x DT (&) — D*(&")

is given by
RF(X',Y') = sF(I', J")
where I' (resp. J') is an injective resolution of X' (resp. Y') and sF(I',J") is the

simple complex associated to the double complex F(I',J").

Remark 1.4.8. Dually, it is possible to derive functors on the left by considering
F-projective subcategories.
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2 Projective systems in quasi-abelian categories

2.1 Categories of projective systems

Definition 2.1.1. Let C be a category and let 7 be a small category. We denote
by CT*" the category of functors from Z° to C. The objects of C*" will be called
projective systems of C indexed by T.

Proposition 2.1.2. Let Z be a small category. Assume & is a quasi-abelian cate-
gory. Then, ET™ is a quasi-abelian category.

Proof. We know that the category £Z”is additive.

Consider a morphism f : E — F of £, The kernel of f is given by an object
K of £ and a morphism u : K — E of £ such that for any i € Z, the object
K (i) of £ and the morphism u(i) : K(i) — E(i) form a kernel of f(i). The cokernel
of f is defined similarly. It follows that a morphism f : B — F of & is strict if
and only if f(i) : E(i) — F(7) is strict in &€ for any i € 7.

Consider a cartesian square

1/ -

of £ is cartesian and since f(7) is a strict epimorphism, f’(7) is a strict epimorphism.
It follows that f’ is a strict epimorphism of £X™.
Using the same kind of arguments, in a cocartesian square

E/;)F/

]

of £ if f is a strict monomorphism, then f’ is also a strict monomorphism. ]
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2.2 Projective systems of product and coproduct type

Remark 2.2.1. Hereafter, by an abuse of notations, we will denote by the same
symbol a set and its associated discrete category.

Definition 2.2.2. Let Z be a small category and let £ be an additive category with
products. We define the functor

I: £0°0) — 77

in the following way. At the level of objects, for any functor S : Ob(Z) — &£ we
define the functor
[(s) : Z°* — &

by setting
1(s)(i) = 1 s6)
j=i
for any ¢ € Z. Let ¢ be an object of Z. For any morphism « : j — ¢ of Z, we denote
by
p e, TI(S)(0) — S())

the canonical projection. Then, if f :4i — ¢ is a morphism of Z, we define
I(S)(f) - T(S)(i) — TI(S)(i")

by setting
’ H S — /
j/iﬁ/ © ( )(f> pj/ foa i
for any morphism o' : j/ — 7',
At the level of morphisms, for any morphism s : S — S of £0°@) we define

(s) : TI(S) — TI(S")
by setting
P, e, o l(s)(i) = s(j) op, o,
for any object ¢ of Z and any morphism « : j — ¢ of Z.

Definition 2.2.3. Let Z be a small category and let £ be an additive category with
coproducts. Applying the preceding definition to Z°° and £°P, we get a functor

(E9P)OPE™) _, (gopy@™)”.

Through the canonical isomorphism

(CP)P™) = (CP)P,
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this gives us a functor
I1: £°P@ —, g7,

Note that

(s)() = [ s6).

Definition 2.2.4. Let Z be a small category and let £ be an additive category with
products (resp. with coproducts). A projective system

E:I° = €&
is of product type (resp. of coproduct type) if there is an object S of £OP®) such that
E ~TI(S) (resp. E ~1I(S))
in &7
Definition 2.2.5. Let Z be a small category and let £ be an arbitrary category.

We define the functor
0: & — gD

by
OE)i)=E@l) Viel
for any object E of EI. If f : E — E' is a morphism of £Z*”, we define
O(f): O(E) — O(FE)

by setting

One checks easily that we have:

Proposition 2.2.6. Let 7 be a small category and let £ be an additive category
with products (resp. with coproducts). For any object S of £9°®) and any object
E of E¥", we have

Hom o) (O(E), S) ~ Hom gzep (E, TI(S))
(resp. Hom cop(z) (S, O(E)) =~ Hom ¢zon (II(.S), E)).

Proposition 2.2.7. Let 7 be a small category and let £ be an additive category
with products (resp. with coproducts). For any object S of E°*®) we have the
isomorphism

fim 11(5)(3) = [T 810

i€l =vA

(resp. lim I1(S) (i) =~ [Ts6).

i€l ieT
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Proof. This follows directly from the definition of the projective and the inductive
limits. ]
2.3 Injective and projective objects

Proposition 2.3.1. Let T be a small category and let £ be a quasi-abelian category
with products. If S is an injective object of E°°®) | then I1(S) is an injective object
of ET".

£Ob(T

Proof. Let S be an injective object of ). Consider a strict monomorphism

f:E—FE
of 7. Since for any i € Z, f(i) : E(i) — E'(i) is a strict monomorphism and since
S(7) is injective in &, the sequence

Hom , (E'(i), S(1)) """, Hom .(E(), S(i)) — 0

is exact. It follows that the sequence

. Hom(0(f),8)
Homgob(l') (O(E ), S) _— HomgOb(I) (O(E)’ S) —_— O

is exact. By Proposition 2.2.6, the sequence

, Hom (f,I1(S))
Hom gzop (£, TI(S)) ————— Hom gzo0 (E, II(S)) — 0

is also exact and the conclusion follows. ]

Proposition 2.3.2. Let I be a small category and let £ be a quasi-abelian category
with products (resp. with coproducts). For any object E of EX”" | there is a strict
monomorphism (resp. strict epimorphism)

f+E—1I(O(E))  (resp. g : L(O(E)) — E)
of 7.
Proof. Let E be an object of £, We define the morphism
[ 1B —T(0(E))

by setting
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for any object 7 of Z and any morphism « : j — ¢ of Z. Since for any object ¢ of Z,
we have

P © f(i) is a strict monomorphism. Consequently, for any i € Z, f(i) is a strict

monomorphism of £ and f is a strict monomorphism of 7. O

Proposition 2.3.3. Let Z be a small category and let £ be a quasi-abelian category
with products. If £ has enough injective objects then the category X" has enough
injective objects.

Proof. Let E be an object of £2”. We know that there is a strict monomorphism
f:E—T(O(F))

of £ . Moreover, since £ has enough injective objects, for any i € Z, there is a
strict monomorphism

s(i): E(1) — I(1)
of £, where (i) is an injective object of £. These morphisms define a morphism
s:O(E) — 1
of £O°X) where I is an injective object of £@). Now, consider the morphism
I(s)o f: E—II(1)

of ™. Since the product of strict monomorphisms is a strict monomorphism, for
any ¢ € Z, II(s)(¢) is a strict monomorphism of £. Consequently, II(s) is a strict
monomorphism of £ and II(s) o f is a strict monomorphism of X"

Finally, by Proposition 2.3.1, the object II(I) is injective in €. And the
conclusion follows. m

Dually, we have:

Proposition 2.3.4. Let 7 be a small category and let £ be a quasi-abelian category
with coproducts. If & has enough projective objects, then the category £ has
enough projective objects.
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2.4 Index restriction and extension
To fix the notations, let us recall a few definitions of the theory of categories.

Definition 2.4.1. Let F : A — C and G : B — C be two functors between
arbitrary categories. We denote by

FlG
the category whose objects are the triples

(a, f,b)

where a is an object of A, b is an object of B and f : F'(a) — G(b) is a morphism
of C. If (a, f,b) and (d’, f', ') are two objects of F' | G, a morphism

(u,0) : (a, f,b) — (', f, V)

of F'' | G is the data of a morphism u : a — a’ of A and a morphism v : b — V' of B

such that the diagram

Fla)——G(b)

| oo

1S commutative.

Remark 2.4.2. Let 1 denote the category with one object.

(i) If the functor F' : 1 — C associates to the object of 1, the object i of C, the
category F' | G will simply be denoted 7 | G.

If, moreover, G = id¢, then the category ¢ | G will be denoted 7 | C.

(ii) Similarly, if the functor G : 1 — C associates to the object of 1, the object i
of C, the category F' | G will be denoted F' | i.

Moreover, if F' = id¢, then the category F' | ¢ will be denoted C | 7.

Proposition 2.4.3. Let 7 be an arbitrary category. For any object i of Z,
(id;, 7) (resp. (1,id;))

is an initial object (resp. a terminal object) of i | T (resp. Z | i).
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Definition 2.4.4. Let J : J — 7 be a functor between two arbitrary categories
and let ¢ be an object of 7.
(i) We define the functor

JiilJ—J
by setting
J(f3) =1
for any object (f,7) of i | J and by setting
J(B) =P

for any morphism g : (f,j) — (f',4") of ¢ | J.
(ii) We may define the functor

i Jli—TJ

in the same way.

Proposition 2.4.5. Let J : J — T be a functor between arbitrary categories and
let o : 7" — i be a morphism of T.
(i) There is a functor
JY i J—id | J

such that
J" o J% = Ji

(ii) There is a functor
Jo:J i — T

such that
Ji o Ja = Ji/.

Proof. The functor

JY i J—id | J
defined by

JUS5) = (foa,)
for any object (f,7) of i | J and by

Ju) =u

for any morphism u : (f1,j1) — (f2,J2) of i | J, solves the problem.
The functor J, is defined similarly. O
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Remark 2.4.6. If J = ids then the functors
J4 o J;, JY and  J,
will be denoted respectively by
T:i|T—T, T |i—1T,
I°:i |7 —1i | T and Io:ZT|i —1T]1.

Definition 2.4.7. Let C be an arbitrary category and let J : J — Z be a functor
between two small categories. We define the functor

JtCT eI
by setting
JHC) = C o JoP
for any object C of CT™. If f : C — (" is a morphism of C*™, we define
JH(f) : JH(C) — JH(C)

by setting

for any j € J.

Definition 2.4.8. Let C be a cocomplete category and let J : J — Z be a functor
between two small categories. We define the functor

I 7" T

in the following way. At the level of objects, for any functor G : J°° — C, we define
the functor
J(G): I = C

by setting
J(G)i) = lim (GoJP)(f,j)= lim G(j)
(fg)€ilJ (fg)€ilJ

for any i € Z. Let i be an object of Z. For any object (f,j) of i | J, denote by
M GU) = JH(G))
the canonical morphism. Then, if « : 4" — 7 is a morphism of Z, we define

Ji(G)(a): lim G(j) — lm G(j)
(f9)€iLs (f.3") €L
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by setting
J(G) (@) © {5y = T{fony)

for any object (f,7) of i | J.
At the level of morphisms, for any morphism ¢ : G — G’ of C7*", we define

J1(9) + J1(G) — JL(G)
by setting
J(g)(i) o T3 = T(f) © 9(j)
for any object i of Z and any object (f,j) of i | J.
One can check easily that we have:

Proposition 2.4.9. Let C be a cocomplete category and let J : J — 1 be a functor
between small categories. For any object C' of C**" and any object G of C7™, we
have

Hom 700 (J4(G), C) ~ Hom . 00 (G, J*(C)).

3 Derivation of the projective limit functor

3.1 The case where £ has enough injective objects

Proposition 3.1.1. Let Z be a small category and let £ be a quasi-abelian category
with products. If £ has enough injective objects, then the functor

. op

lim: & — €
am

icT

is right derivable.

