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Abstract

Given a weighted graph G = (V, E), the Equitable Traveling Salesman Problem (ETSP) asks for
two perfect matchings in G such that (1) the two matchings together form a Hamiltonian cycle in G
and (2) the absolute difference in costs between the two matchings is minimized. The problem is shown
to be NP-Hard, even when the graph G is complete. We present two integer programming models
to solve the ETSP problem and compare the strength of these formulations. One model is solved
through branch-and-cut, whereas the other model is solved through a branch-and-price framework. A
simple local search heuristic is also implemented. We conduct computational experiments on different
types of instances, often derived from the TSPLib. It turns out that the behavior of the different
approaches varies with the type of instances. For small and medium sized instances, branch-and-
bound and branch-and-price produce comparable results. However, for larger instances branch-and-
bound outperforms branch-and-price.

Keywords: Combinatorial Optimization; Travelling Salesman Problem; Branch-and-Bound; Branch-
and-Price; Exact Algorithms

1 Introduction

We consider the following variation of the Traveling Salesman Problem (TSP). Given is an edge-weighted
graph G = (V, E), with |V]| even, and with edge-costs d. for each e € E. The cost of a matching in
G is defined as the sum of edge-costs of the edges in the matching. The problem is to find two perfect
matchings in G such that (i) the two matchings form a Hamiltonian cycle in G, and (ii) the absolute
difference of the costs of these two matchings is minimum. Notice that a feasible solution need not exist.
We call this problem the EQUITABLE TRAVELING SALESMAN PROBLEM, or ETSP for short.

This name is motivated by the following, more frivolous, description of our problem: two friends, in
possession of a single bike, have agreed to jointly visit all given cities, i.e., to construct a tour. In addition,
they have agreed to use the bike as follows: one friend rides (pedals) the bike, while the other sits on
the bike’s back. Directly after having visited a city, the two friends interchange roles. The objective in
this problem is to find a tour such that the difference between the distances pedalled by each of the two
friends, is minimum. (Clearly, one can also imagine two coach-drivers who swap driving at each stop.)
An example of an instance of the ETSP is given in Figure

The ETSP belongs to a broader class of combinatorial problems, known as balanced optimization
problems. Balanced optimization problems differ form regular optimization problems in the sense that,
informally speaking, costs of different “parts” of the solution should be close to each other; this happens
in situations where an equal or fair distribution of resources/costs is pursued. One consequence is that 0
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Figure 1: Example of an ETSP instance and a solution. The perfect matching consisting of the blue
edges has a cost of 12 and the perfect matching consisting of the red edges has a cost of 11. The vale of
the resulting solution equals 1.

is a lowerbound for any optimum value (which is not necessarily true in a regular optimization problem).
The general mathematical form of balanced optimization problems can be stated as:

mlglergl_lze{rgleag( w(s) — min w(s)} (1)
where F is a family of feasible subsets (solutions) of some superset .7, and w(s) a cost (weight) function
which assesses the cost (weight) of element s € .. For instance, in the context of ETSP, superset .7
encompasses all possible perfect matchings in the graph G, and F comprises of all subsets S C .¥ such
that |S| = 2 and the two matchings in S form a Hamiltonian cycle. The objective function in
minimizes the imbalance: the absolute difference in costs between the most expensive and least expensive
element in the solution.

A general class of balanced optimization problems as defined by equation has been characterized
first by [Martello et al| (1984). Their focus is on balanced optimization problems that are solvable in
polynomial time. Many optimization problems identified in literature can be reduced to the aforemen-
tioned structure. A number of examples can be found in Zeitlin (1981); Martello et al|(1984); |Camerini
et al.| (1986)); Katoh and Iwano| (1994); Berezny and Lacko| (2005); Cappanera and Scutellal (2005)); Becker
(2010); [Delcour| (2012); Ficker et al. (2016]) - most of these results either involve polynomial-time algo-
rithms for specific balanced optimization problems, or heuristics for balanced optimization problems that
are (NP-)hard. In this paper, we describe exact approaches for a particular balanced optimization prob-
lem that is NP-hard; we see the outcome of this study as a first step towards understanding the behavior
of different types of approaches that can be applied to NP-hard balanced optimization problems.

A problem that is closely related to (but different from) the ETSP is the so-called balanced TSP, studied
by [Larusic and Punnen| (2011). In the balanced TSP, one seeks to minimize the difference between the
largest edge-cost and the smallest edge-cost of edges used in a tour. Larusic and Punnen| (2011]) develop
several heuristics, mainly relying on lower and upper bounding procedures, to solve the balanced TSP.
They mention that their algorithms can be used to solve an optimization problem originating in the
maintenance of aircraft engines. It is not difficult to define a problem that is a generalization of both the
ETSP and the balanced TSP. Indeed, given an edge-weighted graph GG, and an integer k, consider the
question: do there exist k disjoint matchings My, My, ..., My with M; C E,|M;| = L}Q fori=1,...k
such that U;M; forms a Hamiltonian cycle in G7 Observe that for ¥ = 2 the ETSP arises, while for
k = |V the balanced TSP arises (see (2014)).

[Bassetto and Mason| (2011 explore a periodic routing problem, where two tours of minimal total
length through a number of nodes (customers) need to be found. Some customers must occur in both
tours, others must occur in exactly one tour. The absolute difference between the number of customers
in each tour is restricted from above, thereby obtaining two balanced tours. Notice that
do not consider reducing the imbalance between the two tours as part of their objective
function; instead, the maximum allowed imbalance is part of the problem input and enforced through a
constraint in the model. Using a similar approach to [Bassetto and Mason| (2011)), [Gouveia et al.| (2013)
investigate a vehicle routing problem where the number of customers serviced by a vehicle is bounded
from below and from above. Solutions to this problem are balanced in an indirect way, because each
vehicle has approximately the same workload.




Another problem, which structurally bears strong resemblance to the ETSP problem, is the Market-
Split problem (Cornuéjols and Dawandel [1998; |Aardal et al.l 2000)). The Market-Split problem attempts
to minimize the total amount of slack (positive and negative) which has to be added to a set of diophantine
equations to make the system feasible. The problem is often introduced with the example of a company
having two sales divisions responsible for supplying retailers with products. The objective is to allocate
each retailer to either one of the divisions such that each division controls a predefined fraction of the
market for a given product; deviation of these predefined fractions should be minimized. A similar
structure is present in the ETSP.

The goal of this work is to investigate how to solve instances of ETSP to optimality. For that
purpose, we study and compare exact solution methods based on two integer programming formulations
for the ETSP. We will detail a branch-and-price approach for our problem, and compare it with a more
traditional branch-and-bound method. In addition, we describe a local search method, and show how all
these methods fare on different classes of instances of the ETSP.

