IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 1, FEBRUARY 2005

A General-Purpose Symbolically Assisted
Numeric Computation Environment as a
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Abstract—This paper describes and illustrates a Windows-
based, general-purpose, symbolically assisted numeric computa-
tion environment within power engineering education applica-
tions. The examples considered include fundamental problems
derived from three areas: power system analysis and optimization,
electric machinery, and feedback control systems.

Index Terms—Numeric computation, power engineering educa-
tion, symbolic computation.

1. INTRODUCTION

HE problems arising in power engineering education and

research range from the steady-state to the time-domain
simulations. It is desirable to have a single computation envi-
ronment capable of handling such a wide diversity of problems.
The availability of such a software package, together with the
extensive use of a graphical user interface, transforms power
engineering education and research activities into an activity
where a user focuses on specific problem aspects rather than
learning about advanced programming skills or the knowledge
of operating systems. This paper makes use of such an environ-
ment, i.e., a Windows-based, general-purpose software package
that implements the concept of symbolically assisted numeric
computation.

The environment takes origin in the work of Alvarado of
Wisconsin who introduced the concept of symbolically as-
sisted numeric computation in solving a vast panel of power
engineering problems and authored the software package
SOLVER-Q (a PC implementation of the concept developed in
Pascal for the DOS environment) [1]-[4].

The aim of the paper is to introduce this (new idea from
an old source), in the authors’ view, powerful computation en-
vironment (developed in Visual C++ for Windows platforms
95/98/2000/NT/XP) without comparing its capabilities to other
tools: neither commercial nor freely available ones. The prob-
lems considered in the paper come from power system analysis
and optimization [5], electric machinery [4], and feedback con-
trol education [6] and include the power-flow problem and its
extensions, the simulation of transients produced by the cold
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startup of a two-phase induction motor, the economic dispatch
problem, and an elementary feedback control design.

The paper is organized as follows. In Section II, the con-
cept of symbolically assisted numeric computation is briefly
introduced. The structure of the environment is presented in
Section III. Four experiments are presented in Section IV, while
Section V offers some conclusions.

II. SYMBOLICALLY ASSISTED NUMERIC COMPUTATION

The usual aim of symbolic computation is to obtain explicit
symbolic solutions and to gain in the understanding of a system
or process. Explicit solutions obtained by most symbolic solu-
tion packages often result in lengthy expressions that contribute
little to the understanding of a problem. The main uses of sym-
bolic computation include simplification of expressions, com-
putation of symbolic derivatives and integrals, and elimination
and substitution of variables.

Commonly, symbolic software packages are regarded as
fairly limited in solving large sets of nonlinear algebraic equa-
tions and nonlinear optimization problems [1]-[4]. These two
problem classes are solved in the domain of numeric compu-
tation. Numeric solution approaches need the Jacobian and
possibly Hessian matrix of all or of a subset of the equations.
Symbolic methods can be used to derive expressions for per-
forming numeric computations such as gradients and Jacobian
and Hessian matrices. Thus, the traditional roles of numeric
and symbolic computation are not as clear any more, and many
benefits arise from merging the two [1], [7]. Symbolically as-
sisted numeric computation refers to the idea of using symbolic
computation not as an end in and of itself [1]-[4], [7], as is often
done in many software packages, such as Mathematica [8] and
Maple [9] but rather using symbolic computation as a means of
assisting in the eventual numeric solution of a problem.

The building block on most symbolic manipulation packages
is an equation. The building block for the concept of symboli-
cally assisted numeric computation is a set of equations. Opera-
tions are normally applied to entire sets of equations rather than
to individual equations in the set.

The main premises in the computation environment develop-
ment can be summarized as follows [1]-[4].

» Simplicity is better than explicitness.

* Represent only what is essential to describe a problem.

* Reduce only for computational or clarity reasons.

¢ Declarative description of a problem is preferable to pro-
cedural description.

e Correctness and clarity are more important than raw
speed.
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III. COMPUTATIONAL ENVIRONMENT

A simplified structure of the computation environment is il-
lustrated in Fig. 1.

