
Frame field smoothness-based approach for
hex-dominant meshing

P.-E. Bernarda,∗, J.-F. Remaclea, N. Kowalskia, C. Geuzaineb

aUniversité catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering
(iMMC), Bâtiment Euler, Avenue Georges Lemâıtre 4, 1348 Louvain-la-Neuve, Belgium

bUniversité de Liège, Department of Electrical Engineering and Computer Science,
Montefiore Institute B28, Grande Traverse 10, 4000 Liège, Belgium

Abstract

An indirect approach for building hex-dominant meshes is proposed: a tetra-

hedral mesh is constructed at first and is recombined to create a maximum

amount of hexahedra. The efficiency of the recombination process is known

to significantly depend on the quality of the sampling of the vertices. A good

vertex sampling depends itself on the quality of the underlying frame field that

has been used to locate the vertices. An iterative procedure to obtain a high

quality three-dimensional frame field is presented. Then, a new point insertion

algorithm based on a frame field smoothness is developped. Points are inserted

in priority in smooth frame field regions. The new approach is tested and com-

pared with simpler strategies on various geometries. The new method leads to

hex-dominant meshes exhibiting either an equivalent or a larger volume ratio of

hexahedra (up to 20%).

Keywords: hexahedral meshing ; mixed hexahedral meshes ; tetrahedra

recombination

1. Introduction

Hexahedral meshes are commonly preferred to tetrahedral meshes in engi-

neering analysis. One of their main advantage resides in the fact that a lower

number of elements is required for the same amount of vertices, compared to

∗paul-emile.bernard@uclouvain.be

Preprint submitted to CAD February 8, 2015

tetrahedra. In computational fluid dynamics, hexahedral meshes offer for in-

stance good results along boundary layers. Indeed, the anisotropic refinement

of tetrahedra is known to produce poor quality elements [1], while this opera-

tion does not affect the quality of hexahedra. In the field of computation solid

mechanics, tetrahedra may also lead to some issues as inaccuracy or locking

problems [2]. Understanding precisely why an element type is better than an-

other in some situations may be still open for debate. It is indeed a fact is that,

even though the generation of tetrahedral meshes can be considered as a well

known problem, the automatic generation of conforming all-hexahedra meshes

is still an open issue.

Mesh generation has always been considered as a time-consuming process in

engineering analysis. The generation of tetrahedral meshes may now be con-

sidered merely automatic. The generation of all-hex and hex-dominant meshes

often requires time consuming user interactions. Our purpose here is to develop

a fully automated procedure for generating non uniform hex-dominant meshes

that contain a maximum amount of hexahedra, both in volume and number.

The main idea of the current approach is to decompose the meshing proce-

dure, as proposed in [3], in two different stages: first, bulk points are created

inside the domain and are subsequently tetrahedralized; then, tetrahedra are

recombined to create a mixed mesh containing a maximum amount of quality

hexahedra. The way points are distributed in the domain is of paramount im-

portance for obtaining a mesh that is truly hex-dominant. The point insertion

algorithm that we have proposed in [3] was based on a first in first out approach:

points of the boundary of the domain were inserted in a queue and each of those

was generating 6 potential neighbors along pre-defined directions. Each poten-

tial point was then inserted in the queue if it is not too close to an existing

point.

The approach of [3] allowed us to generate high quality hex-dominant meshes

with sometimes more than 90% of hexes in volume. Yet, this simple fifo approach

2

Figure 1: Two examples of recombination patterns.

is clearly perfectible. This is the object of this paper.

In this work, we start by developing a smoothness indicator that allow to

identify the geometric singularities of the domain as well as regions where the

geometry is smooth. A new point insertion procedure is then proposed in which

the points are prioritarly inserted in smooth regions where the probability of

generating large chunks of structured hexes is high.

The point insertion method and the construction of the underlying frame

field is developed in section 3. In section 2, we present the algorithm for recom-

bining tetrahedra into hexahedra. Some results are presented in section 4.

2. Recombination: from tetrahedra to hexahedra

2.1. Recombination patterns

One single hexahedron can be decomposed into 5, 6, or 7 tetrahedra [4].