Proof. This follows directly from Proposition 2.3.3. ]

Dually, we have:

Proposition 3.1.2. LetZ be a small category and let £ be a quasi-abelian category
with coproducts. If £ has enough projective objects, then the functor

lim: &7 — &
H
icT

is left derivable.
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3.2 Roos complexes

In this section, Z will denote a small category and £ a quasi-abelian category with
products.

Definition 3.2.1. We define the functor
R(Z,): € — (&)
in the following way. At the level of objects, for any functor £ : Z°° — &£, we define

R(Z,E) € C*(&)

by setting
RYZ,E)=0 Vn < 0
and
R(Z,E)= ][] EG) vnx0,
ioi> i}i"
where
o ~% .. 2

is a chain of morphisms of Z. Denoting by

P o, . :R'I,E)— Elio)

g in

the canonical projection, we define the differential

?%’(I,E) ' RY(Z,F) — RHH(L E)

by setting
mn
g1 o d%p. = F(aj)o g1
pio—%1 O Int1 R(Z.E) ( ) pi1—>a2 N Int1

+ Z(_l)lp ajg ajyq00g Qpt1
=1

0 -1 1141 Tn41

_I_ (_1)n+1p @l an

At the level of morphisms, for any morphism f : £ — E’ of 2", we define
R(Z,f):R(Z,F)— R(Z,F)
by setting
P, en, ORYTLf) = flio)op, o an,

QT n )
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Notation 3.2.2. Let E be an object of 2. For any i € Z, we denote by

gi : lim B(i) — E(i)

1€T
the canonical morphism.

Proposition 3.2.3. For any object E of ¥, there is a canonical isomorphism

€'(Z,E) : lim E(i) = ker dy. 7 g

€T

which induces a canonical morphism

€(Z,B) : lim B(i) — R (T, E).

€T

Proof. We define the morphism

& (T,F): lim (i) — RNT,E) =[] E®)

€T €T

by setting
bi o EO(L E)=gq

for any i € Z. Since dy, ; ) 0 €*(Z, E) = 0, €*(Z, E) induces a morphism

€(Z,E):lim B(i) — R (L. E)

€T

of C*(£). Tt follows directly from the definitions that (lim £(i), e’(Z, E)) is a kernel
i€T
of dy. 7.y O

Definition 3.2.4. Let J : 7 — 7 be a functor between small categories. We define
the morphism of functors

R(J):R(Z,") — R(T,J())
by setting

p IS5 Bn © Rn(‘]7 E) = p J(B1) J(Bn) vn > O

Jo—= = —jn J(Go)—— - ———J(jn) o

for any object E of ET".
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Definition 3.2.5. We define the functor
R(): €T = CHE™)
in the following way. At the level of objects, for any functor E : T° — &£, we define
R(E) € CH(&X)

by setting

R(E)(i) = R(T |i,Z](E))
for any i € Z. If a : i/ — i is a morphism of Z, we define

R(E)(a): R (T | i, T7(B)) — R (T | {,T;(E))

by setting

R(E)(a) = R (1., I (E))

and using the fact that ZF o Z;" = (Z;, 0 Z,)" = Z,;. For any n > 0, we define the
differential
%-(E) P RY(E) — Rn+1(E)
by setting
R (m) (1) = dp, (Ui, I} (E))
for any object ¢ of Z.
At the level of morphisms, if f: F — E’ is a morphism of functors, we define

R(f): R(E)— R(FE)
by setting
R(f)(i) = R(T | i, Z](f))
for any object ¢ of Z.

Remark 3.2.6. Let us notice that to give a chain of morphisms

(i()?f()) ﬂ) T ﬂ) (vafn)
of Z | 7 is equivalent to give a chain of morphisms of Z of the form

ay f

Qo= - iy =
It follows that for any n > 0 and any ¢ € 7

rEi) = [ Bl

.91 an . .
g~ 0 T2ip 71
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and that for any morphism « : i — i of 7

R"(E)(a) : 1T E(ig) — 1T E (i)

.ol an . . ay « f!
L e P ) ig—> i il

is defined by

p ay an ! o Rn(E)(Oé> =p ay an . aofl -

g iy =i e

For any n > 0, the differential

bt B(E) — RTH(E)

is given by
n .
il f (e) d . 1) = E Q1) O a 41 f
piO C’l} ax in-‘rl >0 R (E)( ) ( ) pil 2> E in+1 4

n
l
+ Z<_1) D oq  ergproe ant1 . f
= dg—> - i1 g1 o Ing1—0

n+1
+ (_1) p aq an foap 41 .

g - iy i
for any ¢ € Z. Finally, for any morphism f : & — E’ of £
R(f): R(E) — R(E)
is given by

P, e, ony, o, 0 RN =fli)op, o w4,

fg— -+ — iy —i
for any n > 0 and any ¢ € Z.

Lemma 3.2.7. If the category I has a terminal object i, then for any object E
of E" | there is a canonical homotopy equivalence

E(ie) — R(Z,FE)
Proof. For any n > 0, define
h": R"(I,E) — R"Y(I,E)
by setting h® = 0 and

n __ n
io—>a1 —>an_1 Tn—1 oh" = (_1) p ag Op—1 Yioo,in—1 nz 1

p

20 in—1 oo
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where «;_;, , is the unique morphism of Hom ,(i,_1,i). Define the canonical
morphism

f°: E(is) — RYZ,E)

by setting
Ppi © fo = E<Oéioo7i)'
Since d?, o fO =0, fY induces a canonical morphism
R (T,E)

[ Eli) — R(Z,E).
We will also consider the morphism

g :R(Z,E)— E(ic)

defined by setting

7o if k> 1.

Clearly,
gof =id.
Moreover, f' o g is homotopic to the identity map since we have

h'o d(])%.(LE) = id—f0 og0

and
Ay o B+ W' o diy (1 gy = 1dpnz.) -

Proposition 3.2.8. For any object E of ¥, there is an isomorphism
€(E): E= R(E)
in DT(ETT).

Proof. Let i be an object of Z. Since (i,id;) is a terminal object of Z | i, by
Lemma 3.2.7

f (i) : THE)(i,idi) = E(i) = R(Z |4, (E)) = R (E)(i)

in K*(&), where
@) - E(i) — RU(E)(i) = ] E(io)

i9g—1
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is defined by
P, 2, ° i) = E(a).
So, for any ¢ € Z, we define

e(E)(i) : B(i) — R'(E)(i)
by setting
(E)(i) = f°(0).
Since dj. ) 0 €’(E) = 0, €’(E) induces a morphism
€(E): E— R(E)
of CT(ET™). By construction, for any i € Z, we have the isomorphism
€ (E)(i): E(i) = R (E)(i)

in DT(E). It follows that
€(E): E = R(E)

in DT(EX™). ]

Lemma 3.2.9. For any object E of E¥" and any n > 0, there is an object S"(E)
of £O°@) such that
R"(E) ~TI(S™(E)).

Proof. One checks easily that the functor
S"(E):0Ob(Z) — &

defined by

for any i,, € Z solves the problem. O
Proposition 3.2.10. For any object E of £, there is an isomorphism

lim 1 (E)(i)) = R'(T, E)

€T

of C*(&).
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Proof. This follows from the chain of isomorphisms

lim R"(E)(i) = lim T(S™(E)) (i)

<—
€T €T
~ ] 5"(E)(in)
in€ZL
~ H E(Zo)
in€L 1 an

2
—
5

3.3 The case where £ has exact products

In this section, Z will denote a small category and £ a quasi-abelian category with
products.

Definition 3.3.1. An object E of £ is a Roos-acyclic projective system if the
co-augmented complex

0 — lim E(i) — R*(Z,E) — R'(Z,E) — - --
1€T

is strictly exact. In other words, E is Roos-acyclic if and only if
LH"(R(Z,E))=0
for any k > 0.

Proposition 3.3.2. For any object S of E°°®) | there is a canonical homotopy
equivalence

[150) — r(z,11(5)).

jezT
In particular, 11(S) is a Roos-acyclic projective system.
Proof. For any n > 0, define
h™ . R™(Z,11(S)) — R" *(Z,11(S))
by setting h’ = 0 and

n
P s OP o ana Oh'=p i Op 5 w1
J—0 g T ip—1 J—J j—>ig—> - ——ip_1
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for n > 1. Define the canonical morphism

W T]86G) — RY(Z,1(S))

JET
by setting
p s opiou’ =p;.

J—>t0

. 0 0 . 0 . . .
Since dj, sy °ouw =0, u induces a canonical morphism

w: [[S0G) — R(Z,11(S)).

A

We will also consider the morphism
o’ RY(TII(S)) — [ SG)

defined by setting

and the induced morphism

Clearly,
vou =id.

Moreover, u o v* is homotopic to the identity map since we have

h! OdR(IH (S)) = id —u® o 0"

and
m—1 n n+1 m :
A (Z,11(5)) ° h" + "o dp-(zn(s)) = Mdrn(zm(s))

forn > 1.
Proposition 3.3.3. Assume £ has exact products. Then, the functor

. op

lim: & — &€
%

icT

is right derivable.
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Proof. Tt is sufficient to show that the family
F ={E € Ob(EX") : E is Roos-acyclic}
is lim-injective.
ieT
(i) Let E be an object of £2™. By Proposition 2.3.2, there is a strict monomor-

phism
E — TI(O(F))

and by the preceding proposition, II(O(E)) belongs to F.
(ii) Consider a strictly exact sequence

0—-F —F—FE"—0
of £ where E' and E belong to F. Since € has exact products, the sequence
0—R(Z,F)— R(Z,E)— R(Z,E")—0
is strictly exact and gives rise to the long exact sequence

0——LH"(R(Z,E")) ——LH"(R(Z,E))—— LH°(R(Z,E")) j

Q LHYR(TZ,E))—— LH" (R(Z,E))—— LH'(R(Z,E")) j

- LHR(Z,E') — LH*(R(Z,E)) — LH*(R (Z,E"))
Since E' and E are objects of F,
LH*R(Z,E"))=LH*(R(Z,E))=0  Vk>0.

It follows that

LHYR(Z,E") =0 Vk>0
and that E” belongs to F.

Moreover, by Proposition 3.2.3, for any object E of £,
LH°(R (Z,E)) ~ lim E(i)
€T
and the preceding long exact sequence shows that the sequence
0 — lim £'(i) — lim E(i) — lim £"(i) — 0
i€T i€T i€T

1s exact. ]
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Proposition 3.3.4. Assume £ has exact products. Then, for any object E of E¥°",
we have a canonical isomorphism
Rlim E(i) ~ R (Z, E).
i€T

Proof. By Proposition 3.2.8 and Lemma 3.2.9, R (F) is a Roos-acyclic resolution of
E. Then,
Rlim E(i) ~ lim R (E)(i) ~ R(Z, E)
i€T i€T
where the last isomorphism follows from Proposition 3.2.10. ]

3.4 Derived projective limit functor and index restriction

In this section, £ will denote a quasi-abelian category with products and J : J — 7
a functor between small categories.