In the core of the environment is a powerful symbolically
assisted numeric computation engine that, together with user-
friendly equation editor, permits a nearly direct transition from
mathematical expressions to simulations. Once the user under-
stands the equations of interest, the environment is capable of
performing all necessary aspects of the simulation. The sym-
bolic processing of user specification allows a very high de-
gree of flexibility. The purpose of converters is to automatically
generate the system equations based on widely used standard
data formats (e.g., CF and PTI formats). Many systems, espe-
cially test systems, have their own data already stored in stan-
dard formats.

The possibility of a problem statement in natural form, as one
does on the blackboard or sheet of paper, and the possibility of
experimenting with the problem as much as necessary makes the
computational environment attractive for engineering education
and research. Equation editor, i.e., user interface with some tool-
bars, is presented in Fig. 2.

The environment offers maximum flexibility in expressing
problem statements in natural form at almost every level. The
equations are entered in an intuitive manner with few rules.
Equations may span several lines, or several equations may be in
the same line. About the only rule is that every equation must be
terminated with a semicolon. The equations can be arranged in
any desired order, and text can be intermixed at any time. A user
may enter the equations, describing the underlying problem,
completely manually (in this case, one has to be fully famil-
iarized with equation syntax) or using available toolbars and
pads that include standard mathematical operations and func-
tions, Greek letters, special functions, etc.

The methods for eventual numeric solution of simultaneous
nonlinear algebraic equations include full Newton—Raphson
(N-R) method, dishonest N-R, a robust N-R, and a class
of homotopy methods. Integration of differential equations
include trapezoidal, Gear, and backward Euler method.

The Properties dialog box, shown in Fig. 3, allows a numer-
ical method choice and settings for a particular problem.

The optimization problems arising in power engineering
computation range from unconstrained to inequality con-
strained problems. The environment enables handling different
mathematical forms of optimization problems, including auto-
matic recognition of the problem type and problem setting in the
form of Lagrangian and Kuhn—Tucker optimality conditions.

Among many, the environment offers the following features
(to enumerate just a few): symbolic and numeric linearization of
equations, equation simplification, symbolic elimination, han-
dling complex numbers and equations, repetitive solutions, Fast
Fourier Transform, etc.

Each formulated problem can be saved as a lesson file for
later use. This is the point where the instructors can benefit from
the environment by preparing the problems to be solved and
storing them as the lessons with the instructions on how to solve
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Fig. 1. Structure of the computation environment.

them (the environment includes the capability to differentiate
between ordinary text and equations describing the underlying
problem).

Forty-four lessons are included with the environment with the
main aim to get a user familiar with the environment by solving
different engineering and mathematical problems. In addition,
66 lessons (inherited from an earlier version of the environment
[1]-[4]) come from the celebrated Sedra—Smith book on micro-
electronic circuits [10]. Power system engineering lessons are
now being added (mainly based on [1]-[5]), and four of them
are presented in the next section.

IV. EXPERIMENTS

It is impossible, in a paper report, to demonstrate all the ca-
pabilities of the environment. Instead, the solving and experi-
menting on three fundamental problems in power system engi-
neering education and an elementary problem in feedback con-
trol design are illustrated.

A. Power-Flow and Point of Collapse Problems

The power-flow problem consists of a set of simultaneous
nonlinear equations that define a power system under steady-
state operating conditions [5], [11]. In concise representation,
the equations are

f(z,p)=0 (1)

where p is a set of known parameters, and x is a vector of un-
knowns (usually bus voltage magnitudes and phase angles).
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where 6 designates phase angles, V bus voltage magnitudes, and
G, B real and imaginary parts of the power system Y matrix
elements.

The following are the detailed equations for the system under
study (as they appear in the equation editor and generated from
CF format by corresponding converter), shown in the first equa-
tion at the bottom of the next page.

The solution obtained in 2 iterations (full Newton—Raphson
method is a method of choice for eventual numeric solution) is

Fig. 3. Properties dialog box.