Figure 1 shows 2 of the possible patterns. The problem of finding all the possible

recombination patterns in a tetrahedral mesh may seem intractable but it is

not. Two hexes that do not share any vertex cannot be recombined into one

hexahedron. Thus, searching all potential hexahedra in a tet mesh is the sum

of local problems: each tetrahedron T of the mesh is associated to a cavity

3

Figure 2: The maximum clique, on the right, contains 8 hexahedra, while another clique of

6 hexahedra yields the mesh on the left, with 4 prisms in red. The graphs depicted here are

incompatibility graphs: the independent sets corresponding to the meshes are highlighted in

gray.

that contains all tetrahedra that share vertices with T . Then, patterns are

searched into that small subset of the mesh. This procedure yields an extensive

set of potential hexahedra. If two of the potential hexahedra share one ore more

tetrahedra, they are obviously mutually exclusive. More subtle incompatibilities

have to be taken into account like hexahedra that would share 3 points on one

of their face or that would share one face diagonal.

2.2. Potential hexahedra as a graph

Consider the set of all potential hexahedra H = {H1, . . . ,HNh
}. Here, Nh

is typically of the order of Nt if Nt is the number of tetrahedra in the mesh

(see Table 1). We build the following undirected graph G : each node i of G

4

correspond to a potential hexahedron and edge ij exists if Hi and Hj are com-

patible i.e. if those two hexahedra can exist simultaneously in a finite element

mesh. A subset S = {Hi1 , . . . ,Him} of m hexahedra that are all compatible

with each other form a clique i.e. a subgraph of G such that any pair of nodes

are connected nodes. To maximize the number of hexahedra in the final mesh,

we thus need to find the largest clique possible.

In this specific problem, we must remind that two potential hexahedra that

share no vertices are always compatible. This implies that, asymptotically,

nearly all hexahedra are compatible with each other which means that the num-

ber of edges in G is close to NNh

h , which is huge (a very standard mesh can have

Nh = 106 hexahedra). Consider now the the dual of G i.e. a graph G′ with the

same nodes but where an edge exists between Hi and Hj if and only if it was

not present in G. This graph connects hexahedra that are incompatible. Com-

patible elements being clustered, the number of edges in G′ is of order O(Nh).

Note that finding the maximal clique of G is equivalent to finding the maximal

independent set of the dual graph G′.

The maximal independent set can be defined as the larger subgraph S, i.e.

the independent set with the highest m. Weights wj can also be defined on the

nodes of the graph and the maximum independent set can be defined as the one

that maximizes
∑m

j=1 wj .

Unfortunately, the general problem of the maximum clique/independent set

is known to be NP-hard. The complexity for finding all the maximum cliques,

in the worst-case, varies like O(αn) for n nodes.

In the algorithm proposed in [5], all the maximum cliques are found. At

some point, the decision criteria to choose a node is a function f , equal to nc,

the number of compatible adjacent nodes. Of course, one could change this

function to be maximized and make it depend on other criteria. For instance,

one could choose a weighted sum including the element quality and the bound-

ary proximity to create this function to maximize.

5

On Figure 2, the algorithm from [5] has been used to find the maximum

clique (depicted on Figure 2(b)) on a very simple cubic domain. The opti-

mal solution made of 8 hexahedra is found. The corresponding incompatibility

graphs of potential hexahedra are shown, with highlighted independent sets

in gray on Figure 2. We observe that the number of potential hexahedra in

the graph is Nh = 12 and the average degree of a node (average number of

connections in the graph G′) is C(G′) ≈ 3. In Table 1 are summarized some

statistics for larger graphs on the cube and the dome geometry from Figure 8(a).

Table 1: Number of potential hexahedra Nh, of initial tetrahedra Nt, and average degree C

in graph G′.

Geometry Nt Nh C(G′)

Cube (3× 3× 3) 162 181 68

Cube (4× 4× 4) 387 469 76

Cube (5× 5× 5) 756 992 86

Dome (Fig.8(a)) 5757 5390 77

However, since such a clique algorithm presents a high computational cost,

we use hereafter a simple greedy algorithm for meshes involving a large amount of

elements, while keeping the idea of the function to maximize. The greedy algo-

rithm consists in sorting all the potential hexahedra, according to this weighted

function, and choosing in priority the ones with the higher values. Note that if

the optimal solution from the clique problem is obviously the optimal solution

for the greedy algorithm in the 8 hexahedra cube, this is of course not a general

result.