Definition 3.4.1. We define the morphism of functors
p(J,) JHR()) — R(I7())
by setting

op"(J,E)(j) = .
pjoﬁ%” ﬁ)jni)j P ( )(4) pJ(jo) JB) . I(Bn) ) J(9) )

for any object E of ", any j € J and any n > 0.
Proposition 3.4.2. The canonical morphism of functors
¢s() : lim — lim o/
€T JeT
characterized by the fact that
9 °4.(E) = 115
for any object E of E¥" and any j € J induces a canonical morphism

Rlim — RlimoJ™.
o= o
i€l jeT

Moreover, if £ has exact products, the diagram

Rlim E(i) —= R (Z, E)

el
l lR' (J,E)

Rlim J*(E)(j) —— R(J, J*(E))
JjeTJ

is commutative for any object E of EX°".



Derived Limits in Quasi-Abelian Categories 33

Proof. By a well-known procedure of homological algebra, the canonical morphism

induces a canonical morphism

Rlim — RlimoRJ™.

S —
1€ JjET

Since the functor J% is exact, we get the canonical morphism
Rlim — RlimoJ™.
= —
i€l JjeT

Assuming &£ has exact products, we may visualize the construction of this morphism
in the following way. Consider an object E of £, We know that

€(E): E = R(E)
is a lim-acyclic resolution of E. The functor J * being exact, we have the isomor-
i€T
phism
TH(e(B) : JH(E) = JT(R(E))

in DT(E7™). Since
€(JN(E)) : JN(E) = R(J(E))

is a lim-acyclic resolution of J*(E),
€J
JE

€(JH(E)) o (JH (e ()" - JHR(E)) = R (J*(E))

is a lim-acyclic resolution of J*(R'(£)). Moreover, the diagram
JjeJ

r (J,E)

TH(R(E))
J*(e'(E))RT
TH(E)

R(J*(E))

e (JT(B)

of D*(E7°") being commutative, we have
€(JH(E) o (JHe () =p(J.E).
Hence, the canonical morphism

Rlim E(i) — Rlim J*(E)(j)
i€l JjeJ
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is given by the commutative diagram

RImE({) - ===~~~ ===~ =~ +Rlim J*(E)(j)
i€l JeT

. . . . + . . . +
lim B (E)(2) — iy M S (BE)G) 1y ) B B (7 (E)) ()
el JjeT jeg JjeT

Since a direct computation shows that the diagram

lim ()1 Mn%ﬁmw)m bn%www
| b
R(Z,E) R 0B R(T,J(E))

is commutative, the conclusion follows.

3.5 Dual results for the inductive limit functor

In this section Z will denote a small category and £ a quasi-abelian category with

coproducts.

By duality, the results and constructions in the preceding sections can be easily

adapted to derive the functor
lim : &7 — &.
—
€T

We will not do this explicitly here. However, in the rest of this paper, we will need

to work with the derived functor of
lim : EF° — &.
—
icT

To avoid confusions, we will fix below the notations used in this case.
The functor
R(Z,"): & Cc™ (&)

is defined by
Rn(T, E) = (R*(Z°7, E°?))*P

and the differential is given by

R.(I,E) __ -
dyt ) = (A ron pony) ™
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If f: E — E'is a morphism of £, then
Ru(Z, f) = (R"(Z°, f°°))".
As in Proposition 3.2.3, there is a canonical isomorphism
eo(Z, F) : coker dé{'(I’E) = lim E(7).
The functor
R(): " — C=(EF)

is defined by
R(E) = (R (E*))*

and the differential is given by

d? ®) = (d%-_(lEop) )Op'

If f: E — E'is a morphism of £, then
R(f) = (R(f)).
As in Proposition 3.2.8, there is a canonical isomorphism
e.(E): R(FE) > FE
in D~ (EF"). For any n > 0, there is an object S,(E) of £°*@) such that
R, (E) ~1I(S,(E)).
Moreover, there is a canonical isomorphism

R(Z,E) = ll)nR(E)(z)
€T
in C—(&).
Therefore, as in Propositions 3.3.3 and 3.3.4, if £ has exact coproducts, the
functor
lim : E ¢
€T

is left derivable and we have
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If J:J — 1 is afunctor between small categories, then we define the morphism

of functors
p(J) : R(J() — JT(R())

by setting
p-(J, E) = (p (J, E°P))°P.

For any n > 0, we define the morphism
pn(J, E) 2 T (Ra(J7(E))) — R(E)
of T as the image of p,(J, E) by the adjunction
Hom , yor (R (J7(E)), J* (Ra(E))) = Hom gzon (J1 (Ro(J*(E))), Ru(E))
The morphisms p,(J, F) induce a morphism of functors

P(J) 2 T(R(TH() — R().

3.6 Relations between RHom and derived limits

Definition 3.6.1. Let Z be a small category and let £ be a quasi-abelian category.
Consider an object X of £. We define the functor

Hom (X, ) : & — A
in the following way: at the level of objects, if Y is an object of EX", we set
Hom (X,Y)(i) = Hom (X, Y (4))
for any object ¢ of Z. If @ : j — 4 is a morphism of Z,
Hom (X, Y)(a) : Hom ¢(X, Y (i) — Hom (X, Y (7))
is defined by
Hom (X, Y)(a)(f) = Hom (X, Y ())(f) = Y(a) o f
for any f € Hom(X,Y (4)).
At the level of morphisms, if F': Y — Y” is a morphism of £Z°",
Hom (X, F) : Hom (X,Y) — Hom (X, Y")
is defined by
Hom (X, F')(i) = Hom (X, F'(7))

for any ¢ € 7.
Dually, we define also the functor

Hom (-, X) : (EF77)°P — Ab”.
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Lemma 3.6.2. Let 7 be a small category and let £ be a quasi-abelian category.

(i) For any object X of €& and any object E of E¥™, we have
Hom (X, R(Z,FE)) ~ R (Z,Hom (X, E)).
(ii) For any object X of £ and any object E of E™ | we have
Hom (R.(Z,FE),X) ~ R (Z°°,Hom (£, X)).

Proof. This follows directly from the definitions. O

Proposition 3.6.3. Let Z be a small category and let £ be a quasi-abelian category
with enough injective objects. For any object X of £ and any object E of E¥°", we

have
RHom (LHLQE(Z'),X) ~ R@(RHom (E,X))(7)
i€ i€T
and

RHom (X, Rlim B(i)) ~ R lim(RHom (X, E))(i).

i€ i€l

Proof. First, recall that since £ has enough injective objects, coproducts are exact.
Hence, the inductive limit functor is left derivable. Let

0—1"—T1'— ...

be an injective resolution of X. On one hand, RHom (Llim £(7), X) is given by the
i€Z
simple complex associated to

0 — Hom (R.(Z, E), ") — Hom (R.(Z, E), I') — ---
This complex is isomorphic to the simple complex associated to
0 — R (Z°°,Hom (E,I°)) — R (Z°,Hom (E,I")) — - --
On the other hand, RHom (F, X) is given by the complex
0 — Hom (E, I°) — Hom (E, I') — ---

Therefore, Rlim(RHom (£, X))(i) is isomorphic to the simple complex associated

i€
to

0 — Rlim Hom (£, I°)(i) — Rlim Hom (E, I')(i) — - -

i€l i€
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Since for any [ > 0
R%Hom (E, 1Y (i) ~ R (Z°,Hom (E, '),
the first isomorphism is established.
Next, we know that F has an injective resolution of the form
0 — I(S°%) — II(S*) — ---
of T such that for [ > 0, S' is an injective object of £2°@). On one hand, since

Hom (X, T1(S")) ~ ITHom (X, S)

and since projective systems of product type are lim-acyclic, by composition of the
i€l
derived functors, we have

R@(RHom (X, E))(i) ~ R(lin Hom (X, E)(1)).

€T 1€l

Hence, R lim(RHom (X, F))(4) is isomorphic to the complex
€T

0 — lim Hom (X, T1(S%)) (i) — lim Hom (X, 11(S"))(i) — ---

1€l i€l
Moreover, for any [ > 0, we get

lim Fom (X, TI(S")) (i) ~ Hom (X, lim I1(S")(i))

€T €L

~ Hom (X, [T §'(¢)).

€T
Hence, R lim(RHom (X, F))(i) is given by the complex
€T
0 — Hom ¢(X, [[ $°(i)) — Hom (X, ] S*(i)) — - -
i€l i€l

On the other hand, Rlim E(i) is given by the complex
1€

0— @H(SO)@) — @H(sl)(i) e

€L 1€T
This complex is isomorphic to the complex

0—J[s°G) —[]s"G) — -

1€T 1€T
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Since the product of injective objects is an injective object, the last complex is an

injective resolution of Rlim £(i). Therefore, RHom (X, Rlim £(i)) is isomorphic to
i€T i€T
the complex

0 — Hom ¢(X, [[ $°(i)) — Hom (X, ] S*(i)) — - -
i€T i€T
and the conclusion follows. ]

Proposition 3.6.4. Let T be a small category and let £ be a quasi-abelian category
with exact products. Consider an object E of E¥". If for any object X of &,
Hom (X, F) is lim-acyclic, then E is lim-acyclic.

i€T i€T

Proof. Consider X € Ob(E). We know that

R@Hom (X, E)(i) ~ R(Z,Hom (X, E)) ~ Hom (X, R (Z, E)).

€T

Since Hom (X, E) is lim-acyclic, we have
i€T

Hom (X, R (Z, E)) ~ lim Hom (X, F)(7)

m
e
~ Hom (X,@E(z))
e

Therefore, the complex Hom (X, R (Z, E)) is exact in degree k # 0 for any X €
Ob(€). Hence, Remark 1.2.2 shows that R (Z, E) is strictly exact in degree k # 0.
It follows that
R(Z, E) = lim E(i)
i€T
in D*(&). Since Rlim E(i) ~ R(Z, E), we get
i€T
Rlim £(i) ~ lim £(q).
i€T i€T

4 Derived limits and the symbolic-Hom functor

4.1 The symbolic-Hom functor

In this section, Z will denote a small category and £ a complete additive category.
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Definition 4.1.1. We denote by
oz s (ABT)P x €77 s €

the symbolic-Hom functor. For any object M of Ab*™" and any object E of EX™,
the object [M, E]z of £ is characterized by

Hom ¢(X, [M, E|7) ~ Hom jyze0 (M, hx 0 E)  ¥X € Ob(E).
If 7 is the one point category, then [-, -]z will be denoted by
[,]: AP x E = E.

In this case, for any abelian group M and any object E of £, the object [M, E] of £
is characterized by

Hom (X, [M, E]) ~ Hom 4, (M, Hom (X, E)) VX € Ob(€).
Let us recall the following easy formulas:
Proposition 4.1.2. (i) For any object E of £, we have
Z,E] ~ E.
(i) For any object M of Ab and any object E of £, we have

liny M(i), E] ~ lim[M (i), E].

1€T 1€T

(iii) For any abelian group M and any object E of EX”" | we have

M, l%lE(i)] ~ ;%1[1\4, E@)).