The paper is organized as follows. Section [2| analyzes the complexity of the ETSP, showing that
the problem, including some special cases, is NP-Hard. Section [3] introduces two integer programming
formulations for the ETSP problem. A branch-and-price framework to solve one of these formulations is
outlined in Section[4] and the local search algorithm is described in Section[5} Outcomes of computational
experiments for the ETSP are reported in Section [6} Section [7] offers the conclusion.

2 Complexity Analysis

In this section we analyze the computational complexity of the ETSP. We show that deciding whether a
feasible solution exists to an instance of ETSP is NP-complete, and we show that, even for a complete
graph, it is NP-hard to find an optimum solution. Let us formally state the decision version of ETSP:

Input: an undirected graph G = (V, E), with |V even.

Goal: do there exist two disjoint perfect matchings M; and My with M; C E and Ms C F such that
M7 U My is an Hamiltonian cycle in G?

It is not difficult to verify that the decision version of the ETSP is at least as hard as deciding whether a
graph with an even number of nodes has a Hamiltonian cycle. Hence we can state the following theorem:

Theorem 1. The decision version of ETSP is NP-complete.

The optimization version of ETSP, simply referred to as ETSP, involves a cost d, for each edge e € F.
Again, let us formally state the problem, where, for a subset of the edges @ C E, we use the following

notation: ¢(Q) =>_ g de-

Input: an undirected, weighted graph G = (V, E), with edge costs d. for all e € E, and with |V| even.

Goal: find two disjoint perfect matchings M;, My C E such that M; U M, forms a Hamiltonian cycle in
G, and such that |c¢(M;) — ¢(M3)] is minimum.

Even for complete graphs, ETSP is a difficult problem:
Theorem 2. ETSP is NP-hard for complete graphs.

Proof. We use a reduction from Hamiltonicity: given an undirected graph H = (W, F'), does H contain a
Hamiltonian cycle? We assume (wlog) that || is even. We now build a complete, edge-weighted graph
G = (V,E) that forms the instance of ETSP. Let V = W, and for each edge e € F, we introduce an
edge e € FE, with edge cost d. = 0. Consider now the edges not in F'; we (arbitrarily) denote them by
{e1,e2,...,ep}, with p = |E'\ F|. Each of these edges is also present in E; we set d., = 2. 5=1,...,p.
This completes the instance of ETSP.

We now argue that the existence of a Hamiltonian cycle is equivalent to the instance of ETSP having
an optimum solution with value 0. Clearly, if there exists a Hamiltonian cycle in H then there is a unique
decomposition of this cycle into two disjoint perfect matchings, each with cost 0. This leads to a solution
of ETSP with value 0. On the other hand, suppose that the instance of ETSP has a solution with value
0. Thus, the difference between the costs of the two matchings forming a Hamiltonian cycle equals O.
Consider the most expensive edge in this pair of matchings, and denote its cost by dpaz. If dmaz > 0,
then, by choice of the edge-costs, the sum of the edge-costs in the other matching will be less than d,, .
Hence, no solution with value 0 exists. It follows that d,,q. = 0, which implies that all edges in the two
matchings that form a Hamiltonian cycle have cost 0, leading to a Hamiltonian cycle in the graph H. O



We end this section by defining the concept of an equitable tour.

Definition 3. A tour is called equitable if the two matchings composing the tour have equal cost, i.e., if
the value of the objective function of an instance of ETSP equals 0.

3 Formulations for the ETSP

In this section, we introduce two integer programming formulations of the ETSP. Model FBB (Section
is a direct adaptation of the well-known model proposed by Dantzig, Fulkerson and Johnson (Dantzig
et al.| (1954)). Several alternative TSP models exist which can be modified to accommodate the equity
objective. For instance, flow-based models for the TSP such as|Gavish and Graves| (1978]), as well as time
(position) indexed formulations used to solve time-dependent T'SP problems (Gouveia and Vof§| (1995));
Godinho et al.| (2014)) can all be adapted to model the ETSP problem. For an overview of alternative TSP
models, as well as variations on the subtour elimination constraints @, we refer to Oncan et al. (2009).
An exhaustive comparison of these models is however outside the scope of this paper. We introduce a
new formulation based on matchings in Section [3.2}

The integer programming formulations, will treat a problem slightly more general than the ETSP
where the edge-sets, and the edge-costs, need not be the same for the two matchings. We use Ep and
Er to denote the two edge-sets; Ep refers to the ‘blue’ edges that can be used for one matching, while
ERr refers to the ‘red’ edges to be used for the other matching. More precisely, we are given a graph
G = (V,Eg U ER), and, let Mp (Mpg) refer to the set of perfect matchings in (V, Eg) ((V, Er)). Each
edge e in Ep (ER) has a cost d? (d7). The cost of a matching M € Mp is defined as (M) = > ), db.
Analogously, the cost of a matching M € Mp is ¢"(M) =} . ., di. Note that this problem definition
does not require that Eg N Fr = (). Furthermore, a single edge e € Fg N Eg may have different weights
in the red or the blue matching (i.e., d> = d” does not necessarily hold). Finally, we define §(5), S C V
as the set of edges having exactly one endpoint in S. Additionally, §(v),v € V is used as shorthand
notation for 6({v}).

3.1 Formulation FBB

The first formulation uses a binary variable for each edge e € Ep:

e

» . | 1 if edge e is selected in the blue matching,
0 otherwise,

as well as a binary variable for each edge e € Fg:

e -

~ | 1 if edge e is selected in the red matching,
0 otherwise.

FBB : min | dbal = Y dial (2)
eeEp ecER
s.t. Z b =1 YveV (3)
ecd(v)NEp
>oooal=1 Yo eV (4)
ecd(v)NER
xZ+x£§1 Vee EgNER (5)
D A VS cV,|S| >3 (6)
ecd(S)NER e€d(S)NER
zb € {0,1} Ve € Ep (7)
x, € {0,1} Ve € Er (8)

The formulation above is not linear due to the absolute value present in the objective function.
A standard trick exists to make the formulation linear: using an additional variable, say w, adding
two constraints of the form w > Y, diab — Yoeerpdeve and w > 30 o diwl — >0 g dbz?, and

evver



replacing the objective function by 'min w’ makes the formulation linear. For reasons of compactness we
use formulation —. Constraints and ensure that each vertex is incident to exactly one edge
from the blue matching and one edge from the red matching. Constraints imply that each edge can
be used by at most one matching. Constraints @ model the subtour elimination constraints (notice that
there is an exponential number of them). Observe that model FBB remains a correct formulation of the
ETSP when all subtour constraints with |S| odd are removed from the formulation; this is a consequence
of the fact that any integral subtour must have an even number of edges due to the alternation of blue
and red edges. We chose to keep the redundant subtour constraints with |S| odd in the model, because
they strengthen the LP-relaxation. Finally, constraints @ and are the integrality constraints.