Let us finally mention that, depending on the kind of graph involved in this

mesh generation problem, one could consider using appropriate heuristics for

these graphs. Such heuristics could allow one to use faster algorithms for solv-

6

Figure 3: Cut view of a dome meshed using standard Delaunay point insertion (a) and the new

frame field based approach (b), presenting a volume ratio of hexahedra of 38.6% and 94.8%

respectively. Hexahedra are colored in gray, while the colors yellow, red and green correspond

to tetrahedra, prisms and pyramids respectively.

ing the maximum clique (or approximate maximum) problem.

3. Point insertion

In two dimensions, we have shown in [6] that any mesh composed of an even

number of triangles could be converted into a quad mesh using edge swaps and

recombination. The quality of the final quand mesh benefits of course of an

appropriate point insertion scheme [7] but there is a guaranty of finding a mesh

composed of quadrangles only. In 3D, things are very different. The recombina-

tion algorithm that we have proposed here-above does not guarantee that every

tetrahedra will be converted into an hexahedra. In 3D, the percentage of hex-

ahedra in the final mesh strongly depends on the point insertion scheme. This

sensitivity is illustrated on Figure 3 where a dome is meshed using a standard

Delaunay refinement approach and using our new approach. Here, we do not

7

Figure 4: Close up view of the 2D frame field of the hollow turbine blade depicted on Figures

8(c) and 11, the color field representing its smoothness. The frame field directions around

point n0 are represented with gray curves (on the right). For such a smooth frame field, four

(or six in 3D) additional points ni, i = 1 . . . 4, are correctly computed. On the contrary,

geometric singularities located in the blue spots may lead to inaccurate additional points.

consider any post-smoothing of the points positions (as, for instance, in [8, 9])

to improve the mesh quality, but we propose a pre-computation to directly ob-

tain appropriate point locations. This a priori approach is based on two main

ingredients: a frame field that will guide point insertion and the point insertion

scheme itself i.e. the way points are prioritized in the insertion queue.

3.1. The two-dimensional frame field

Let us briefly recall the main idea for computing the two-dimensional frame

field.

A frame field is a set of two orthonormal tangent vector fields that vary smoothly

on the 2D manifold. Frame fields may be forced to aligned with the boundary

of the domain or to the principal directions of curvature of a surface. Frame

fields are mathematical objects that have nasty symmetries: in 2D, any rotation

of kπ/4, k ∈ Z makes the frame field invariant. In 3D, there are 24 symmetries.

In 2D, computing frame fields is straightforward, using e.g. finite elements.

Let θ be the local angle between the frame field and a reference basis at a given

8

point. The frame field at any point of the surface is found by solving an elliptic

PDE on the surface Ω with boundary conditions that enforce θ on the domain

boundary ∂Ω :

∇2a(θ) = 0 on Ω, a(θ) = ā on ∂Ω

∇2b(θ) = 0 on Ω, b(θ) = b̄ on ∂Ω (1)

with a(θ) = cos(4θ), b(θ) = sin(4θ), and ā, b̄ the boundary conditions set in

such a way that the frame field is aligned on the outgoing normal vector to the

domain. The frame field is eventually given by

θ =
1

4
atan2(b, a).

Details about frame field computation can be found in [7, 3]. On Figure 4 is

depicted an example of 2D frame field.