4.2 Derivation of the symbolic-Hom functor
In this section, Z will denote a small category.

Lemma 4.2.1. Let £ be a quasi-abelian category with exact products. If P is a
projective abelian group, then the functor

[P:]:&E— €&

1s exact.
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Proof. First, let us prove the result when P is a free abelian group, i.e.,

pP=7" = @Z.

iel
Consider a strictly exact sequence

0—EF —-EFE—FE"—0

of £. Since for any object E of &,
zD, E) ~ [z, E|~ [[ E
iel iel
and since products are exact, the sequence

0— [zD E) — 2" E] — 2D, E"] — 0

is exact. Next, consider a projective abelian group P. We know that there is an

exact sequence
0 — kerq —zZH L p —0.

Since P is projective, this sequence splits and we have
[Z(I)> ] = [(kGYQ) D P> ] = [kerQ> ] ¥ [p> ]
The functor [Z(), -] being exact, the functor [P, ] is also exact. O

Lemma 4.2.2. Let £ be a complete additive category.
(i) For any object S of Ab°") and any object E of ™" ,we have

[11(S), E]z = [S, O(E)lowm = [ [[SG), E@)).
ieT
(i) For any object M of Ab*™ and any object S of E°P@) | we have
[M,1L(S)]z = [0(M), Slonn = [ [M(), 56)].
ieT
Proof. (i) Let X be an object of £. First, we have

Hom g (X, [II(S), E]z) ~ Hom yze0 (I(S), hx 0 E)
~ HomAbOb(z) (S,0(hx o E)) (*)
~ Hom 4 o0nz) (S, hx 0 O(E))
~ Hom ¢ (X, [S, O(E)]on)),
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where the isomorphism (*) follows from Proposition 2.2.6. Next, we get

Hom ¢ (X, [S, O(&)]onz)) ~ Hom 4 onm) (S, hx o O(E))
~ HHomAb(S(i),Homg(X,E(z')))

~ HHomg(X, [S(@), E(4)])
~ Hom (X, | |[S(¢), E(i)])

(ii) Let X be an object of £. On one hand, we have successively

Hom (X, [M,11(S)]z) ~ Hom yyzor (M, hix o 11(5))
~ Hom 4700 (M, II(hx 0 S))
~ Hom 4,0n)(O(M), hx o S)
~ Hom (X, [O(M), Slob(z))-

On the other hand, we get

HomS(X7 [O(M>7 S]Ob(I)) = HomAbOb(I) (O(M)7 hx o S)
~ H Hom (M (i), Hom ; (X, S(i)))

~ HHomg(X, [M (i), S(2)])
~ Hom (X, | |[M(3), S(7)])

[

Lemma 4.2.3. Let £ be a quasi-abelian category with exact products. If P is a
projective object of Ab%, then the functor

[Pz : 77 — ¢
is exact.

Proof. First, let us prove the result when P = II(S) where S is a projective object
of AbP*®) . Consider a strictly exact sequence

0—-F —FE—FE —0
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of £, Since for any i € Z, S(i) is projective, by Lemma 4.2.1, the functor
[S(),]: € =&
is exact. Moreover, since for any object £ of £,

[1(S), Elz ~ [ [15(), EG)

€T
and since products are exact, the sequence
0 — [H(S), £z — [L(S), E]z — [(S), E"]z — 0

is exact. Next, consider a projective object P of Ab*"". We know that there is an
epimorphism

q:1(S)— P
where S is a projective object of AP Since P is projective, the exact sequence
0 —kerqg —I1I(S) 5 P —0
splits and we have
[1I(S), ]z ~ [(kerq) ® P, -]z ~ [kerq, -]z ® [P, ]1.
The functor [I1(S), -]z being exact, the functor [P, |7 is also exact. O

Proposition 4.2.4. Let £ be a quasi-abelian category with exact products. The
functor

[ ]z (APE)P x £ = &
has a right derived functor
R[]z 0 (D7(AV™))™ x DF(EX") — D*(€).
Proof. Let us show that if P is the full subcategory of projective objects of Ab™,
then the pair (P, EX™) is [+, -]z-acyclic.
First, consider an object P of P. Since the functor

[P7 ']I : EIOP — &

is exact, the category £X”" is [P, -]z-injective.
Next, consider an object E of Ob(EX™) and let us show that P is [-, F|z-
projective.
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(i) For any object M of AbT™, there is a projective object P of AbT™ and an
epimorphism P — M.
(ii) If
0—-P —-P—P —0

is an exact sequence of AT, where P and P” are two objects of P, then we know
that P’ is an object of P.
(i) If
0—-P —-P—P —0

is an exact sequence of P, then it splits. It follows that the sequence
0— [P”,E]I — [P,E]I — [p/,E]I — 0

of £ splits and that it is exact.
Since the functor [+, -|7 is left exact, the conclusion follows from Proposition 1.4.7.
]

4.3 Links with the derived projective limit functor

Lemma 4.3.1. LetZ be a small category and let £ be a complete additive category.
If
ZI . IOp — .Ab

is the constant functor which associates to any i € T the abelian group Z, then for
any object E of £, we have

Proof. For any object X of £, we have

Homg(X, [ZI, E]I) ~ HOII]AbIop (ZI, hX o) E)
~ lim(hy o E)(i)
i€T
~ lim Hom (X, E(i))
i€T
~ Hom . (X, lim E(i)).

€T

[

Proposition 4.3.2. Let Z be a small category and let £ be a quasi-abelian category

with exact products. For any object M of A¥*”" and any object S of £O°@) | we have

R [M7 H(S>]I ~ R [O(M>7 S]Ob(I) :
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Proof. We know that there is a projective resolution P. of M in Ab*" such that for
any n > 0
P, =11(S,)

where S, is a projective object of AP, Then, we have
R[M II(S)]; ~ [P, 11(S)]z ~ [O(P), S]ob)

where the second isomorphism follows from Lemma 4.2.2. Since for any n > 0 and
any ¢ € Z, we have

O(Pa)(i) = Puli) = 11(S,) (1) = T Sa(s)

O(P,) is projective in Ab°P@). The functor
0: & — 0@
being exact, O(P.) is a projective resolution of O(M). It follows that

R[O(M):S]ob(z) ~ [O(P), Slob()
~ R[M,II(S)];.

[

Corollary 4.3.3. Let 7 be a small category and let £ be a quasi-abelian category

EOPD)  we have

with exact products. For any object S of
R [Zz,11(S)]; ~ [Z1,11(S)]z.
Proof. The object O(Zz) of AbOP®) is projective since for any i € Z,
O(Zz)(i) = Z1(i) = Z.
It follows that

R[22, T1(5)]; =~ R[O(Zz), Slop )

~ [O(Z1), Sob(z)
~ [Zz,11(S)]z

where the last isomorphism follows from Lemma 4.2.2. O
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Proposition 4.3.4. Let T be a small category and let £ be a quasi-abelian category
with exact products. Then, the functor

. op
lim: X" — &
icT

is right derivable and for any object E of E¥°", we have

Rlim E(i) ~ R [Zz, B,

1€
Proof. First, let us remark that, since the functor
[ ]z (APE7)P x £ — &
is left exact, we have
R [ZI, E]I ~ [ZI, E]I
for an object E of £X™, if and only if
LH*R[Z7,E]; ~0  Vk>0.
Next, let us show that the family
F ={F € Ob(¥") : R [Zz, E|; ~ [Zz, E]7}
is lim-injective.
=
(i) Let E be an object of £2™. By Proposition 2.3.2, there is a strict monomor-

phism
E — TI(O(F))

and by Corollary 4.3.3, II(O(E)) belongs to F.
(i) Consider a strictly exact sequence

0—EF —FE—FE"—0

of £ where E’ and E belong to F. This sequence gives rise to the long exact
sequence

0—— [ZIa E/]I —* [ZL E]I —* [ZL EN]I ﬁ

Q LH'R|[Zz,E'); — LH'R[Zz, E|; — LH'R [Z1, E");, 1

Q LH’R[Zz,E'|; — LH*R [Zz, E]; —— LH°R [Z1, E");,
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of CT(€). Since E' and E are objects of F,
LH*R[Zz,F); = LH*R[Z7,E]; =0 Yk >0
and it follows that
LH*R[Z7,E"]; =0 Yk >0.
Hence, E” belongs to F.
Moreover, by Lemma 4.3.1, for any object E of 2", we have
[ZI7 E]I = LLHE(/L%
i€T
so the preceding long exact sequence shows that the sequence
0 — lim £'(i) — lim £(i) — lim E"(i) — 0
i€T i€T i€T

is exact. Consequently, F is lim-injective and the functor
i€T

lim: 7" — &

—

i€T
is right derivable.

It follows from Proposition 2.3.2 that any object £ of £X°" has a resolution I" by

projective systems of product type. Assume that for any n, I" is of the form

I" ~TI(S™).
Then, for any n > 0, we have
R[Zz, I"]7 ~ R [Zg,11(5")];
~ [21,11(S")]z
~ [ZI, In]I
It follows that
R [ZI, I]I ~ [ZI, I]I
Therefore, we get
Rlim £(i) ~ lim ['(7)
i€ i€
= [ZI7 I]I
~ R [Zz,I'];
~ R[Zz, E];

where the first isomorphism follows from the first part of the proof and the second
from Lemma 4.3.1. O
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Proposition 4.3.5. Let 7 be a small category and let £ be a quasi-abelian cat-
egory with exact products. Then, for any object E of £, we have a canonical
isomorphism

R (I, E) ~ [R(ZI), E]I

in C*(&) making the diagram

Rlim E()) — = R[Zz, El;
€T ‘
! )
4 J

commutative.

Proof. For any object E of Ab*™ and any n > 0, we have the chain of isomorphisms

Hom 4700 (Ry(Z1), E) =~ Hom 700 (I1(S,(Z1)), E)
~ HOmAbOb(]_’) (STL (ZI)’ O(E))

~ H Hom ,, (Sn(Zz)(i0), O(E)(io))

i0E€L
~ H Hom , ( ]_[ Zz(in), E(io))
i0EL .1 an |
ZO—> e T i0p

12

[T TI Hom,(Z Eo)

€L . ™ an
0" ig— s =i

II  EG)

.91 an .
g - —ip

~ R"(Z, E).

12

A direct computation shows that these isomorphisms are compatible with the dif-
ferentials. Hence, we have

Hom (R.(Z1), E) ~ R (I, E).
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Then, for any object E of £ and any object X of £, we have successively
Hom (X, [R.(Zz1), E]7) ~ Hom 4700 (R, (Z1), hx © E)
~ R"(Z,hx o E)

~ H Hom (X, E(io))

! an .
g = T in

~ Hom (X, H E(io))
%0 oL - in
~ Hom (X, R"(Z, E)).
It follows that
(R.(Zz1),E]lr ~ R"(Z,E)

and that
[R(Zz1),Elz ~ R (Z,E).
Since
R.(Zz) ~ 11(S,(Zz1))
and

Sz~ I ZGw),
ioi) &)in
it follows from the dual of Proposition 2.3.1 that R,(Zz) is a projective object of
AbT”. Together with the fact that R.(Zz) is a resolution of Zz, this explains the
second vertical isomorphism of the diagram in our statement.
The commutativity of the diagram follows directly from the construction of the

various morphisms. )

4.4 Index restriction

Proposition 4.4.1. Let £ be a complete additive category and let J : J — I be
a functor between small categories. For any object M of Ab”"" and any object E of
ET" | we have

[J+(M), Elz = [M, J"(E)].