To illustrate the power-flow problem, this paper makes use of
a nearly trivial 3-bus system [5]. The equations that are solved
simultaneously include an active power balance equation for
every bus, except one bus that is designated as the “slack” bus
(bus 1 in this particular case), and a reactive power balance equa-
tion for every load bus

P, = V2V3[G23 COS(HQ — 93) + B3 Sin(92 — 93)]
+ %W[G21 COS(GZ) + le Sil’l(92)] + ‘/22G22 (2)

V2=0.9501343 2= -0.0516696 o3 = 0.0416386.

In addition, it is possible to get a family of solutions by let-
ting some of parameters vary and using the environment fea-
ture of repetitive solutions. To allow a user deep inside to the
results obtained, a powerful graphic module is designed within
the computation environment. The user may relate any variables
that describe the underlying problem. The dialog box for graph
generation is illustrated in Fig. 4.

By letting parameter P» (the load in the particular system
node) vary, a continuum of solution is obtained and presented
in Fig. 5 in the form of so-called P-V curve. P-V curves are
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extensively used in determination of a system maximum load-
ability [11]-[13].

The equations describing the problem are in the second equa-
tion at the bottom of the page.

One of the attractions of the computation environment is the
fact that it can be used to formulate new problems and variants
from already defined ones. The point of collapse problem [12]
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can easily be formulated from the power-flow problem. Assume
that one wants to find a solution to the power-flow problem with
the requirement that Jacobian matrix f, be singular (bifurcation
point) [12], [13]. The objective is to find the values of the pa-
rameters that result in this singularity condition. This problem is
of importance to determine limits of operational capability in a
power system. Mathematically, this condition can be expressed
as [12], [13]

f(x,p)=0 5)
fo(z,p)y =0 (6)
llyll = 1. (7

Moreover, once a bifurcation point is located, it is easy to
modify the above equations to find the solutions near the bifur-
cation points [13], as follows:

f(z,p)=0 (®)
[fe (z,p) —al]y =0 )
lyll =1 (10)

for values of & € [—¢ey, 5] with eq,e9 > 0.

Owing to the symbolic linearization capability of the com-
putation environment, it is easy to find symbolically linearized
equations of (1) and then append these equations to the original
equations (power-flow problem) and add the condition to ensure
that the eigenvector y is nontrivial by editing. This augmented
problem is then solved to yield the point of collapse solution.
The equations describing the problem (in the equation editor
format) are shown in the first equation at the bottom of the next
page.

The solution of the problem, obtained in four iterations by
applying full N-R method for eventual numeric solution to the

{Power Flow equations}
{Generated from CF data file}

V2= 1;02 = 0;a3 = 0;

V2% ((—(4%COS(a2)) + 5% SIN(a2) + 8% V2) — 4.4+ COS(a2 — a3) + 11 * SIN(a2 — a3)) = —2;
V2% ((—(4 % SIN(a2)) — 5% COS(a2) + 15 % V2) —
1.1% (—(4% V2% COS(a3 — 2)) + 10 % V2% SIN(a3 — a2) + 4.4) = 1.7;

4.4 % SIN(a2 — a3) — 11 * COS(a2 — a3)) = —1;

{Power Flow equations}
{Generated from CF data file}

P2 {newP2} =° 2; newP2= P2+ 0.01;
V2= 1;02 = 0;a3 = 0;

V2 ((—(4% COS(a2)) + 5% SIN(a2) + 8%« V2) — 4.4 %« COS(a2 — a3) + 11 * SIN(a2 — a3)) = —P2;
V2% ((—(4 % SIN(a2)) — 5% COS(a2) + 15 % V2) —
1.1% (—(4% V2% COS(a3 — 2)) + 10 % V2 SIN(a3 — a2) + 4.4) = 1.7;

4.4 % SIN(a2 — a3) — 11 « COS(a2 — a3)) = —1;
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problem is shown in the second equation at the bottom of the
page.