When we speak of the solution of the linear relaxation of FBB (which we denote by LEBB), we refer to
a solution (2%, z7) satisfying (3)-(6)), 2%, 27 > 0, for which the value | Y dbab — 3 e, diay| (which
we denote by zpp) is minimum.

eeEp

3.2 Formulation FBP

Our second formulation has a variable for each perfect matching in the graph. More precisely, we define
a binary variable for each perfect matching M € Mp in (V, Ep):

» | 1 if perfect matching M is selected as the blue matching,
YM =9 0 otherwise,

as well as a binary variable for each perfect matching M € Mg in (V, ERg):

» .| 1 if perfect matching M is selected as the red matching,
YM =1 0 otherwise.

FBP : min Y Sk - YD M)yl 9)
MeMp MeMpg
s.t. Z y?w =1 (10)
MeMp
> =1 (11)
MeMp
D T D S T/ | Ve € EgN Eg (12)
MeMp: eeM MEMp: eeM
D0 D S+ D v =2 VS V|8 >3 (13)
e€d(S) MeMp:ee M MeMp:eeM
yar €{0,1} VM € My (14)
yi €40,1} VM € Mg (15)

The same comment we made with respect to the linearity of formulation FBB applies to formulation
FBP as well. Formulation FBP selects two perfect matchings by constraints and . Constraints
ensure that an edge in the intersection of Ep and Er can be used by at most one of the two
matchings. Constraints express the subtour elimination constraints, and constraints and
are the integrality constraints. Observe that this formulation not only has an exponential number of
constraints, it also has an exponential number of variables. We describe in Section 4] how we deal with
this feature when solving this formulation.

When we speak of the solution of the linear relaxation of FBP (which we denote by LFBP), we

refer to a solution (y4;,y4,) satisfying (L0)-(13)), v, y4, > 0, for which the value | D o MeMs (M), —
Y mremy € (M)yyy| (which we denote by zpp) is minimum.

3.3 Comparing formulations FBB and FBP

Let us compare the linear relaxations of formulations FBB and FBP. Recall that, when given an instance
I of ETSP, zpp(I) (2pp(I)) denotes the value of LFBB (LFBP) when applied to instance I. Follow-
ing standard terminology (see |Vielma (2015)) and references contained therein), we say that the linear
relaxation of FBP is stronger than the relaxation of FBB when the two following conditions are fulfilled:



C1: for each instance I of ETSP, zgp(I) > zpp(I),
C2: there exists an instance I of ETSP for which zpp(I) > zpp(I).

Theorem 4. The linear relazation of FBP (i.e., LFBP) is stronger than the linear relaxation of FBB
(i.e., LFBB).

Proof. First, to prove C1, we show that any feasible solution to LFBP corresponding to some instance I
can be transformed into a feasible solution of LEFBB, while the costs of these two solutions are equal.
Consider a feasible solution (y4,,y4,) of LEFBP. Construct a solution to LFBB as follows:

for each edge e € Ep, 2t := Z vh, (16)
MeMp:eeM

for each edge e € Eg,zl := Z Yns- (17)
MeMpeeM

We need to show that (22, 27) satisfies constraints (3{6)), and that the solutions to LFBB and LFBP
have an equal objective value. Let us consider constraints (3). Since all matchings are perfect matchings,
it follows that each matching M € Mp includes a single edge incident to each v. Consider some node
v € V. We have:

Y. w= ), Yoo o= > =1 (18)

ecd(v)NEp e€d(v)NEp MeMp:ee M MeMp

The first equality follows from , and the second equality follows from the fact that the matchings
in Mp that contain an edge e incident to node v are pairwise distinct matchings (since, by definition,
no perfect matching can have two edges incident to node v). Finally, the last equality follows from .
Thus, we conclude from the validity of that constraint is satisfied, and by a similar argument so
is constraint .

Next, it is easily checked that constraint is satisfied by (2%, 27), since constraint is satisfied
by (4%, y%,); indeed, their left hand sides are equal by construction .

We now turn to the subtour elimination constraints. Observe that for each S C V', with | S| even, and
4<|S|<|V|—4:

d>ooal= ) vhrand > ab= Y Y i (19)

e€d(S)NEp e€d(S) MeMp: eeM e€d(S)NER ecd(S) MeEMR:eeM

It follows that

Sk > w=3 0 Y iy Y w2

e€d(S)NER e€d(S)NER e€éd(S) MeMp:eeM MeMp:eeM

Thus, when given a feasible solution (y4,,y%,), the solution (z2,z") constructed using — is a
feasible solution to LFBB.
It remains to show that both solutions have an equal objective value. This is true by construction:

Sodbat=>"d > b= D0 (DD dhi= D P,

ecEp ecEp MeMp:eeM MeMp eeEp MeMp

We have now shown that if there exists a feasible solution (y%,,y%,) to LFBP, we can construct a
feasible solution (z2,27) with an equal value. It follows that, for each instance I, we have zpp(I) >
ZBB (I)

Let us now turn to condition C2. We exhibit an instance I of ETSP, for which zpp(I) > zpp(I). Let
VI =6, Ep = {(v1,v6), (v2,v3), (v2,v4), (v3,05), (v4,v5)} and Er = {(v1,v2), (v1,v3), (v2,v3), (v2,04),
(vs,v5), (v4, v5), (Va,v6), (V5,06)}. We refer to Figure [2] for an illustration of the instance where the
edge-costs are depicted near the corresponding edges.

It can be checked %5 = 28, = 2% = 1 and 2%, = 27, = 253 = 25 = 245 = 2Ls = 0.5 constitutes a
feasible solution for LFBB, with zpp(I) = 0 (see Figure [3| showing this solution).

It is also true that there does not exist a solution feasible to LFBP with zpp () = 0. To see this,
notice that both Mg and Mg contain only two perfect matchings. Both matchings in M g contain the
edge (v1,v6). Thus, for each M € Mp, we have ¢®(M) > 3 and Yo g, ¢ (M)y}, > 3. For Mg,



Figure 2: Edge Sets

Figure 3: Solution to LFBB

both matchings have two edges with weight 1 and one edge with weight 0. Summing these, we find
Y oaremy € (M)yh, = 2. Thus, for each solution to this instance of LFBP, we have zpp(I) > 1.

We have now shown that for each instance of ETSP, the value of an optimal solution of LFBB is at
least as low as the value of an optimal solution to LFBP and that there exist instances for which the
value of an optimal solution of LFBB is lower than for LFBP. We conclude that the linear relaxation of
formulation FBP is stronger than the linear relaxation of formulation FBB. O

Although Theorem [4]suggests to prefer Formulation FBP over FBB, there is a relevant set of instances
for which the value of the linear programming relaxations of the two models coincide:

Theorem 5. If Eg = Egp and if d> = d% for each e € E, then v = zgp(I) = zpp(I), with v € {0,00}
for each instance I.