Proof. This isomorphism follows from Proposition 2.4.9. As a matter of fact, for
any object X of £, we have successively

Hom (X, [J+(M), E]z) ~ Hom 700 (J1 (M), hx o E)
~ Hom 4, o0 (M, J(hx o E))
~ Hom 4, o0 (M, hx o J*(E))
~ Hom (X, [M, J*(E)] 7).
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[

Lemma 4.4.2. Let £ be a cocomplete category and let J : J — 7 be a functor
between two small categories. If P is a projective object of €7, then J. (P) is a
projective object of EX™".

Proof. Consider a strictly exact sequence
EF —FE—FE"
of 7", Since J7 is exact and since P is projective , the sequence
Hom . yop (P, J*(E')) — Hom oo (P, J*(E)) — Hom yop (P, J*(E"))
is exact. The conclusion follows from Proposition 2.4.9. H

Proposition 4.4.3. Let £ be a quasi-abelian category with exact products and let
J : J — T be a functor between two small categories. For any object M of Ab7""
and any object E of E¥", we have

R[LJ(M), E]; ~R[M,J"(E)] .

Proof. 1f P is a projective resolution of M, then we have successively
R [M,JH(E)], ~[P,J*(E)ly
~ [J+(P), Elz
~ R[J+(P), El,
~R[LJL (M), E];.
[]

Proposition 4.4.4. Let £ be a quasi-abelian category with exact products and let
J ' J — T be a functor between two small categories. The canonical isomorphism

id : Z] — J+(ZI) - Zj
induces by adjunction a canonical morphism
w LJ+(ZJ) — ZI

which makes the diagram

LJ(Zg) 8 L1
?
Je(R(TN(Z1))) — y* RA(Zg)

ﬁ(‘LZI)

]\e. (Z1)

commutative in D™ (AbF™").
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Proof. Recall that w is the composition of
u:LJi(Zg) — Ji(Zg),

and the morphism
(U J+(ZJ) — ZI

defined as the image of id : Z; — J*(Zz) = Z 7 by the adjunction
Hom o0 (Z 7, J*(Z7)) — Hom gro0 (J1(Z7), Z1).
Since R.(Z7) is a projective resolution of Zy, we have
Je(R(J"(Z1))) = J1(R.(Zg)) = LI (Zg)
in D~ (Ab*™"). Consider the diagram

ﬁ' (‘LZI)

R.(Zz)
/ f kﬁ-(zz)

Ie@a)| LIy (Zg) ————1z

J—l— (ZJ) v ZI

It follows from the construction of w that the lower square is commutative. Since a
direct computation shows that the diagram

ﬁ(‘LZI)

J(R(Zg)) — R(Zz1)
J—‘r(ﬁ-(ZJ))J \%5-(21’)
Ji(Zy7) v Zzr

is commutative in C~(AbT™) and the conclusion follows. O

Proposition 4.4.5. Let £ be a quasi-abelian category with exact products and let
J ' J — T be a functor between two small categories. Then, for any object E of
ET" | the canonical diagram

R (Zz, E], ~ R lim (i)
1€T
Rlw,E]

RILJ(Zg), El;
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1s commutative.

Proof. Consider the following diagram:

R [Zz, E, = R lim E(i)

(2

(3) [R (ZI), E]I — R (I, E)

RILJ(Zg), Ely —[J+(R(Zg)), Elz () ©

@ [R(Zg),J"(E)lg — R(J,J(E))

(5) N

R ([Zg,J"(E)], ~ RL@L;J+(E)(j)

Clearly, the result will be established if we prove that the subdiagrams (1)-(6)
commute. We know already from Proposition 3.4.2 that diagram (6) commutes.
Moreover, Proposition 4.3.5 shows that diagrams (2) and (5) are also commutative.
Since the commutativity of (1), (3) and (4) follows from the lemmas below, the proof
is complete. O

Lemma 4.4.6. Let £ be a quasi-abelian category with exact products and let J :
J — T be a functor between two small categories. For any object E of E¥", the
canonical diagram

RILI(Zg), Ely —= [J+(R.(25)), Elz

R[w7E]IT T[ﬁ(Jsz)vE]I
R[ZfaE]I - [R(Zf)aE]I

is commutative in DT ().
Proof. Since R.(Zz) is a projective resolution of Zz, we have

R [ZI, E]I ~ [R(ZI), E]I
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Moreover, using Lemma 4.4.2, we see that
RILJ(Zg),El; 2 R[J(R(Zyg)),El; ~ [J4(R(Zg)), Ez.
This explains the horizontal isomorphism. Now, consider the diagram

RILI(Zg), Elp = RIJ(R(Zy)), El; 2 [J(R(2g)), Elz

+ 4 g
R[w‘,E]I (1) R[p(Jv%I)VE]I (2) [p(Jvaf)vE]I
R[Zz, E]; = R[R.(Zz), E]; =~ [R(Z1), K]z

By Proposition 4.4.4, the square (1) is commutative. The square (2) being clearly
commutative, the conclusion follows. O

Lemma 4.4.7. Let £ be a quasi-abelian category with exact products and let J :
J — T be a functor between two small categories. For any object E of E¥™, the
canonical diagram

R [Zja J+(E>} 0 [R<ZJ)7 J+<E)]J
? |

RILIW(Zg), Ely — > [J+(R(Zg)), Elz

J

is commutative in DT ().

Proof. This follows directly from the construction in the proof of Proposition 4.4.3
if one keeps in mind that R.(Zy) is a projective resolution of Z . N

Lemma 4.4.8. Let £ be a quasi-abelian category with exact products and let J :
J — T be a functor between two small categories. For any object E of E¥™, the

diagram
(R.(Zz), E)z ~ R(Z,E)
[ﬁ.(JVZz)vE]J
[J+(R(Zyg)), Elz R(JB)

|
f
[R(ZJ>7 J+(E>]J +>R(\Ya J+<E)>

is commutative in C*(E).
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Proof. Working as in the proof of Proposition 4.3.5, we reduce the problem to show
that for any object E of Ab" and any n > 0 the diagram

HomAbIOP (Rn (Zz), E) == R™ (I’ E)
Hom (ﬁn(J’ZI),E)l
Hom 700 (J1(R0(Z7)), E) R(J,E)

|
£
Hom o0 (Ro(Z7), J*(E)) — =~ R™(J, J*(E))

is commutative. This is done by direct computation. O

Lemma 4.4.9. Let J : J — I be a functor between two small categories and let
M be an object of Ab7°". Then, for any object i of T, we have the isomorphism

LI(M)(@) =Ll M),
(fg)eild

Proof. We know that M has a projective resolution I. such that for any n > 0,
I, =11(S,)
where S, is a projective object of Ab°*@D) . Then,
LJ (M)~ J.(1).
It follows that for any i € Z,

LTy (M)(i) = Jo(1)(7)

~ lim (1o J")(f,))
(f.9)eild

To conclude, it is sufficient to show that

L lim (MoJ"?)(f.j)= lm (LoJ"?)(fj).
(1€l (1€l

This will be the case if I.o J*Pisa  lim -acyclic resolution of M o J"°P. Since for

(f.g)eild
any n > 0, and any object (f,j) of i | J,

(In © Jiﬁop)(faj) = In()):
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I. 0 J%°P is a resolution of M o J*°P. Now, let us show that for any n > 0, I,, o J°P

is of coproduct type. Since
I, 0 J*P = 1I(S,) o J"°P,
it is sufficient to show that
11(S,,) o J*°P ~ II(S,, 0 O(J"°P)).
Let (f,7) be an object of i | J. On one hand, we have

(I(S,) 0 J*P)(f,4) = 1(Sn)(4) = [T Sn(s)-

On the other hand, we have

H(S, o O P)(f.5) =[]  SwcO( N5 = JI Sl

(£ (77,57 (F) 2 (17,57)
Consider
w: [T S — [  Sa()
i (£ (17,57
defined by

UosS g =S B
i—J' (f:9)—(J(B)ef3")

for any morphism (3 :j — j' of J and consider

vV H Sn(j/) - H Sn(j/)

(fvj)i(f/vj/) J—j

defined by

v O

s
PN

for any morphism 3 : (f,j) — (f’,j') of i | J. Of course, u and v are inverse one of

each other. It follows that

11(S,) o J*P ~ T1(S,, o O(J"*°P)).

and that I,, 0 J*P is  lim -acyclic. O
(fg)€ilJ
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Proposition 4.4.10. Let £ be a quasi-abelian category with exact products and
let J : J — T be a functor between small categories. Consider an object E of EX°".
Then, the canonical morphism

Rlim E(i) — Rlim J*(E)(j)
i€l JjET

is an isomorphism in D (), if the canonical morphism
w LJ+(Z]) — ZI
is an isomorphism in D~ (Ab*™"). This condition will be satisfied if and only if

L lim  Zg(j) ~ Zz(i)
(f.g)eild

for any 1 € T.

Proof. The first part of the result follows directly from Proposition 4.4.5.

As for the second part, it follows from the fact that w is an isomorphism of
D~ (Ab*") if and only if w(i) is an isomorphism of D~ (Ab) for any i € Z combined
with Lemma 4.4.9. O
5 Derived projective limits and cofinality

5.1 Cofinal index restriction

Definition 5.1.1. Let ® : 7 — 7 be a functor between small filtering categories.
We will call ® cofinal if it has the following properties:

(a) for any j € J, there is ¢ € Z and a morphism
o j— (i),

(b) if j € J,ifi € T and if

of Z such that
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Remark 5.1.2. Let J: J — T be a functor between two small filtering categories.
Then, J is cofinal if and only if the category ¢ | J is non empty and filtering for any
1.

Proposition 5.1.3. Let £ be a quasi-abelian category with exact products and let
J ' J — I be a cofinal functor between two small filtering categories. For any
object E of ET | we have the isomorphism of DT (&)

Rlim J*(E)(j) ~ Rlim ().

JjeT i€l

In particular,
R(J.E): R(L,E) — R(J.J*(E))

is an isomorphism of DT (E).

Proof. Since the functor J is cofinal, the category ¢ | J is non empty and filtering.
For any ¢ € Z, consider the functor

Zgo J"P: (i | J)® — Ab.
Since filtering inductive limits are exact in Ab, we have

L lim ZgoJ'P(fj)~ lim ZgoJ(fj)~ lm Z~Z

—
(f.g)eild (f.g)eild (f.g)eild

<

in D~ (Ab). The conclusion follows from Proposition 4.4.10 and Proposition 3.4.2.
0

5.2 Cofinality and amplitude of derived projective limits

Definition 5.2.1. Let Z be a small filtering category. By a result of Deligne (see [1,
Proposition 8.1.6]), there is a cofinal functor

o] —-T

where [ is a small filtering ordered set. Since any non empty set of cardinal numbers
has a minimum, we may assume that [ has the smallest possible cardinality. This
cardinality will be called the cofinality of Z. We denote it by cf(Z).