B. Economic Dispatch Problem

The problem is to minimize the cost rate of thermal units
in a power system [5]. Mathematically speaking, the problem
may be stated very concisely. That is, an objective function Frr
is equal to the total cost for supplying the indicated load. The
problem is to minimize Fr subject to the equality constraint
that the sum of powers generated () must equal the received
load (Pjoaq) and one (or two) inequality constraint per generator
(maximum or minimum active power generated). That is

N
Pr=Fi+F+---+Fy=Y F(P) (1
=1

N

Ozpload_zp’i (12
i=1
Pimin <P < Pipax, 1=1,...,N (13)

where N is total number of thermal generators in the system.

The computational environment solves optimization prob-
lems with both equality and inequality constraints using the
Lagrange multipliers method. The existence of inequality
constraints and assignment of slack variables is automatic.

Suppose that one wishes to determine the economic operating
point for three generating units [5] when delivering a total of
850 MW. Let us define the fuel cost of each unit as

Fi(Py) =1.1- (510 + 7.92P; + 0.00142P})
Fy(Py) =310 + 7.85P, + 0.001 94 P

F3(P3) =78 4+ 7.97P3 + 0.004 82 P (14)
and let us include a simplified loss expression
Ploss = 0.000 03P7 4 0.0009P2 + 0.000 12P7. (15)

The maximum outputs of the units are specified as Pj pax =
400 MW, Ps ax = 300 MW, and P51, = 300 MW,

{Power Flow equations}

{Symbolically linearized equations}
a3) + V2% 8)x V2 + (
a3))) x a2 + (

{eqn 1}

a3) + V2% 15) « 6V2 + (
V2% (—4 % COS(a2) +
a3)))))

{eqn 2}

{eqn 3}

+(1) % 6P2 = 0;

{eqn 4}

{Non-triviality condition}

SQRT(6V2"2 + 62”2 + 6a3"2 4+ 6P2"°2) = 1;
V2 2 1.0000; a2 ~ 0.0000; a3 == 0.0000;

V2 x ((—(4 % COS(a2)) + 5 SIN(a2) + 8+ V2) — 4.4 % COS(a2 — a3) + 11 x SIN(a2 — a3)) = —P2;
V2 ((—(4 % SIN(a2)) — 5% COS(a2) + 15 % V2) — 4.4 % SIN(a2 — a3) — 11 * COS(a2 — a3)) = —1;
L1%(—(4% V2% COS(a3 — a2)) + 10 * V2 % SIN(a3 — a2) + 4.4) = 1.7;

+(—4 % COS(a2) + 5% SIN(a2) + 8 * V2 — 4.4 x COS(a2 — a3) + 11 * SIN(a2—

V2 (=4 % (=SIN(a2)) + 5 * COS(a2) + (—4.4 x (—SIN(a2 — a3))) + 11 * COS(a2—

V2« (—4.4 % (—(—SIN(a2 — a3))) + 11 % (—COS(a2 — a3)))) * da3 + (1) x 6P2 = 0;

+(—4 % SIN(a2) — 5 COS(a2) + 15 % V2 — 4.4 % SIN(a2 — a3) — 11 * COS(a2—

(=5 % (=SIN(a2))) + (—4.4 * COS(a2 — a3)) +
x6a2 + (V2% (—4.4 % (=COS(a2 — a3)) + (=11 % (—=(—=SIN(a2 — a3)))))) * 6a3 = 0;
+(1.1 % (=4 % COS(a3 — a2) + 10 x SIN(a3 — a2))) * §V2

+(1.1% (—4% V2% (=SIN(a3 — a2)) + 10 * V2% COS(a3 — a2))) * a3 + (
1.1% (=4 % V2x (—=(=SIN(a3 — a2))) + 10 % V2 % (—=COS(a3 — a2)))) * 6a2 = 0;

(=11  (—SIN(a2—

V2 =0.7459020
0V2=10.2470151

o2 = 0.6193549

a2 =—-0.6424223 a3 =-0.6251772
oa3 = 0.7452404  6P2 = 0.000 000 0.