3.2. Point insertion

The aime of a point insertion algorithm is to build a set of points in the

domain that are aligned with the frame field and that have a density that is

predetermined. Our approach is based on a priority queue. All the points of

the boundary of the domain are initially inserted in the queue. Then, the point

at the tail of the queue is removed from the queue and 6 potential points in

3D or 4 potential points points in 2D are created along the local directions of

the frame field (see Figure 4). Those potential points are inserted in the queue

provided that they are not too close to existing points of the set of points and

that they lie in the domain. In [3], the priority queue was a fifo queue i.e. the

priority was “first in, first out”. This queueing system implies that new points

are inserted layer by layer, starting from the boundaries and moving towards

the inside of the domain. This first approach looks very much like a frontal

approach: fronts are colliding at some point, typically close to the medial axis

of the domain. This behavior is visible on the left image of Figure 5. On this

same picture, it is clear that in those regions where the frame field is smooth,

9

Figure 5: Quad meshes obtained using the fifo frontal algorithm (left) and the smoothness-

based algorithm (right).

the point insertion scheme produces very good results. On the other hand,

when fronts are reaching non smooth regions or are close to singularities, it

becomes less easy to produce optimal point locations. Figure 4 shows frame

field smoothness for that particular domain. Singularities are localized in the

blue spots: we observe large variation of the frame field around these points.

The idea here is to change the way the queue is prioritized: points should first

be inserted where the frame field is smoother. Points close to singularities will

be inserted at the end, leaving the algorithm fill up large parts of the domain

bulk where frame fields are smooth.

Two issues must be addressed at this point. First, the definition of smooth-

ness itself. Then, as we will observe in Section 4, the fact that a good point

insertion algorithm may be quite useless if based on a poor 3D frame field: it

must be smoothed as well.

3.3. Building the three-dimensional frame field

Similarly to the two-dimensional meshing procedure, we start with a tetra-

hedral background mesh to extend the frame field and mesh size field from the

boundaries to the volume. But unlike the two-dimensional case, describing a

frame requires three degrees of freedom instead of one. It is indeed not possible

10

Figure 6: The rotations applying a frame on another are each characterized by an angle αi ≥ 0

and an axis ai, i = 1 . . . 24.

Figure 7: Cut views of the frame field smoothness for the dome: using the nearest neighbor

on boundary (a), smoothing with constant diffusivity (b) and a variable diffusivity (c).

to formulate the smoothing of a 3D frame field as an elliptic PDE problem.

Here, we choose to consider a local smoothing method where a single frame is

aligned with its mesh-neighbors.

First, let us consider only two frames. There are 24 possible rotations to

apply a frame on another (some of these are depicted on Figure 6), each rota-

tion being characterized by an angle αi ≥ 0 and an axis ai. We compute these

rotations, and choose to consider the one with the smaller angle α, the other

transformations are discarded.

Then, let us consider a node n0 surrounded by N neighbors ni, i = 1 . . . N .

We have chosen N rotations applying the frame of n0 on the frame of each ni,

11

i.e. N couples (ai, αi). Smoothing is done by applying the following rotation of

axis a and angle α to the frame of n0:

a∗ =

N∑
i=1

aiαi , α = ||a∗|| , a =
a∗

α
. (2)

Note that for N ≥ 2, several iterations may be required to obtain convergence

of the frame of n0. In the computations of Section 4, we considered that con-

vergence is reached when the angular difference ∆α < 5 10−3radians ≈ 0.29◦.

In practice, when the whole global frame field is not converged, we observed an

average of 2.1 local iterations, while this number gets closer to 1 as the global

frame field converges.

We apply this local transformation to the frame field at each node of the 3D

background mesh. Then, we compute the infinity norm N∞ = max(α) as the

maximum angle of rotation used to align a frame on its neighbors, and iterate

until convergence of this norm. In the computations of Section 4, we considered

that convergence is reached when N∞ < 3 10−2 radians, i.e. when the larger

rotation angle encountered in the whole domain is smaller than about 1.7◦.

These iterations eventually correspond to some pseudo-diffusion operator.

We imposed a Dirichlet boundary condition, which is the 2D frame field com-

puted using the PDE (1). For the initial condition of the iterative smoothing,

the frame field is given the value of its nearest frame on the boundary. We

observed a huge importance of that initial condition. Indeed, using for instance

a totally random frame field as initial condition leads to a totally different con-

verged field. This iterative smoothing does not erase geometric singularities and

does not create new ones either: this is why it is mandatory to initiate the frame

field with a good first guess.