Notation 5.2.2. For any k € N, we denote by wy the (k + 1)-th infinite cardinal
number. For example, wy is the cardinality of N, w; is the smallest cardinal number
which is strictly greater than wy, and so on.

The following result is due to Goblot (see [4, Théoreme 3.1]).
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Proposition 5.2.3. Let I be a filtering ordered set such that #1 < wy with k < wy.
Then, for any functor
X I°? — Ab,

we have
H*(Rlm X(a)) =0  Vn>k+2.

acl

Theorem 5.2.4. Let £ be a quasi-abelian category with exact products. Consider
a functor
X:I? —=¢&

where 7 is a small filtering category. If cf(Z) < wy with k < wo, then

LH"(RlImX(i)) =0 Vn>k+1.
€T

Proof. Let ® : I — 7 be a cofinal functor where [ is a filtering ordered set of
cardinality cf(Z). By Proposition 5.1.3, we have

R lim X (i) ~ Rlim X 0 ®(i) ~ R (I, X o ®). (*)
€T el

If k=0, cf(Z) is finite. Hence, cf(Z) =1 and the result is obvious.
Assume that k£ > 0. For any object Z of £, we have

Hom (Z,R(I,X o ®)) ~ R (I,Hom (Z, X o ®))
~ Rlim Hom ¢ (Z, X o ®(i)).
i€l

Since #1 = cf(Z) < wg_1, by the preceding proposition, we get

H"(RlimHom,(Z, X 0 ®(i))) =0  VYn>k+1.

iel
Then, for any object Z of &,
H"(Hom(Z,R(I,X o ®))) =0 Vn > k+ 1.

Hence, the complex Hom (Z, R (I, X o ®)) is exact in degree n > k + 1 for any
Z € Ob(€). Therefore, by Remark 1.2.2; the complex R (I, X o ®) is strictly exact

in degree n > k + 1. Thanks to the isomorphisms (*), the complex Rlim X (i) is
i€T
strictly exact in degree n > k + 1. O
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6 Pro-objects

In this section, we recall the definitions and results about pro-objects we need later
(see [2] for more details).

6.1 Categories of pro-objects

Definition 6.1.1. Let C be an arbitrary category. Denote by

Pro(C)
the category of pro-objects of C. An object of Pro(C) is a functor
X I =
from a small filtering category 7 to C. If
X:ZI —-C and Y :J®? —=C
are two pro-objects, then we set

Homp, (X, Y) = lim[lim Hom (X (¢), Y (5))]

jeJ i€l
For any ¢ € 7 and any j € J, let

rji - Hom (X (2), Y (j)) — lim Hom (X (4), Y (5)),

€T

q; - HomPro(C)(X7 Y) - ll_I)HHOIIlC(X(’L), Y(]))
i€

be the canonical morphisms. We will say that a morphism
fii € Hom (X (i), Y'(5))

represents an element
f € Homp, (X, Y)
if
rji(fii) = 4;(f).
Clearly, if f € Homp, (X,Y) and j € J, there is i € 7 and
i € Hom (X (4),Y'(5))

representing f.
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Let
X: I —=C, Y:J?"—>C and Z:K® —=C

be three pro-objects. Consider
f€Homyp, o (X,Y) and g€ Homp, (Y, Z).
We define g o f as the element
h = (hk)kejc € HOIIIPTO(C)<X, Z)

with
hi = 14i(grj © fii)
where
fi € Homo(X(1),Y(j) and gy € Homo(Y(j), Z(k))

represent f and g respectively. This definition makes sense since for any k& € K, one
can check that hy only depends of f and g.

Remark 6.1.2. Let X : Z° — C and Y : J°° — C be two pro-objects and let
fe Hompm(c)(X,Y). If
fii X (i) = Y(j)
represents f then
(i) for any morphism « : i — ¢’ of Z, the morphism
fiio X(a) - X(i') = Y(j)
of C represents f,
(ii) for any morphism (: 7' — j of J, the morphism
Y(B)o fii+ X(i) — Y(j")
of C represents f.
Proposition 6.1.3. Let C be an arbitrary category. The functor
“”:C — Pro(C)
which associates to any object C' of C the constant functor
C:I% = C

where 7 is a one point category, is fully faithful. In particular, C may be identified
with a full subcategory of Pro(C).
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Definition 6.1.4. Let C be an arbitrary category and let Z be a small filtering
category. We define the functor

“liLn” . CIOD _ PT’O(C)
i€T

by setting

“lim” F(i) = F

—

i€T
for any functor F': Z°° — C and by setting

lim” f(i) = [ra(f(0))]iez

1€
for any morphism f of CT™.

Lemma 6.1.5. Let C be a small category with filtering projective limits and let 7
be a small filtering category. For any object F' of C™, we have the isomorphism

9im” F(i) ~ lim “F(i)”
P e
i€ €T

of Pro(€).
In particular, if ® : J — 7 is a cofinal functor from a small filtering category
J, we have the isomorphism

Gim” F(®(j)) ~ “im” F (i)
JjET i€l

in Pro(C).

Proposition 6.1.6. If 7 is a small filtering category and if C is a category with
finite projective limits (resp. finite inductive limits), then the functor

“Um” : ™ — Pro(C)
ieT
commutes with finite projective limits (resp. finite inductive limits).

Definition 6.1.7. Let F' : C — C’ be a functor between two arbitrary categories.
We define a functor

Pro(F) : Pro(C) — Pro(C")

by
Pro(F)(X)=FoX

for any X € Ob(Pro(C)).
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Consider two objects
X:I%® —-C and Y :J?® —=C
of Pro(C) and

f € Homp, o (X,Y) = ;%[h%l Hom (X (i), Y (j))].
VISVARAS

Then,

Pro(F)(f) € Homp, e (F o X, F oY) = 1&2[11%1 Hom, (F(X(2)), F(Y(7)))]

is characterized by the relation
¢;(Pro(F)(f)) =rsu(F(f;)  Vied

where fj; € Hom ,(X(7),Y(j)) represents f.
In particular, for any functor

X:I? =
where 7 is a small filtering category, we have

Pro(F)(“lim” X(3)) = “lim” F(X(i)),

i€ €T

6.2 Pro-representable functors
In this section, C denote an arbitrary category.

Proposition 6.2.1. For any pro-object X : 7°° — C, the functor
Homp, o) (X, “7) : C — Set
is isomorphic to the functor

lim hy() : C — Set.
i€l

Proposition 6.2.2. The functor
H : Pro(C)® — Set®
which associates to any object X of Pro(C) the functor

Homp, oy (X, “7) : C — Set
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and to any morphism f :Y — X of pro-objects the morphism of functors
H(f) - Hom'Pro(C) (fa “'77) : Hom’Pro(C)<X7 “ 77) - Houm(c) (Y, “ 77)

is fully faithful. In particular, the category Pro(C)°P is isomorphic to a full subcat-
egory of SetC.

Definition 6.2.3. A functor F': C — Set is called pro-representable if it is in the
essential image of H. In other words, F' is pro-representable if there is X € Pro(C)
such that

F >~ Homp, ) (X, “7).

Proposition 6.2.4. If £ is a small category with finite projective limits, then a
functor F : & — Set is pro-representable if and only if it commutes with finite
projective limits, i. e.,

F(llnX(z)) = lim F(X (7))

1€ 1€

where X : T — & is a functor from a finite category.

6.3 Representation of diagrams of pro-objects
In this section, C denote an arbitrary category.

Definition 6.3.1. Let X : Z°° — C and Y : J°°» — C be two pro-objects and let
f X — Y be a morphism of pro-objects. We denote by M the category whose
objects are the morphisms which represent f. Let

v: X)) —Y()) and O X)) =Y

be two objects of M. Then, a morphism

/

9

is the data of a morphism « : i — i’ of Z and a morphism (5 : j — j’ of J such that
the diagram

commutes.
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Proposition 6.3.2. Let X : Z°° — C and Y : J°°® — C be two pro-objects and let
f X — Y be a morphism of pro-objects.
(a) The category M is small and filtering. Moreover, the functors

pr:Mp—T1 and pyr Mz —J
which associate respectively to any morphism
p: X(i) = Y()

representing f the object © of T and the object j of J are cofinal.
(b) The morphism
fliXopr—Yops

of CM5" defined by

fllo)=¢
for any object ¢ : X (i) — Y (j) of My, represents f, i.e. the diagram
X d Y

L

Um”(X o pr)(p) oy Um”(Y opg)(p)
Lm” f'()
t,DEMf pEM ¢ ‘PEMf

of Pro(C) is commutative.

Proposition 6.3.3. Let X : 7°° — C and Y : J°° — C be two pro-objects and let
f: X — Y be a morphism of pro-objects. If there is a small filtering category N,
cofinal functors

g N —T and q7: N —J

of CN*" and a morphism of functors
g:Xoqr—Yoqgy

such that the diagram
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is commutative in Pro(C), then there is a cofinal functor
r: N — M;

such that
gz =pror, 4y =pgor

and
g=frC).
The basic results above have many useful variants. For example:

Proposition 6.3.4. Let X : Z°° — C, Y : J°°* — C and Z : K°° — C be three
pro-objects and let
f: X =Y and ¢g:Y —Z

be two morphisms of Pro(C). Then, there is a small filtering category M, cofinal
functors
pr-M—1I psrM—7J and pc: M —K

and morphisms
f':Xopr—Yops and ¢ :Yops — Zopg

such that f' and ¢' represent f and g.

Proposition 6.3.5. Let X : Z°° — C and Y : J°® — C be two pro-objects and let

X Y
g

be two morphisms of pro-objects. Then, there is a small filtering category N and
two morphisms of CN*
f/
) !
X Y

/

g

representing the morphisms f and g.

Proposition 6.3.6. Let X : Z°° — C, Y : J°°* — C and Z : K°° — C be three
pro-objects and let

X
\ Z
"

Y
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be two morphisms of pro-objects. Then, there is a small filtering category N and
two morphisms

X' _p
\

Y'© 9

Z/

of CN" representing the morphisms f and g.

Proposition 6.3.7. If X : 7 — C and Y : J°° — C are two pro-objects, then
there is a small filtering category M and two pro-objects

X MP—C and Y : M® —=C
such that
X~X and Y~V
Proposition 6.3.8. Let Z be a small filtering category. Two morphisms of C*™"

f: X—=Y and ¢g: X =Y

represent the same morphism of Pro(C) if and only if for any i € I, there is a
morphism « : i — ' of T such that

7)o X () = g(4) 0 X(a).

6.4 Limits in categories of pro-objects

Proposition 6.4.1. If the category C has finite projective limits then the category
Pro(C) has finite projective limits .

Proof. First, let us show that the category Pro(C) has finite products. If X and YV
are two pro-objects, then by Proposition 6.3.7, there is a small filtering category M
and two pro-objects X' : M — C, Y': M — C such that

X~X and Y ~Y'

By Proposition 6.1.6, the product X’ x Y’ of CM*" represents the product X x Y of
Pro(C).
Next, let us show that the category Pro(C) has equalizers. If X and Y are two
pro-objects, and if
X Y

—
g
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are two morphisms of pro-objects, then by Proposition 6.3.5, there is a small filtering
category M and two morphisms

f/
X' Y’

/

g

of CM™ representing f and g. By Proposition 6.1.6, the equalizer eq(f’, g') of CM™
represents the equalizer eq(f, g) of Pro(C).
Hence, the category Pro(C) has finite projective limits. N

Proposition 6.4.2. If C is an arbitrary category then Pro(C) has filtering projec-
tive limits.