P2 =3.5953130




The problem statement, in the equation editor format, is in the
form in the first equation at the bottom of the page. Kuhn-Tucker
conditions (automatically generated) are in the middle equation
at the bottom of the page.

The solution (obtained in five iterations) is shown in the last
equation at the bottom of the page.

C. Electric Machinery Problem

For reasons of numeric stability, accuracy, and speed of com-
putation, the method of choice for time-domain solutions of
many engineering problems is often an implicit method of inte-
gration. Consider a set of nonlinear differential equations with
algebraic constraints of the form

y=1r(zyt) (16)
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0=g(z,y,t). (17)

These equations are discretized to obtain an implicit function
relating quantities at time & to quantities at time k — 1. Values
at k are unknown; values at (k — 1), (k — 2), etc. are assumed
to be known. Implicit discretization of (16) and (17) yields the
following algebraic equations:

f(xlmykatlka'—layk—htk—l) =0
g(xk7yk7tk) =0.

(18)
(19)

Simultaneous solution of these equations advances in time by
one step. An example of equations of this type originates from
the simulation of cold start-up of a two-phase induction motor
whose model is given in Fig. 6 [4].

{Minimize :}
0.004 82 % p3°2 + 7.97 % p3 + 388:
{Subject to :}

{Inequality constraints :}
pl < 400; p2 < 300; p3 < 300;

1.1 (510 + 7.2 % pl + 0.00142 % p1°2) + 0.001 94  p22 + 7.85 % p2+

pl + p2 + p3 = 850 + ploss; {and }
ploss = 0.000 03 * p1°2 4+ 0.000 09 * p2”*2 + 0.000 12 * p3/2;

{Original Equations :

7.97 % p3 + 388; }

04) =}pd x 64 % 2;

85) =}ub * 65 * 2;
5

86) =}ub * 66 * 2;

16 % (SQUARE(66) + p3 — 300) + 15 * (SQUARE(85) + p2 — 300) + 114+
(SQUARE(84) + pl — 400) + 123 * (ploss — (0.000 03 x p12 + 0.000 09 % p2/ 2+
0.00012 % p3°2)) + pu2 * (pl + p2 + p3 = (850 + ploss)) + 1.1 % (510 + 7.2« pl+
0.00142 * p172) + 0.001 94 % p2°2 + 7.85 * p2 + 0.004 82 % p3" 2+

{d(eqn1)/d(p3) =}u6 + p3 * (0.000 12 % p3 * 2) + p2 + 0.004 82 x p3 * 2 + 7.97;
{d(eqnl)/d(p2) =}ub + p3 * (0.000 09 * p2 * 2) + p2 + 0.001 94 x p2 * 2 + 7.85;
{d(eqnl)/d(pl) =}ud + p3 * (0.00003 x pl * 2) + u2 + 1.1 % (7.2 + 0.001 42x

pl *2);

{d(eqnl)/d(ploss) =}u3 + (—pu2);
{d(eqnl)/d(p2) =}pl + p2 + p3 — (850 + ploss);
{d(eqnl

w3) =}ploss(0.000 03 * p1”2 + 0.000 09 * p2"2 + 0.000 12 * p3"2);

(equl)/d(
(eqn1)/d(
(eqn1)/d(
(eqn1)/d(

{d(eqnl)/d(u4) =}SQUARE(64) + p1 — 400;
(equ1)d(
(eqn1) /d(15) =}SQUARE(A5) + p2 — 300;
(eqn1)/d(
(eqn1)/d(

116) =}SQUARE(56) + p3 — 300;

pl = 334.2882655

pd = —1.19 %107
64 = 8.106 2776

p2 = 234.8271323
ploss = 19.1153997 p2 = —9.147 7966
15 = 0.000 000 2
55 =8.0729727

p3 = 300.000 0000
w3 = —9.147796 6
w6 = —2.37284438
66 = 6.44 % 1079.