Proof. Let I be an instance of ETSP, with Ep = Exr and d% = d’ for each e € E, for which there
exists a feasible solution (z%,z7) to LFBB. Consider now the following solution (z2,z"), with 7% = 77 =
(b + 27)/2. Observe that (z%,z") is both feasible (as Ep = Egr) and has value 0 (as d® = d). We
now claim that there exists a feasible solution to LFBP with value 0, as both #% and z” lie within the
perfect matching polytope. Indeed, consider the following set of linear inequalities describing the perfect

matching polytope (Edmonds| (1965)); [Schrijver| (2003))).

e >0 VeeE. (20)

Y wme=1 WweV (21)
e€s(v)NE

> we=1  VSCV with [S] odd. (22)
e€d(S)NE

Inequalities and inequalities are obviously satisfied. Indeed any feasible solution to LEFBB must
satisfy these, as they are equivalent to respectively (the linear relaxation of) constraints and for
blue, and constraints and for red. Furthermore, since E, = E,, and 3% = 77 for each edge,



constraints @ imply that

> 222 v|S| > 3,
e€d(S)NE

> o2z >2 v|S| > 3.
e€6(S)NE

As a consequence, inequalities are also satisfied. Since both z% and z” lie within the perfect matching
polytope, they can both be described by a convex combination of perfect matchings (Edmonds| (1965));
Schrijver| (2003)), represented by yf’w,y}“\/f respectively. These convex combinations form a solution to
LFBP, which is equivalent to (22, 7).

To conclude, we have shown (in the proof of Theorem [4]) that the existence of a feasible solution to
LFBP implies the existence of a feasible solution to LFBB with the same objective value. We have now
shown that if Ep = Eg and if d% = d” for each e € E, a feasible solution to LFBB implies the existence
of a feasible solution with value 0 for both LFBB and LFBP. Thus, when Ep = Er and d% = d’ for all
e € E, there are only two possibilities: either both linear relaxations have a solution with value 0, or
both linear relaxations are infeasible. O

Notice that there are two assumptions in Theorem Each of these assumptions is necessary to
achieve equality of zgp(I) and zgp(I): the example in the proof of Theorem [4| shows that Ep = Eg is
needed, and the instance described below implies that d® = d” for each e is needed as well. For example,
consider the following instance. Let

‘V‘ =6 and Eb = Er = {(1)171)2); (vlvvl’))? (’Ula UG)) (1)277)3)3 ('[}2,’[}4), (’03, 'U5), (U4,’U5), ('[)4,’[)6), (7)5; UG)}'

The weight of all edges, for both red and blue is one, except for diy = dy, = di5 = 0. It can be checked
that a solution exists with zpp(I) = 0. For LFBP, each blue matching has weight 3, and each red
matching has a weight < 2, thus zgp(I) > 0.

Furthermore, we point out that, in case the instance I admits a feasible solution to ETSP, and
assuming that Eg = Er and if d® = d’ for each e, the two values zpp(I) and zgp(I) not only coincide
as predicted by Theorem [5| but are in fact equal to 0.

Finally, we note that the proof of Theorem [5] suggest a way of strengthening formulation FBB in
such a way that it becomes equivalent to FBP. Imposing conditions on both 2% and 27 implies all
solutions can be described as convex combinations of perfect matchings, and thus that for any solution
there exists a solution to LFBP with equal objective value.

4 A branch-and-price approach for solving model FBP

In this section, we describe how we solve model FBP using a branch-and-price approach. For a general
description of this methodology, we refer to [Desrosiers and Liibbecke| (2011)). There are a number of key
ingredients in this approach: how to solve the pricing problem (Section , which branching rule to use
(Section and how to start (Section . We now give a detailed description of these.

4.1 Pricing Problem

The pricing problem for the linear programming relaxation of formulation FBP amounts to establishing
whether there exists a variable ¢4, (or y4,) with negative reduced costs. When we associate dual variables

h,w,u. and ag to constraints , , , and respectively, linear programming theory tells us
that the reduced costs of variable 34, (M € Mp) equal:

Ay —h— Zue— Z [6(S)NM|as. (23)

eeM ScV,|S|>3

A similar expression can be written down for the reduced costs of variable yj,.
We claim that, given the dual variables, the existence of a variable with negative reduced costs can
be detected by computing a minimum-weight perfect matching problem.

Lemma 6. The pricing problem corresponding to formulation LFBP can be solved by computing a
minimum-weight perfect matching.



Proof. Consider the graph (V, Eg), and for each edge e € Ep, introduce edge costs 7. defined as follows:
Yo = db —up — Z as. (24)
SCV:e€d(S),|S|>3

Notice that for an edge e € Ep \ ER, no u, exists; in that case, this term disappears from the expression
above. Suppose that we have a minimum weight perfect matching M* in (V, E;) with respect to the edge
costs .. We have, using :

Z%ZZ(dQ*ue* Z as)

eeM* ec M* SCV:e€d(S5),|S|>3
= (M) - g Ue — g as.
ec M * SCV:e€d(S)NM*,|S[>3

Thus, if Y, cp Ve < h, it follows that ¢®(M*) — 3 2y te — 2 oScViees(s)nM,|s|>3 s < h and, hence
implies that there is a variable with negative reduced costs. In addition, if » ., 7e > h, it is a
fact that no variable y4, with negative reduced costs exists. O

We solve a pricing problem for each of the two edge sets. Strictly speaking it suffices to halt the pricing
problem after a variable y?u with negative reduced costs is discovered; in practice, however, better results
are obtained when multiple columns are returned simultaneously. Thus, in a single iteration, we add at
most two variables to the model, at most one per color.

4.2 Branching

After solving the linear relaxation of FBP to optimality, the resulting solution may be fractional, that
is, there may exist matching(s) M € Mp with 0 < y%, < 1 or matching(s) M € Mg with 0 < ¢y, < 1.
Hence a branching rule is required. If there is a fractional solution, then there is an edge e* = (4, j) such
that either 0 < >3/ cv(p: erenrs yh, <lor0< > Memp: eren Yar < 1 holds, or both. Indeed, one easily
verifies that integrality of the y?\/l, yjs variables implies that each edge is either part of the blue matching,
or part of the red matching, or not used at all. This allows us to specify the following branching rule.
Suppose that, for some edge e* € Ep: 0 < ZMGMB: ereM y?w < 1 holds. There exist two possibilities:
either, in an incumbent solution edge e* = (i, 7) is part of the blue matching, or it is not. In the former
case all edges in Ep that are incident to vertices i or j (except edge e* = (i,5)) are removed from Fp,
and edge (7, ) (if present in Fr) is removed from set Fr. In the latter case, edge e* is removed from set
Ep. The case where 0 < 37,/ Ma: exem Y < 1 works completely analogously.