Proof. Let
X : J® — Pro(C)

be a functor where J is a small filtering category. Assume that for any j € J
X(): TP — ¢

where 7Z; is a small filtering category.
Consider the category K whose objects are

Ob(K) = {(j,i) : j € T, i € T,}.
A morphism
(4, 4) — (4',7)
of K is the data of a morphism G : 7 — j’ of J and a morphism
fir : X(IN(E) — X (5)(7)
of C which represents the morphism
X(B): X(5') — X(j)

of Pro(C). One sees easily that I is filtering.
We define the pro-object
Y:KP—C
by setting
Y(5,4) = X(5)(@)
for any object (7,4) of K. If
w: (4,4) — (7, 7)



68 Fabienne Prosmans

is a morphism of IC associated to the morphism (3 : 7 — j' of J and to the morphism
i X(GE) — X(5)(5)
representing X (), then Y (u) is defined by setting
Y(u) = fir-

For any 7 € J, consider the morphism

defined by ‘
07 () = rGayGa (idx o)

for any i € Z; where

qz(j) : Hompro(C)(Y,X(j>> — lim  Hom,(Y(5',i), X (4)(i))
(4',i")eK

and

riagr - Home(Y(5,1), X(7)(9)) —  lim  Hom (Y (5", &), X (4)(i))

(43')ER
are the canonical morphisms.
One can check that the pro-object
Y:K?P—=C
and the family of morphisms
zj Y — X(j)
form a projective limit of X. O

Lemma 6.4.3. Let C be an arbitrary category and consider a functor
X :J?® — Pro(C)
from a small filtering category J. Then, for any object C' of C, we have

lim Hom, (Y (j,4), C) ~ lim lim Hom (X (j)(i), C)
()ek €7 i€

ol

J

<

where the categories KC, Z; and the functor
Y:K?P—=C

are defined in the proof of Proposition 6.4.2.
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Proposition 6.4.4. Let C be an arbitrary category and let
X :J?® — Pro(C)
be a functor from a small filtering category J. Then, for any object C' of C, we have

Hom p, ) (lim X (7), “C”) = lim Homp, ;¢ (X (7), “C”7).
JeT jeT

Proof. Assume that for any 7 € J

where Z; is a small filtering category. If
Y K% —=C
is the pro-object defined in Proposition 6.4.2, we have
HomPro(C)<l»iL2X<j)’ “C”) = HOmPro(C)<Y’ “C”)
JE

~ lim Hom,(Y(j,4),C)
(49)eK

~ lim lim Hom (X (5)(4), C)
jGJz‘EI]-

~ lim Hom p,, , 0y (X (j), “C”).
JjeT

7 Derived projective limits and pro-objects

7.1 Pro-objects of a quasi-abelian category

Proposition 7.1.1. If A is an additive category then Pro(A) is canonically an
additive category.

Proof. Direct. ]

Proposition 7.1.2. Let A be an additive category with kernels and cokernels. If
f X — Y is a morphism of Pro(A) represented by a morphism f': X' — Y’ of
AM?where M is a small filtering category, then ker f' (resp. coker f’) represents
ker f (resp. coker f).

Proof. This follows directly from the proof of Proposition 6.4.1. H
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Remark 7.1.3. Let us recall that in an additive category with kernels and cok-
ernels, f is a strict epimorphism if and only if f is a cokernel and f is a strict
monomorphism if and only if f is a kernel.

Corollary 7.1.4. Let A be an additive category with kernels and cokernels. A
morphism f: X — Y of Pro(A) is a strict epimorphism (resp. monomorphism) if
and only if there is a small filtering category M and a strict epimorphism (resp.
monomorphism) f': X' — Y’ of AM™ representing f.

Proof. Consider a strict epimorphism f : X — Y of Pro(A). Let i : K — X be the
kernel of f in Pro(A). We know that ¢ can be represented by a morphism i’ : K’ —
X' of AM” | where M is a small filtering category. If f': X’ — Y’ is the cokernel
of i" in AM™ then f’ is a strict epimorphism. Moreover, by Proposition 7.1.2, f’
represents cokeri = f.

Conversely, assume that the morphism f : X — Y of Pro(A) is represented by
a strict epimorphism f’: X’ — Y’ of AM” where M is a small filtering category.
Let i : K/ — X' be the kernel of f’. Hence, f’ = cokeri’. By Proposition 7.1.2,

Gim” f'(m) : “fim” X' (m) — “lim” Y’(m)
— — —
meM meM meM

is a cokernel of
(cma? Zl(m) . “liLH” K/(m) N “liLH” X/(m)
meM meM meM

It follows that “lim” f’ (m) is a strict epimorphism. Moreover, since f’ represents f,
meM
there is a commutative diagram in Pro(.A)

X ! Y

f f
13 S} / 13 e !/
lim” X' (m) i ) lim” Y’ (m)
meM i meM

Therefore, f is a strict epimorphism in Pro(A). O

Proposition 7.1.5. If £ is a quasi-abelian category then Pro(€) is a quasi-abelian
category.

Proof. By Proposition 7.1.1 and Proposition 7.1.2; the category Pro(€) is additive
and has kernels and cokernels.



Derived Limits in Quasi-Abelian Categories 71

Let us show that if, in a cartesian square

x 1.z

ST

of Pro(€), f is a strict epimorphism then v is a strict epimorphism. Since f is a
strict epimorphism, by Corollary 7.1.4, we can represent it by a strict epimorphism
o X' — Z' of EM, where M is a small filtering category. Modifying M if
necessary, by Proposition 6.3.6, we may assume that ¢ is also represented by a
morphism ¢ : Y’ — Z' of EM®. Since the category EM™ is quasi-abelian, we can
form the cartesian square in EM™

X/%Z/

i

T/ﬁyl

in which v’ is a strict epimorphism of EM*”. By Proposition 6.1.6, the square

“liil” f/(m)
. meM .
Lchmw X’(m) e —Y uhmw Z’(m)
meM meM
“liﬂl” u/(m) “liil” g/(m)
meM meM
Qim” T'(m) “Yim” Y (m)
— “hm” v/(m) pa—
meM meM meM

is cartesian in Pro(€). Since f and g are isomorphic to

“liin” f/(m) and “li_m” g/<m)’
meM meM

“lim” T"(m) is isomorphic to T"in Pro(£). Consequently, the morphisms v’ and v’
meM
represent the morphisms u and v. By Corollary 7.1.4, v is a strict epimorphism.

Using the same kind of arguments, one can check that if, in a cocartesian square
Z——=T
QT Tu

of Pro(€), f is a strict monomorphism then v is also a strict monomorphism. [
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Lemma 7.1.6. If £ is a quasi-abelian category with filtering projective limits, then
£ is complete.

Proof. Since £ has kernels and finite products, £ has finite projective limits. Since
& has also filtering projective limits, £ is complete. m

Proposition 7.1.7. If £ is a quasi-abelian category, then Pro(€) is complete.

Proof. We know that Pro(€) is quasi-abelian and has filtering projective limits.
Then, by the preceding lemma, Pro(€) is complete. ]

Proposition 7.1.8. If £ is a quasi-abelian category, then in Pro(E) products and
filtering projective limits are exact.

Proof. Consider a small family (F;);e; of Pro(£). We know that
e~ w []E
i€l JePs(I) jes

where Pf(I) is the set of the finite subsets of I ordered by inclusion. Since finite
products are exact, it is sufficient to prove that filtering projective limits are exact
in Pro(€). Since the filtering projective limits are kernel preserving, we only have
to check that there are cokernel preserving.

Let Z be a small filtering category and let

X—-Y —-7—0

be a costrictly exact sequence of (Pro(€))™. Hence, for any i € Z and any object
C of &, the sequence

0 — Hom (Z(4), “C") — Hom (Y (i), “C”) — Hom (X (i), “C”)

is exact in Ab. Since the functor lim : Ab? — Ab is exact, the sequence
i€

0 — lim Hom (Z(i), “C”) — lim Hom (Y (i), “C”") — lim Hom (X (i), “C")
€T €T i€l

is exact in Ab. Then, by 6.4.4, for any object C' of £, the sequence

0 — Hom (lim Z(i), “C”) — Hom (lim Y (i), “C”") — Hom (lim X (i), “C")
i€ €T €T

is exact in Ab.
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Now, consider a pro-object E : J°° — &£ of £. By what precedes, for any j € 7,
the sequence

0 — Hom (lim Z (i), “E(j)”) — Hom (lim Y (i), “E(j)") — Hom (lim X (i), “E(j)")

i€l i€l i€l

is exact in Ab. Since the functor lim is kernel preserving, the sequence
JjeTJ

0 — lim Hom (lim Z(i), “E(j)") — lim Hom (lim Y (i), “E(j)") — lim Hom (lim X (i), “E(j)")
je€T €T j€T i€ Jje€T €L

is exact in Ab. Since we have successively

(), “lim” E(j))
JjeT

(), lim “E(j)")
JjeT

~ lim Hom p,, ¢ (im X (¢), “E(5)"),

the sequence

0 — Hom (lim Z (i), £) — Hom (lim Y (i), E) — Hom (lim X (i), F)
ieT ieT ieT

is exact in Ab. It follows that the sequence

lim X (i) — limY' (i) — lim Z(i) — 0
— — —

i€T i€T i€T
is costrictly exact in Pro(£). Hence, the functor lim is exact. O
i€T

Proposition 7.1.9. If £ is a quasi-abelian category, then for any object E of &,
the object “E” is cosmall, i.e.

Hom p, oo (] [ X3, “E”) ~ @D Hom ) (X5, “E”)

iel iel

for any small family (X;);e; of Pro(E).
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Proof. For any object E of £, we have successively

HOHIPTO(‘S.)(H Xi, “E”> = HomPro(5)< lln HXj7 “EJ’)

i€l JEPs(I) jeg
~ lim Hompm(g)(H X;, “E")
JePs(I) jed
~ lim Hompm(g)(@ X;, “E")
JeP;(I) =2
~ lim H Hom p, o\(X;, “E”)
JePs(I) jes

~ lim @Hompm(g)(Xj, “E”)
JePr(I) jeg

~ @ Homop, ) (Xi, “E”).

el

7.2 The functor L

Proposition 7.2.1. Let £ be a quasi-abelian category with products. For any
object E of £ and any pro-object X : I°° — £ we have

Homp, o) (“E”, X) = Hom (E, lim X (i)).

1€

Definition 7.2.2. Let £ be a quasi-abelian category with products. We define the
functor

L:Prol&) — &

by setting

for any pro-object X : Z°° — £. By the preceding proposition, for any object E of
&, we have

Hom e, (“E”, X) ~ Hom (B, L(X)).