GLAVIC et al.: GENERAL-PURPOSE SYMBOLICALLY ASSISTED NUMERIC COMPUTATION ENVIRONMENT 9

bs - axis

br - axis

ar - axis

Stator

bs @

Fig. 6. Two-phase, two-pole induction motor.

Electrical equations for the ideal two-phase induction motor
are as follows (transformed to d-q reference frame):

. dXgs de . dAgs df
Vqs =Tslqs + d: + /\ds dt’ Vds =Tslds + d: /\ds dt
X d AN d
=iy + T, B i 4 Py D
(20)
/\qs —Llséqs + Lms( lqs + Lqr)
/\ds — Llszds + L S(l’dS + Ld'r‘)
)‘;7‘ Lle .q@ ms L(I )
ils Llsidr + LmS(I’ ) (21)
Ny
Lls :Ls - Lms; /s = L{,‘ - Lm,s; Lms = F.LST (22)

where L, and L, stand for the self-inductances of the stator
and rotor circuits, L, represents the mutual inductance between
stator and rotor, 6,. electrical angle, and 6,,,. is mechanical dis-
placement of the rotor. The mechanical equations for this ma-
chine are

P o .

T, = ngs(zqszfﬂ — zdsz'qr)
2 _dw, 2

I. =5J—+ 5Dw, + T 23
=Pl tprertis 23)

where T, is the electromagnetic torque, .J is the inertia, D is
the damping, and 77, is the load torque (considered zero in our
simulations). In the simulations carried out, it is considered that
the machine is connected to an infinite bus (an ideal voltage
source), and the rotor is assumed to be shortcircuited

Vas = V2VRMS,, cos(wet)

« = V2VRMSy,, sin(w,t) (24)
We=2-m-f
Var =05 vpr = 0. (25)

The complete equations for time-domain simulation, as they
appear in the equation editor, are shown in the equation at the
bottom of the next page.

These equations are in declarative style and are identical to
(20)—(25), with two exceptions [4]. First, the equations have

.
'

———
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amqm—
]

1 Tamax=36.4036%
Tamin=-10.7476;
tmax=0.7
tmin=0.001
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'
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[ A -
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.

womax=376.757
womin=3. 353994
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1.

Fig. 8. Speed characteristic.

wr lamax-36.4036%
Tamin=-10.7476:
womax=376.757
womin=3. 353994

Fig. 9. Torque versus speed.

been set up to automatically compute initial values for all vari-
ables by initially setting time to a negative value. Second, the
fluxes have been scaled by (27 * f). These equations are trans-
formed to symbolic algebraic form by using the trapezoidal rule
of integration. The resulting algebraic equations are then solved
numerically. The case considered here is a cold start-up with
balanced phase voltages (VRMS,s = VRMS;; = 110 V). Re-
sults are depicted in Fig. 7 (torque), Fig. 8 (speed), and Fig. 9
(torque versus speed).

The torque and speed characteristics are what can be ex-
pected from a balanced start-up of an induction motor, with
relatively large oscillations of the torque at the beginning and a
peak torque before the machine reaches steady state.

Observe that the environment includes limited internal syntax
in the form of IF-THEN-ELSE rules that additionally strengthen
the environment’s flexibility.



D. Elementary Feedback Control Example

Consider a minimal feedback system with actuator A and
controller C, as illustrated in Fig. 10.
The mathematical description of the system is as follows:

A:y=g-u (26)
Cli:—k1~y—k2~$ (27)
u=r-+z. (28)

C is a lowpass filter with internal state = and parameters k; > 0
and k2 > 0. A is a pure integrator with state y and gain g >
0. This does not model any particular system but is a simple,
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A

Fig. 10. Minimal feedback system.

generic feedback example that is similar to what might arise in
a variety of settings in power engineering.

w0 = wr;dw = dwr;

{Park’s equations}

{Phase stator voltage}

we = 2% 3.14 x f; f = 60;

a = 0;trash = 0;