This branching rule has the property that it solely affects the edge sets Ep and Ei. Thus, each node
in the search tree corresponds to an instance solely defined by a specific graph. In our implementation,
we select edge e* based on the proximity to 0.5: the edge for which the value ZMEMB: ereM yh, is closest
to 0.5 is selected for branching.

4.3 Initialization

Each node of the search tree must be initialized with a set of variables allowing a feasible solution to
the linear relaxation of FBP, or one must show that, given the edge sets E, and E, no feasible solution
exists, rendering the node infeasible.

Due to the presence of the subtour elimination constraints , and due to the fact that the graphs
may be incomplete, it may be difficult to generate a set of variables (matchings) that admit a feasible
solution satisfying constraints —. And even if this would be possible, then this would require to
solve a separate subproblem at each node of the search tree to establish a feasible initial solution. We

avoid these issues by solving the linear relaxation of a slightly more general formulation of model FBP.
Indeed, by introducing a slack variable A in the constraints , , , a model is obtained for



which a trivial initial solution exists. Model FBP’ is defined as follows:

FBP': min | Y Sy — > (M)l +AU (25)
MeMp MeMp
s.t. ST oymtAa=1 (26)
MeMp
S oynt+Aa=1 (27)
MeMp
Sy YD wn <t Ve € Ep N Ex (28)
MeMp: eeM MeMp: eeM
SO DT v+ DD v +2a>2 VS CV,|S| >3 (29)
ecs(S) MeMp:eeM MeMp:ee M
yar € {0,1} VM € Mg (30)
yu € {0,1} VM € Mg (31)

In this model, original constraints , , may be violated, but any violation is penalized in the
objective, where AU > 0 is the penalty incurred when A > 0, with U being a fixed constant.

From the construction of model FBP’ it is apparent that there is always a feasible solution having
objective value U: simply set y4, = y4, = 0 for all M € M; U My, and A = 1. Furthermore, it is clear
that the pricing problem can be solved through the implementation sketched in Section Finally,
observe that by setting A\ = 0, FBP’ becomes identical to the linear relaxation of FBP. In fact, FBP’ only
yields a feasible solution to the linear relaxation of FBP iff A = 0. To prove infeasibility of FBP’, we
must guarantee that any solution in FBP’ with A > 0 is more expensive in terms of the objective value
than any solution to FBP’ with A = 0. This can be achieved by setting U to a large value. However, it is
well known that this reduces the stability of the column generation procedure and potentially introduces
numerical issues while implementing the model. Recall that a node in the BPC tree can be pruned if
either of the following conditions holds:

1. the node is infeasible

2. the lower bound on the node exceeds the upper bound, i.e., the best incumbent integer solution.

Hence it suffices to ensure that there does not exist a solution to FBP’ with A > 0 having an objective
value less than W, where W is the value of the best incumbent integer solution or any other valid upper
bound on the optimal objective value (see (32])). The latter can be achieved by the following procedure:

Algorithm 1: Penalty update procedure for FBP’

1 U=W;

2 repeat

3 solve FBP’. Let w be the resulting objective value;

4 if A =0 then

5 ‘ Feasible solution for the linear relaxation of FBP has been found with objective value w;

6 else /¥ 0<A<1 %/
7 L U := % ; /* Increase penalty */

suntil A\=0 VvV w>W +1;

When the procedure terminates, either a solution to FBP’ with A = 0 is discovered, or a solution with
A > 0, w > W is obtained in which case the node can be pruned.

Our models do not presume the existence of a feasible solution. In fact, we find that “interesting”
instances are those that are in some sense close to the threshold between feasibility and infeasibility
(See Section [6.3). However, it is clear that the existence of a perfect matching in (V, Eg) as well as the
existence of a perfect matching in (V, Eg) are necessary conditions for the existence of a feasible solution.
We do assume that each instance satisfies these necessary conditions. Moreover, we use this assumption
to establish an upper bound W on the value of a feasible solution (if one exists); and if no (heuristically
obtained) feasible solution is available, we use this upper bound at the root node of the search tree. The
upper bound W is computed as follows:

W = max{ max c*(M)— min ¢ (M), max ¢"(M)— min *(M)}+1 (32)
MeMp MeMr MeMgr MeMp

This bound is easy to calculate by computing both a min cost and a max cost perfect matching on graphs
G(M EB) and G(V, ER)
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5 Local Search

In order to asses the potential of simple heuristics for ETSP, we implemented a greedy constructive
heuristic, as well as a local search algorithm. We use the outcomes of this algorithm to better understand
the difficulty of different classes of instances.

The following heuristic is used to build a feasible solution from scratch. We say that two edges
e1 € Ep, es € Eg are adjacent if both e; and ey are incident to some node v € V. First we identify the
pair of adjacent edges (e, e2), whose costs are as equal as possible, i.e., for which \d’;l —dg,| is minimum;
we see this pair as a partial tour. In an iterative fashion, we extend this partial tour by adding, in each
iteration, a pair of adjacent edges to the partial tour. In each iteration (apart from the final iteration), we
select that pair of adjacent edges which results in a minimal solution value of the resulting partial tour,
but which does not form a subtour. In the final iteration we select the pair of adjacent edges resulting in
a complete tour with the minimal solution solution value. Notice that this procedure is not guaranteed
to find a feasible solution even if one exists; however for a complete graph it will always find a feasible
solution. We come back to this issue at the end of the section.

The local search algorithm is based on the well-known 2-opt neighbourhood for the TSP, which goes
back to |Croes| (1958). Since, in ETSP, the color of the edges must alternate, we distinguish two versions
of this neighbourhood which depend on whether the two removed edges have the same color, or not. Con-
sider a feasible tour containing blue edges (1,2), (3,4), ..., (n—1,n) and red edges (2, 3), (4,5),...,(n,1).
In mono-color 2-opt, we remove, given a feasible solution the ETSP, two identically colored edges from
the tour, say (i,7) and (k,1). A new tour is then formed by adding two edges of the same color, say (i, k)
and (j,1).

In bi-color 2-Opt, we remove two distinctly colored edges from the tour. Observe that simply recon-
necting the edges as in mono-color 2-Opt is not possible, as no combination of red and blue colorings of
the new edges will satisfy the alternating color property. Consider a move where one blue edge (¢, d) and
one red edge (k,!) are removed from the tour. The remaining edges form paths from d to k and from [
to ¢. There are two ways to reconnect the tour, either by adding a blue edge (¢, k) and a red edge (d, 1)
or a red edge (¢, k) and a blue edge (d, ). In the first case, the color of all edges (d,e),..., (4, k) must be
switched, in the second case this is true for all edges (I,m),..., (b, c).