Nodes are sorted with respect to their angular difference between two it-

erations. This is done to improve the convergence. The less converged nodes

are treated last like in a Gauss-Seidel method. Finally, computational costs are

12

strongly reduced by stating that if the frames of a node and its neighbors were

not modified during the previous iteration (i.e. the criterion ∆α mentioned

above was directly satisfied), computation is unnecessary for that node.

While the frame field is smoothed, we also evaluate its smoothness s at each

node, simply defined as

s = 1− 4

πN

N∑
i=1

αi. (3)

The smoothness is thus simply a measure of the average angle α to apply the

frame of node n0 on each neighbor, with a scaling to obtain a lower bound of

approximately 0 and a maximum value of 1 for perfectly aligned frames.

Figure 7 depicts the frame field smoothness in the center of the dome: in

Figure 7(a), the frame field is not smoothed, but is equal to the frame field

of the nearest neighbor on the boundary, while in Figure 7(b) is depicted the

result of the iterative procedure described above. However, the result in 7(b)

does not seem sufficient to really improve the ratio of hexahedra. We also would

like to reduce the impact of the singularities on their direct neighborhood, and

therefore extend the regions presenting a smooth frame field.

To achieve this, we slightly modify the rotation (2) and introduce different

weights ci depending on the local smoothness si:

a∗ =
N∑
i=1

ci(si)aiαi , α = ||a∗|| , a =
a∗

α
, (4)

with a relationship as for instance

c(s) =

 1 if s ≥ 0.85

10−3 if s < 0.85
(5)

The iterative smoothing procedure then becomes similar to a diffusion operator

with a variable diffusivity, depending on local smoothness. Simply put, infor-

mation strongly propagates from smooth to non smooth regions, but does not

propagate much in the opposite direction.

13

On Figure 7(c) is depicted the resulting frame field smoothness: the impact of

the singularities on the frame field is clearly diminished, leading to wide regions

filled with smooth cross field.

4. Numerical results

This section is devoted to comparing the point insertion algorithms and the

frame field computations described on Section 3 on the geometries depicted in

Figure 8.

We will compare the final meshes, in particular the ratio of hexahedra in num-

ber and volume, as the computational time required by the different approaches.

On Tables 2 and 3 are summarized the results for every geometry and method:

we compare the two point insertion algorithms (frontal queue and smoothness-

based ordered set) and the two frame fields (smoothed or simply based on its

nearest boundary neighbor), which leads to four computations on each geome-

try.

As in previous figures, hexahedra are colored in gray while the colors yellow,

red and green correspond to tetrahedra, prisms and pyramids respectively. As

previously mentioned, when the frame field is build using the smoothing algo-

rithm, the threshold relationship (5) is used and the frame field is initiated to

its nearest neighbor value on the boundary.

The first two geometries are the dome (Figure 8 (a)) and the Stanford bunny

(Figure 8 (b)). On Figures 9 and 10 are depicted cut views of the 3D mesh for

the frontal approach and the frame field-based approach. We observe a large

improvement using the new approach: the half-sphere of the dome is filled with

hexahedra, while the bunny presents large blocs of aligned hexahedra.

This is confirmed by the hexahedra ratios in Table 2. The new cross-field based

approach is particularly efficient on these two geometries for the same reason:

they prensent a large volume for a small amount of boundaries. However, the

difference between the two is that the faces of the dome are straight while the

14

Figure 8: The six geometries used to compare the different approaches.

15

Table 2: The times tb, ti and tr are the times (on a single laptop computer) for background

mesh and smoothing operations, for point insertion and for tetrahedra recombination respec-

tively, tt is the total time for meshing. For each test case, the frame field can be computed

using the nearest neighbor (NN) or the smoothing iterative procedure (Sm), and the insertion

algorithm can be either frontal using a queue (Fr) or frame field-based using an ordered set

(FB).