{Electromagnetic torque}
{Mechanical equations}
D(ar,t) = wr0 + dwr;

wr = D(ar, t);

{Machine data}

{Applied voltage transformation}
a = ar; {Reference frame fixed to the Rotor}

vagsp = vas ¥ COS(a) + vbs * SIN(a);
vdsp = vas * SIN(a) — vbs x« COS(a);

vas = SQRT(2) * 110 * COS(we * t);
vbs = SQRT(2) * 110 % SIN(we * t);

var’ = 0; vdr’ = 0; {Short-circuited rotor}
{Connect the machine to the power supply at t = 0}

vgs = IF t > trash THEN vqgsp ELSE a;

vds = IF t > trash THEN vdsp ELSE a;

{d-q machine equations, linkage fluxes have been scaled}

vgs = Rs #igs + D(ygs, t)/we + (w0 + dw) * yds/we;

vds = Rs *xids + D(yds, t)/we + (w0 + dw) * ygs/we;

var’ = Rr’ xiqr’ + D(yqr’, t) /we + (w0 — wr0 4+ dw — dwr) * ydr’ /we;
vdr’ = Rr’ * idr’ 4+ D(ydr’, t) /we — (w0 — wr0 + dw — dwr) * yqr’ /we;
yqs = X1s xigs + Xms * (igs + iqr’);

vds = X1s * ids + Xms * (ids + idr');

yar’ = X1’ * iqr’ + Xms = (igs + iqr’);

ydr’ = X1r’ * idr’ + Xms * (ids + idr’);

Te = P/2 % Lms * (igs * idr’ — ids * iqr’);

Te = (2/P) x J x D(dwr, t) + T1; T1 = 0;

{R’s in Ohms, s in H,J in kg-m2}

Rs = 0.295; Rr’ = 0.144; Lms = 0.035 14;

L1s = 0.001 33; L1r' = 0.000 554; J = 0.026;

X1s = we x L1s; X1r' = we x L1r’; Xms = we * Lms; P = 2;
{Initial conditions for cold start-up}

wr0 = 0;t & —0.04; {Connection at t = 0}

dwr = 0;ar ~ 0;yds ~ 0;vqgs ~ 0; vdr’ = 0; yqr’ = 0;
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Fig. 12. System response (y and u) for ¢ = 0.5.

The goal is to simulate the response of y to a step change
in reference signal 7 and to analyze the influence of different
parameter values on the response. The system equations are

D(x,t) = —kl xy — k2 xx;

u=r-+Xx;

g=1

kl =1;

k2 = 10;

trash = 0;

b=1,;

c=0;

r = IF t > trash THEN b ELSE c¢;
t = 0;

The system responses are plotted for fixed values of param-
eters k1 = 1., ko = 10., and two values of the gain g: g = 2
(Fig. 11) and g = 0.5 (Fig. 12).

Lower overshoot and settling time are obtained with the gain
value of 0.5. The system response with any other values of the
parameters can be easily obtained due to the high flexibility that
the environment offers for experimenting.

V. CONCLUSIONS

The presented general-purpose symbolically assisted nu-
meric computation environment can be used directly as an
educational and research tool. This paper has illustrated the

implementation and application of the concept to three power
engineering computational problems and an elementary feed-
back control design, ranging from the problems described by a
set of simultaneous algebraic equations to implicit time-domain
simulation.

Similar applications to other areas of engineering are possible
since no matter which engineering problem should be solved,
one always ends up with a similar formal description of the
problem.

The payoff of the approach is an order-of-magnitude reduc-
tion in the effort to develop sophisticated engineering software
of great clarity and reliability, at the expense of about an
order-of-magnitude decrease in overall computational speed.
Work is underway to reduce the present penalties in computa-
tional speed and to further enhance the power of this high-level
engineering environment through combining the computational
environment with a component modeling paradigm and auto-
matic object-oriented code generation [14], [15] as a final step
in experimenting with a defined problem.

The computation environment is available for interested edu-
cators, instructors, and students without any charge [16].
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