We use these neighbourhoods in a simple greedy local search algorithm. For a given solution, these
neighbourhoods are searched until a better solution is found. This better solution then becomes the
incumbent solution and in turn, its neighbourhoods are searched for a better solution.

It is natural to investigate a generalization of mono-color 2-Opt in the following sense: while fixing
the blue matching, consider all red matchings that, together with the blue matching, yield a feasible
solution to ETSP. This is a larger neighbourhood than mono-color 2-opt, and hence potentially more
interesting. Unfortunately, deciding whether a given matching can be extended to a tour is NP-complete,
see Bienkowski and Zalewskil (2013)). It follows that finding the best matching in this neighbourhood is
hard, and hence, searching through this neighbourhood does not seem to be an attractive option.

To ensure we can use the greedy and local search algorithms for incomplete graphs, we use the
following procedure. Let H be the weight of the heaviest blue or red edge in absolute value (H =

maxeep{|d2|,|dr|}).

For each e ¢ Ey, set d = nH.
For each e ¢ E,., set d, = —nH.

This choice of costs ensures that if the local search algorithm terminates with a solution whose value is
smaller than nH, a feasible solution to the original instance is found, and vice versa.

6 Computational Experiments
In this section we first give some details concerning the implementation of the two integer programming

models (Section [6.1). Then, in Section we describe the instances that we use for our experiments
whose outcomes are reported in Section [6.3
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All experiments are conducted on an Intel Core i7-4790 (3.6GHz) machine. ILOG Cplex version 12.6.3
has been used to solve the Linear and Integer Programming problems. For Cplex, we used the default
settings and a maximum of 2 solver threads. The Branch-and-Price approach is implemented through
the Branch-and-Price framework provided by the COIN-OR Java Operations Research Library [JORLIB]|
version 1.1.1. Again, we used the default settings and 2 solver threads. The pricing problem of the BPC
approach (min cost perfect matching problem) has been solved using the implementation in the COIN-
OR LEMON library [LEMON]|. Separation of subtours in both LFBB and LFBP is implemented through
the min-cut routines in JgraphT version 1.0 [JgraphT]; more details about the separation routines are
provided in the next section.

6.1 Separation of valid inequalities

The presence of an exponentially large number of constraints in both models FBB (Equation @) and
FBP (Equation ) render these models impractical to solve. Instead of adding all these constraints
a-priori to the models, separation routines are used to identify violated inequalities which are added to
the models during the the search. Recall that any separation routine for model FBB can also be applied
to model FBP, since a solution (24, 2%,) to FBP can be translated to an x-solution using (16)-(17).

To separate the subtour inequalities, a min-cut procedure is used. Experiments have been conducted
to determine the optimal frequency at which subtour cuts are separated: at every node, only at nodes
where the solution is integral, or both at the root node and integral nodes. Similarly, experiments were
conducted to determine how many cuts should be separated: a single, most violated cut, or more than
one cut. To separate the most violated cut, a global min-cut problem is solved, using the Stoer-Wagner
min-cut procedure. To separate multiple violated cuts, a separation procedure described in [Hong| (1972])
is used, requiring |V| — 1 minimum s-t cut problems to be solved. More precisely, a minimum s-t cut
problem is solved for a given source vertex s € V' and all sink vertices ¢t € V'\ {s}. The following variations
were tested:

e separate all violated cuts, but add at most 20 of the most violated cuts to the model.

e terminate the separation procedure early, that is, terminate the separation routine as soon as 20
violated cuts have been found.

e separating both the most violated cut using a Stoer-Wagner Minimum cut procedure, as well as up
to 19 additional violated cuts.

Computational results for FBB and FBP revealed that only separating the most violated cut yielded
the best results. Determining the 20 strongest cuts simply takes too much time; separating only a
limited number of violated cuts resulted in too many weak cuts which drastically increases the size of
the models. A future implementation could consider more advanced separation schemes for the DFJ
subtour elimination constraints, for details, see |Applegate et al.|(2003). For FBB, we obtained the best
results when subtour elimination constraints were only separated at integral nodes, thereby minimizing
the computational overhead induced by the separation routines. Note that these results deviate from
common solution approaches for the traditional TSP, where multiple cuts are generated at each node
of the branch-and-bound tree. Finally, for the FBP, the best solutions were obtained when subtour
inequalities are separated each time the pricing problem fails to identify new columns with negative
reduced cost. A schematic overview of the branch-and-price procedure can be found in Figure

6.2 Instances

In the computational experiments, we use four sets of instances, named instances of Type 1, Type 2,
Type 3, and Type 4. The instances of Types 1, 2, and 3 are based on TSPLib instances. Recall that the
number of vertices in an instance of the ETSP needs to be even. If this is not the case for a particular
TSPLib instance, we remove the last vertex.

Type 1: For instances of Type 1, we use the nine smallest instances from TSPLib having between 14
and 318 nodes. Since the instances from TSPLib are geometric, the instances feature a complete graph
with E = Ep = Eg, and d% = d’, for each e € E.

Type 2: In order to study the behavior of our models on more interesting instances, we create the
instances Type 2 by removing edges from instances of Type 1. More in particular, for an instance of
Type 1, we remove a certain number of the most expensive edges, thereby obtaining an incomplete graph
G(V,E). An edge (i,j) can only be removed if the remaining graph remains Hamiltonian; iteratively
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Figure 4: A schematic overview of the branch-and-price algorithm.

removing a single edge from the graph produces a new instance in each iteration. We only include
instances (i) with a non-zero optimum value, and (ii) for which the optimal solution changed when
compared to the solution found in the previous iteration. In total, this procedure gives us 29 instances
of Type 2. Recall that these instances still have Ep = Eg, and d? = d" for each e € E.

Type 3: Instances of Type 3 are constructed using the asymmetric TSP instances from TSPLib.
The original TSPLib instances are defined on complete graphs. To construct our instances, we give each
edge a 20% chance of only being in Ep, a 20% chance of only being in Eg, and a 10% chance of being
a member of both. Furthermore, for an edge (i, j) we set dl(’i’j) =d(i,j) and df; ;) = d(j,). In this way,
we construct 19 instances for which Ep # Eg, and for which there exist e with d? # dZ.

Type 4 Finally, instances of Type 4 are generated using complete graphs, with £ = Fg = Er. For
each edge e € E, the blue costs d° are randomly generated from a uniform distribution between 201 and
300, while the red costs di, are randomly generated from a uniform distribution between 1 and 100. As
such, these instances have the property that for each edge e € E, d° # d’ and the value of an optimum
solution (as well as the value of the linear relaxations) can not be equal to 0. We use multiples of 100
for our instance size, up to 1600 vertices, and we generate 5 graphs for each value of |V, leading to 80
instances in total.