Test case Nb. elements Time (s) Hex ratio (%)

tb ti tr tt Nb Vol

Dome (Fig.9)

(NN-Fr) 34864 1.2 4.8 30.1 39.3 62.1 89.7

(NN-FB) 33741 1.2 4.1 24.8 32.9 64.9 90.9

(Sm-Fr) 32623 6.3 3.5 23 35.6 68.8 92.2

(Sm-FB) 27115 6.3 4.4 20.1 33.8 84 96.6

Bunny (Fig.10)

(NN-Fr) 252246 20.9 27.9 204.7 272.5 23.7 60.7

(NN-FB) 218843 21.5 35.3 178.4 250.8 30.1 68.4

(Sm-Fr) 226083 152.5 24.1 177.4 367.4 29.8 66.9

(Sm-FB) 175541 150.6 29.1 133.8 327.2 43.2 79.1

Blade (Fig.11)

(NN-Fr) 177075 86.6 72.4 138.5 318 45.3 80

(NN-FB) 169525 105 90.8 135.6 356 48.3 81.4

(Sm-Fr) 168916 132.5 68 124 344.7 48.5 81.7

(Sm-FB) 155691 111.5 61 115.5 308.4 55.4 85

Piece (Fig.8(d))

(NN-Fr) 99080 29 27.3 71.1 142.4 55.1 85.2

(NN-FB) 98546 27.8 43.8 82.5 170 55.8 85.5

(Sm-Fr) 96783 50.1 20.3 73.7 157.3 57.3 86.1

(Sm-FB) 96458 61.9 27.7 69.5 172.6 58.2 86.6

16

Figure 9: Cut view of the mesh, in the center of the dome: frontal (a) and smooth frame field

(b) approaches.

Figure 10: Cut view of the Stanford bunny mesh: frontal (a) and smooth frame field (b)

approaches.

17

Figure 11: Cut view of the hollow turbine blade mesh: frontal (a) and smooth frame field (b)

approaches.

boundaries of the bunny are more chaotic.

Indeed, for the dome, using the new (smoothness-based) point insertion only

leads to 1% improvement in volume ratio and the frame field smoothing alone

leads to 2.5% improvement. On the contrary, for the bunny, the new insertion

leads to 8% improvement and the frame smoothing only to 6%. This is mostly

due to the fact that the frontal algorithm does a better job on geometries with

straight faces, while the non-smoothed initial frame field is worse with geome-

tries presenting concavities as the dome. When combining the smoothing with

the new insertion algorithm, we obtain a huge improvement of 7 to 18% in vol-

ume ratio.

Concerning the computational times, all computations show that the smoothness-

based insertion is a bit slower. This was predictable since inserting elements in

a ordered set has a larger cost than simply inserting at the end of a queue. But

we also observe that, if the smoothing and insertion take more time, the tetra-

hedra recombination time usually strongly decreases. This is due to the fact

18

Figure 12: Cut view of the aircraft fuselage mesh: frontal (a) and smooth frame field (b)

approaches.

that a better alignment of the points leads to a lower total number of elements,

decreasing the amount of possible recombinations.

Geometry 8(c) is a hollow turbine blade, which involves a lot of thin parts

(tends to benefit to the frontal algorithm) and presents concavities (decreasing

the quality of the initial non-smoothed frame field). The consequence is that

on the one hand, using the new insertion with a poor frame field does not yield

much improvement, and on the other hand, the frontal algorithm does not ben-

efit much of a smoothed frame field either. But again, combining the two leads

to a volume ratio 5% larger. Cut views are depicted on Figure 11.

Geometry 8(d) is a mechanical piece involving straight faces and different parts

not as thin as the blade. Therefore, this is a typical geometry where the simple

frontal algorithm does a good job, the final improvement does not exceed about

2% for a computational time approximately 20% higher.

Geometry 8(e) consists in an aircraft fuselage with its tail. If boundaries are

quite straight, it presents a large central volume to mesh: the new approach

19

Table 3: The times tb, ti and tr are the times (on a single laptop computer) for background

mesh and smoothing operations, for point insertion and for tetrahedra recombination respec-

tively, tt is the total time for meshing. For each test case, the frame field can be computed

using the nearest neighbor (NN) or the smoothing iterative procedure (Sm), and the insertion

algorithm can be either frontal using a queue (Fr) or frame field-based using an ordered set

(FB).