Hence, for any morphism f : X — Y of Pro(€), the theory of representable functors
allows us to define

L(f):L(X) — L(Y)
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as the unique morphism making the diagram

Hom (“E”,f)
Hom p, ey (“E”, X) > Homp e (“E”,Y)

% %

Hom(F,L(X)) Hom(E,L(Y))

Hom (E,L(f))

commutative.

Proposition 7.2.3. Let £ be a quasi-abelian category with products. The functor
L:Pro&) — &
is left exact.
Proof. Consider a strictly exact sequence
0—-K—-X—>Y

of Pro(€). Since for any object E of &, the first sequence of the commutative
diagram

0 Homp, o (“E”, K) — Hom p, ) (“E”, X) > Hom e (“E",Y)

| | %

0———Hom (E,L(K)) ———Hom(F,L(X)) ———Homg(E,L(Y))

is exact, the conclusion follows. O

7.3 Derivation of L

Lemma 7.3.1. Let £ be a quasi-abelian category. If I is an injective object of &,
then “I” is an injective object of Pro(&).

Proof. Let I be an injective object of £ and let f : X — Y be a strict monomorphism
of Pro(€). We know that f can be represented by a strict monomorphism f": X' —
Y’ of EM™ where M is a small filtering category. Hence, for any object m of M,
the sequence

Hom (Y'(m),I) — Hom (X'(m),I) — 0

is exact. Since the functor lim : AbM™ — Ab is exact, the sequence
meM

lim Hom,(Y'(m),I) — lim Hom (X'(m), 1) — 0
meM meM
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is exact. Moreover, we have

lim Hom(X'(m), I) ~ Homp, o (“lim” X'(m), “I”)
meM meM

~ Homp, (X, “I7).
It follows that the sequence
Hompm(g)(Y, “I") — Hompm(g)(X, “I"y = 0

is exact and that “I” is an injective object of Pro(£). O

Proposition 7.3.2. Let £ be a quasi-abelian category. If £ has enough injective
objects, then Pro(€) has enough injective objects.

Proof. Consider a pro-object X : Z°° — &. Since Pro(€) is a quasi-abelian category,
we know that there is a strictly exact sequence

0—lm “X(0)" = [[ X = [I “X(exe(H)

i€l €T feAr(T)

of Pro(£). Since
liLn (LX(,L')” ~ “]{iin” X(,L) ~ X’
i€T i€T

we have a strict monomorphism
o X — H “X(Z')”
i€T

of Pro(€). Moreover, since £ has enough injective objects, for any i € Z, there is
a strict monomorphism X (i) — I(i) where (i) is injective in £. It follows that
for any i € Z, “X(i)” — “I(i)” is a strict monomorphism and by Lemma 7.3.1,
“I(4)” is injective in Pro(€). Since the product of strict monomorphisms is a strict

monomorphism,

H “X(i)” — H “I(1)”

i€T i€T
is a strict monomorphism and [[,.; “I(4)” is injective in Pro(€). Since the compo-
sition of strict monomorphisms is a strict monomorphism,

X — [y
1€l

is a strict monomorphism. O
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Corollary 7.3.3. Let £ be a quasi-abelian category with products. If £ has enough
injective objects, then the functor

L:Pro&) — &
is right derivable.

Proposition 7.3.4. Let £ be a quasi-abelian category with enough injective ob-
jects. If the products are exact in &, then for any family (E;);c; of £, the pro-object

I+
il
is acyclic for the functor L : Pro(€) — €£.
Proof. Consider a family (E;);c; of £. For any i € I, let
0—I) — I — ...

(132

be an injective resolution of F;. Since the functor is exact and since “I” is
injective if I is injective,

0 — (4[’?77 N ¢¢[i177 ...
is an injective resolution of “E;” in Pro(€). By Proposition 7.1.8, the products are
exact in Pro(€). Then,

O_)HM]'ZQJ? _)H“[il” .
iel iel
is an injective resolution of [[,_, “E;”. It follows that RL(][,., “E;") is given by the
complex

0— L") — L] <) — -

el el

Lty = JJren ~ ] &

el el el

Since for [ > 0, we have

RL(]],.; “E;”) is isomorphic to the complex
o[ -1]% —
iel iel
Moreover, since the products are exact in £, this complex is an injective resolution
of [],c; Ei. Therefore, we have the following chain of isomorphisms in D* (Pro(€)):

RL([T “E7) = [ B = T L(“B7) =~ L([] “E).

el el el el
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Definition 7.3.5. Let £ be a quasi-abelian category with exact products. Let us

define the functor
L : Pro(§) — DT (&).

We set
L'(X)=R(Z,X)

for any pro-object X : Z°° — £. Let
X:I - €& and Y:J% =€

be two pro-objects and consider a morphism f: X — Y of Pro(€). We know that
there is a small filtering category M and cofinal functors

I'M—Z and J .- M—J
such that f is represented by a morphism
fliXol -YolJ
of EM® . By Proposition 5.1.3, we have the canonical isomorphisms
R(I,X):R(Z,X) = R(M,IT(X))

and

R(JY):R(J,Y) = R(M,JHY))

of D*(E). So, there is a unique morphism
R(Z,X) — R(J,Y)

of D*(&) making the diagram

RM, X o) M,y o)
R'(I,X);[ %\R'(J,Y)
R(Z,X) R(J,Y)

commutative.
One can check that the morphism

R(Z,X)— R(J,Y)

defined above does not depend on the choice of the representative of f. We denote
it

L(f).
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Proposition 7.3.6. Let £ be a quasi-abelian category with exact products. The
functor
L:Pro&) — &

is right derivable and for any pro-object X : I°? — &£ we have
RL(X) ~ L'(X)
in DT(E).
Proof. Consider the family
F={X € Ob(Pro(&)) : LH*(L' (X)) =0 if k> 0}.

First, let us remark that if F is an object of £, where 7 is a small filtering
category, then
(L]{iLn” E(2> e f
i€T

if and only if £ is lim-acyclic. As a matter of fact, we have successively

€T
“lim” E(i) € F < LH*R(Z,E)=0 Vk >0
€T
<« LH'RIm E(i) =0 Vk >0
€L

i€ i€
Next, let us prove that the family F is L-injective.

(i) Consider a pro-object X : Z°° — £. We know that there is a strict monomor-
phism X — II(O(X)) of £ and that II(O(X)) is lim-acyclic. Since the functor

i€

“lim” EF” — Pro(€)
i€T

is exact, we have a strict monomorphism

X — i’ I(0(X))(7)

i€

of Pro(€) and “lim” II(O(X))(i) belongs to F.
i€1

(i) Consider

X :I®%° =& X:JP—E& and X'":K? —=¢&
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three pro-objects and a strictly exact sequence
0—-X LxLx" -0

of Pro(€) where X', X € F. Since f is a strict monomorphism, we know that it
can be represented by a strict monomorphism f’: Y’ — Y of EM® | where M is a
small filtering category. If (Y, ¢’) is the cokernel of f’, then the sequence

0y Ly Ly o (*)
of EM™ is strictly exact. Since coker f’ represents coker f, we have

(Lhmw Y/l(m) ~ X”.
p it
meM

Since X and X' belong to F, for any k > 0, we have

LH*L(X') = LH*L (“lim” Y'(m)) = 0
meM

and
LH*L'(X) = LH"L'(“lim” Y (m)) = 0.
meM

It follows that Y’ and Y are lim-acyclic. Since the sequence (*) is strictly exact, the

1€l
object Y of EM™ is lim-acyclic. Therefore, “lim” Y (m) belongs to F. Hence X"
€L meM

also belongs to F.

Moreover, since the objects Y, Y and Y" are lim-acyclic, the sequence
i€T

0 — lim Y'(m) — lim Y(m) — lim Y"(m) — 0
— — —
meM meM meM

of £ is strictly exact. Since the diagram
0—— lim Y'(m) ——— lim Y(m) ——— lim Y"(m) ——0
— — —
meM meM meM
| | |
O — L<“liin” Y/<m)) N L(“(h_n’l” Y(m)) — L(“Lln” Y”(m)) s 0
meM meM meM

8 ! !

0 L(X') L(X) LX) 0
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commutes in £, the sequence
0— LX) — LX) - LX") — 0

is also strictly exact.

Finally, consider a pro-object X : 7 — £. We know that R'(X) is a lim-acyclic
ieT
resolution of X. Then, for any n > 0,

“Uim” R*(X)(i) € F.

€T

Therefore, “lim” R'(X)(7) is an L-injective resolution of X and we have successively
i€1

[

Corollary 7.3.7. Let £ be a quasi-abelian category with exact products and let T
be a small filtering category. Then, we have

In particular,

if E and F are two essentially equivalent filtering projective systems (i.e. if the
pro-objects associated to E and F' are isomorphic).

Proof. For any object E of £, we have successively

RL(((@” E(2>> ~ L.(“liin” E(fl))

€T €T
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Lemma 7.3.8. Let £ be a quasi-abelian category with exact products and let E :
I°° — & be a pro-object of £. If for any object X of €, Pro(hx)(FE) is L-acyclic,
then E is L-acyclic.

Proof. Consider X € Ob(E). We have successively

RL(Pro(hx)(E)) ~ RL(Pro(hX)(“an” E(i)))

€T

~ RL(“lim” hy (E(i)))

€T

~ Rlim h(E(3)).

i€Z
Since Pro(hx)(FE) is L-acyclic, we get

Rlim hx (E(i)) ~ L(Pro(hx)(E))

€T

~ @Pro(hx)(f’j)@

i€l

~ 1im hx (E(i)).

1€T

It follows that Hom (X, E) is lim-acyclic. By Proposition 3.6.4, E is lim-acyclic.
ieT ieT
Therefore, we have

RL(E) ~ RL(“lm” E(i)) ~ Rlim B(i) ~ im E(;) ~ L(E)

i€l €T i€

and F is L-acyclic. O

Proposition 7.3.9. Let £ be a quasi-abelian category with exact products. For
any family (E;)ser of £, the pro-object [],., “E;” is acyclic for

L:Pro&) —£.

Proof. By the preceding proposition, it is sufficient to show that for any object X
of &,

Pro(hx)(H “E;")

is L-acyclic. Consider an object X of £. We get successively

Pro(hx)(H “E;") ~ Pro(hx)( lim (H “E;7))

iel JEPs(I) jeJ

~ Pro(hx)( lim (“HEJ’”))
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~ Pro(hx)( “lim” ([ ] )

JePs(I) jeJ

~ “lim” (hx ([ ] £)))

JePs(I) j€J
~ “lim” Hom (X, H E;)
JePs(I) j€J

~ “lim” HHomg(X, E;)
JePs(I) jes

~ lim “HHomg(X,Ej)”
JEPs(I) jeJ

~ lim H“Homg(X,Ej)”
i€Ps(I) jeJ

~ H “Hom (X, E;)”
iel

~ [T hx (B

el

Since the category Ab is abelian, has enough injective objects and has exact prod-
ucts, by Proposition 7.3.4,

H L(hX (EZ)”

iel

is L-acyclic. It follows that Pro(hx)([[,c; “E:i”) is L-acyclic. O

el
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