All instances are available online at http://www.econ.kuleuven.ac.be/public/NDBAEO3/ETSP_instances.
zip

6.3 Experimental Results

Let us first consider the instances of Type 1. The results of the local search algorithm are given in Table[T]
where the column called ‘obj’ denotes the value of the solution found, where the column ‘¢(s)’ stands
for the computation time needed (in seconds), and where the final column gives the number of optimum
solutions among a set of 10.000 randomly generated tours.

From Table 1| it follows that instances of Type 1 are not difficult to solve. Indeed, the (simple) local
search algorithm finds an optimum solution for each instance in negligible computing times. Perhaps
even more telling, simply randomly generating a moderate number of tours will produce an optimum
solution. Therefore, we chose not to run the exact approaches on instances of Type 1.

Consider now the instances of Type 2. Outcomes of the local search algorithm, model FBB, and
model FBP are reported in Table [2] where the second column stands for the number of edges present
in the instance, where the column called ‘OPT’ stands for the optimum value, where a column called
‘nodes’ stands for the number of nodes in the search tree corresponding to that instance, where a column
called ‘cols’ stands for the number of columns generated in the branch-and-price, and where the column
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Name of instance | obj  #(s) | # Optimal Random Tours
burma 14 0 0.00 3
ulysses 16 0 0.00 1
ulysses 22 0 0.00 2
berlin 52 0 0.01 1
eil 76 0 0.00 35
gr 96 0 0.02 0
gil 262 0 0.01 6
pr 264 0 0.03 1
lin 318 0 0.03 2

Table 1: Results for instances of Type 1

called ‘traster’ (‘tpricing’) stands for the time spent solving the master problem (the pricing problem).

From this table, we conclude that the local search algorithm is no longer effective: for the majority
of instances it fails to find even a feasible solution (while there exists one). The two exact approaches
are very efficient on these instances, and find an optimum solution usually within a second, and always
within four seconds. On most instances, model FBB is slightly faster, even though the number of nodes
in the search tree of model FBP is usually less than the corresponding number for model FBB. Notice
that Theorem [4] tells us that the values of the linear programming relaxations of these models equal 0 for
instances of Type 2.

Table 2: Results for instances of Type 2

Name of Number of Local Search Model FBB Model FBP

instance Remaining Edges OPT | obj t(s) | t(s) nodes| t(s) tmaster tpricing nodes cols
burmal4_r50.rtsp 41 1 18 0.00 | 0.16 995 | 3.92 1.23 1.35 198 344
burmal4_r54.rtsp 37 22 | INF 0.00]0.13 56 |0.71 0.24 0.29 32 52
burmal4_r55.rtsp 36 35 35 0.00|0.10 111]0.29 0.11 0.11 11 17
burmal4_r56.rtsp 35 97| 202 0.00 | 0.11 0]0.16 0.08 0.04 5 9
burmal4_r57.rtsp 34  234| 234 0.00 | 0.06 01]0.10 0.03 0.04 2 3
burmal4_r63.rtsp 31 258 | INF 0.00 | 0.05 01]0.07 0.03 0.02 2 2
burmal4_r71.rtsp 25 305 | INF 0.00 | 0.03 01]0.06 0.02 0.02 3 2
ulysses16_r81.rtsp 38 1 12 0.00|0.11 266 | 2.76 1.09 0.92 180 241
ulysses16_r90.rtsp 32 10 | INF 0.00 [ 0.12 47 10.68 0.32 0.21 19 26
ulysses16_r103.rtsp 23 14 | INF 0.00 | 0.02 01]0.17 0.10 0.04 1 2
ulysses22_r186.rtsp 50 1|INF 0.00|0.10 156 | 1.82 0.69 0.75 72 87
ulysses22_r191.rtsp 45 97 | INF 0.00 | 0.08 2210.17 0.05 0.10 1 2
ulysses22_r204.rtsp 36 101 | INF 0.00 | 0.05 01]0.09 0.04 0.03 2 2
ulysses22_r216.rtsp 28 157 | INF 0.00 | 0.04 01]0.06 0.02 0.03 2 2
berlin52_r1277.rtsp 82 2 | INF 0.00]0.19 162 | 5.65 2.91 2.08 92 94
berlin52_r1285.rtsp 7 12 | INF 0.00 | 0.15 510.52 0.31 0.14 3 4
berlin52_r1293.rtsp 70 28 | INF 0.00|0.19 310.31 0.16 0.09 2 2
berlin52_r1299.rtsp 64 37 | INF 0.00 [ 0.18 0]0.24 0.14 0.06 1 2
€il76_r2744.rtsp 119 3| INF 0.01 [ 0.25 51.48 0.75 0.55 8 6
€il76_r2751.rtsp 116 10 | INF 0.01]0.18 311.39 0.67 0.57 12 6
gr96._r4415.rtsp 168 29 | INF 0.01]0.46 226 | 1.15 0.62 0.39 1 2
gr96._r4421.rtsp 165 341 | INF 0.02 | 0.37 511.15 0.63 0.44 2 2
gr96.r4439.rtsp 156 387 | INF 0.01 | 0.42 711.03 0.67 0.28 4 5
gr96.r4447.rtsp 149 432 | INF 0.02(0.38 5|2.14 1.14 0.78 8 12
gr96._r4456.rtsp 146 688 | INF 0.01 | 0.49 510.45 0.28 0.12 1 2
gr96_r4460.rtsp 144 994 | INF 0.01]0.43 710.53 0.30 0.17 1 2
gr96_r4479.rtsp 130 1013 | INF 0.01]0.36 0]0.42 0.24 0.13 2 2
gr96.r4495.rtsp 123 1016 | INF 0.02 | 0.28 0]0.43 0.27 0.09 2 2
gr96.r4518.rtsp 113 1199 | INF 0.02 | 0.12 01]0.23 0.15 0.04 2 2

Let us now turn to instances of Type 3, whose outcomes are reported in Table [3] In addition to the
information specified in Table 2, we now also give zgp and zgp, the LP-relaxations of the two models,
for these instances. First, the local search algorithm works reasonably well, finding an optimum solution
for the majority of instances, including one not solved to optimality by the exact approaches. Second,
model FBB solves all instances much faster than model FBP. In fact, since we allotted each model 1800
seconds for each instance, there are eight instances that model FBP cannot solve within this time-limit
(denoted by ”TL” in the time column), while only one instance is not solved by model FBB. Interestingly,
the values of the linear programming relaxations are equal except for one particular instance (although
Theorem |4| does not apply for instances of Type 3).
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Table 3: Results for instances of Type 3