Figure Nb. elements Time (s) Hex ratio (%)

tb ti tr tt Nb Vol

Fuselage (Fig.12)

(AF) 95177 9.3 13.1 80.9 105.5 44.2 78.8

(AS) 94002 8.9 16.1 83.1 117.5 44.9 79.3

(SF) 91810 84.5 12.9 88.1 184.6 49 81.4

(SS) 77025 94 15.7 60.2 175.3 57.2 86.3

Naca (Fig.8(f))

(AF) 24247 1.5 5.1 17.5 27.6 76.4 93.2

(AS) 25000 2 6 17.7 29.6 73 92.2

(SF) 22913 2 3.5 13.1 21.2 80.7 93.9

(SS) 24898 2 4.4 15.9 25.1 74.1 92.3

again leads to an improvement of 8% for a time increased by 70% (Table 3).

On cut views of Figure 12, we see that, obviously, the frontal algorithm gives

a nicer hexahedral mesh close to the fuselage straight boundary, but has issues

when getting closer to the center.

Finally, geometry 8(f) is a simply extruded naca profile: the two approaches

gives approximately the same result (less than 1% difference, which becomes

non significant). We observed that, by imposing a smaller required mesh size,

both methods reached a volume ratio of 97%, which confirms that the simple

frontal algorithm gives good results for such simple geometries.

20

Note finally that the memory footprint did never exceed 800 Mb on the

larger geometries.

5. Conclusions

A first iterative method has been proposed to obtain a smoother three-

dimensional frame field. A second method was proposed to insert new points

preferentially away from the geometric singularities.

This new frame field-based approach has revealed either as efficient or much

more efficient than the previous frontal indirect approach, depending on the

geometries, for a reasonable additional computational cost ranging from 0 to

70%. If each isolated method only leads to minor improvements, we observed

that combining the two methods leads to large benefits in terms of hexahedra

ratio. The larger improvements, up to 20%, have been observed on geometries

presenting a large volume compared to their surface.

[1] R. Biswas, R. C. Strawn, Tetrahedral and hexahedral mesh adaptation for

cfd problems, Applied Numerical Mathematics 26 (12) (1998) 135 – 151.

[2] M. A. Puso, J. Solberg, A stabilized nodally integrated tetrahedral, Interna-

tional Journal for Numerical Methods in Engineering 67 (6) (2006) 841–867.

[3] T. Carrier Baudouin, J.-F. Remacle, E. Marchandise, F. Henrotte,

C. Geuzaine, A frontal approach to hex-dominant mesh generation, Ad-

vanced Modeling and Simulation in Engineering Sciences 1 (1) (2014) 1–30.

doi:10.1186/2213-7467-1-8.

[4] S. Yamakawa, K. Shimada, Fully-automated hex-dominant mesh generation

with directionality control via packing rectangular solid cells, Int J Numer

Meth Eng 57 (2003) 2099–2129.

[5] E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for

generating all maximal cliques and computational experiments, Theoretical

Computer Science 363 (2006) 28 – 42.

21

http://dx.doi.org/10.1186/2213-7467-1-8

[6] J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen,

C. Geuzaine, Blossom-quad: a non-uniform quadrilateral mesh generator

using a minimum cost perfect matching algorithm, Int J Numer Meth Eng

accepted.

[7] J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Bechet, E. Marchan-

dise, C. Geuzaine, T. Mouton, A frontal delaunay quad mesh generator us-

ing the l norm, International Journal for Numerical Methods in Engineering

94 (5) (2013) 494–512.

[8] B. Levy, Y. Liu, lp centroidal voronoi tessellation and its applications, in:

H. Hoppe (Ed.), ACM Transactions on Graphics, Los Angeles, 2010.

[9] T. Carrier Baudouin, J.-F. Remacle, E. Marchandise, J. Lambrechts, F. Hen-

rotte, Lloyd’s energy minimization in the lp norm for quadrilateral surface

mesh generation, Engineering with Computers 30 (1) (2012) 97–110.

22

	Introduction
	Recombination: from tetrahedra to hexahedra
	Recombination patterns
	Potential hexahedra as a graph

	Point insertion
	The two-dimensional frame field
	Point insertion
	Building the three-dimensional frame field

	Numerical results
	Conclusions