Local Search Model FBB Model FBP
Name OPT | obj t(s)| zBB t(s) nodes| zpp  t(s) tmaster tpricing nodes cols
brl7 0| INF 0.00 0 0.12 30 0 0.89 0.34 0.32 109 179
ftv33 0| INF 0.00 0 0.42 1623 0 6.53 3.67 1.64 639 1097
ftv35 0 0 0.00 0 0.73 1100 0 7.31 4.32 1.84 673 1629
ftv38 0 1 0.00 0 0.83 1517 0 2.65 1.75 0.36 247 245
p43 7611|7910 0.00 | 7606 0.17 0]7611 0.22 0.12 0.06 3 12
ftv44 0 0 0.00 0 0.52 512 0 6.47 4.30 1.30 501 1077
ftv47 0 7 0.00 0 0.95 750 0 12.60 8.54 2.26 995 1780
ry48p 0 17 0.00 0 0.99 723 0 6.48 4.69 0.81 591 740
ft53 0 2 0.00 0 0.77 552 0 45.71 29.49 10.74 3223 9291
ftvs5 0 2 0.00 0 0.63 383 0 9.69 7.7 0.80 809 792
ftve4 0 2 0.00 0 1.35 460 0 46.86 37.64 5.91 1771 3762
ft70 0 2 0.00 0 2.97 1713 0 92.22 67.37 13.20 4737 6907
ftv70 0 0 0.00 0 1.53 246 0 23.22 19.39 1.91 1175 1401
krol24p 0 0 0.01 0 7.34 2204 0 248.4 165.0 73.40 3101 22315
ftv170 0 1 0.05 0 12.13 1855 0 328.7 302.2 13.33 2075 1965
rbg323 0 0 0.04 0 16.14 0 0 TL 1739 33.14 649 1166
rbg358 0 0 0.04 0 106.31 799 0 542.1 524.0 9.69 291 292
rbg403 0 0 0.06 0 132.1 526 0 TL 1752 28.21 309 615
rbg443 0 0 0.08 0 301.6 1889 0 TL 1757 25.88 247 487
dc563 0 0 0.09 0 641.6 2848 0 TL 1718 62.64 171 348
atex8(600) 0 0 0.30 0 976.8 6384 0 TL 1751 34.73 128 262
dc849 0 0 0.41 0 305.0 43 0 TL 1775 28.48 51 108
dc895 0 0 0.48 0 891.4 1936 0 TL 1694 112.8 44 94
dc932 0 0 0.50 0 TL 2312 0 TL 1712 75.58 40 94

Finally, we look at instances of Type 4 in Table [4 (Results for the individual instances can be found
in the online appendix). For the exact methods, the reported numbers are averages over the instances
that are solved to optimality. For the heuristic, computation times are reported over all instances.
Optimality gaps are reported based on the optimal solution, or the best lower bound found from the
execution of models FBB and FBP if no optimal solution was found. The simple local search method
works reasonable well, finding solutions about 3% above the optimum value for the smallest instances.
For the larges instances, the gap closes to below 0.5%. Model FBP is capable of solving all instances
up to 800 vertices, Model FBB up to 1200 instances. Computations times are comparable for smaller
instances, but as instance sizes grow, model FBB becomes noticeably faster. Model FBB is also more
often capable of finding an optimal solution within the time limit. Notice that in most cases the Cplex
implementation of model FBB solves the problem without any branching. For instances for which the
optimal solution is known, the value of the LP relaxation of model FBP is equal to the optimal value
in all but a few cases. If the LP relaxations deviates, the gap is typically in the order of 0.001%. The
linear relaxation of model FBB is similarly strong, although there are 11 instances for which the FBB
LP relaxation is weaker than the LP relaxation of FBP.

Table 4: Results for instances of Type 4 (averages)

Local Search Model FBB Model FBP

Instance Size | t(s) Opt.Gap | # Solved t(s) nodes | # Solved t(s) t-master t_pricing Cols nodes
100 0.01 0.026 5 1.38 6.8 5 1.92 1.53 0.35 36.6 7.0
200 0.09 0.019 5 5.56 3.8 5 6.38 5.49 0.76 24.6 7.4
300 0.27 0.014 5 15.93 0.0 5 24.36 22.30 1.74 244 10.2
400 0.74 0.012 5 31.11 4.0 5 67.75 63.63 3.48 27.8 12.2
500 1.97 0.008 5 37.02 1.8 5 108.06 101.85 5.23 0.0 0.0
600 3.43 0.007 5 193.51 79.0 5 471.66 455.51 13.11 39.0 25.8
700 7.07 0.006 5 21239 126 5 704.61 682.24 19.06 35.8 21.8
800 8.76 0.005 5 146.77 1.0 5 275.53 262.34 12.04 13.2 6.2
900 14.9 0.005 5 793.17 98.2 3 768.69 749.77 16.20 15.7 11.0
1000 24.3 0.004 5 859.54 0.0 3 162.47 152.70 9.53 6.3 1.7
1100 34.2 0.003 5 610.36 129.2 2 800.32 785.68 1250 7.0 6.0
1200 74.1 0.003 5 1205.63 0.0 1 234.68 221.16 13.51 6.0 1.0
1300 83.6 0.003 3 751.26 0.0 0

1400 104 0.003 2 962.67 0.0 2 1027.30 994.24 31.68 11.5 3.0
1500 162 0.002 3 955.23 18.9 1 543.69 514.28 29.39 11.0 1.0
1600 186 0.002 1 408.74 0.0 3  951.36 918.84 30.69 10.3 2.3

When studying the performance of the methods we implemented, we conclude as follows:

e The simple local search algorithm works when the instances are dense enough. Indeed, instances
of Type 2 that are on the border of feasibility and infeasibility are not handled well by the local
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search, whereas instances of the other types are solved to optimality (Type 1 and Type 3), or within
a reasonable deviation (Type 4).

e It is apparent that model FBB is faster than model FBP on instances of Type 3 and larger instances
of Type 4; however, for instances of Types 2 and smaller instances of Type 4, the performance is
comparable. We note that the reported averages for instances of Type 4 hide significant variance
in the computation times for model FBP. There are several larger instances which model FBP can
solve within the time limit, whereas model FBB can not, or where model FBP is faster.

e The lack of strong bounds severely hampers model FBP when solving instances of Type 3 (and
to a lesser extent Type 2). At each non-leaf node, a lower bound of zero is encountered. Only
at the leaves, non-zero integer solutions are discovered. Consequently it is very difficult to guide
the search or to cut off branches due to the weak lower bounds. Indeed, theoretically, the main
advantage of model FBP is the stronger linear relaxation, and model FBB only obtains better
results on instances where the linear relaxation for both formulations is 0. For instances where the
linear relaxation does come into play, results for both approaches are comparable.

e The majority of time, when using model FBP, is spent on solving the master problems and sepa-
rating the subtour inequalities.

e A branching decision is made as soon as the master problem reaches a feasible solution equal to
the lower bound of the node in the search tree corresponding to model FBP. Typically, this often
happens after only a few iterations. Hence, the number of iterations, as well as the number of
generated columns per node in the search tree is very low.

e The penalty update scheme (Algorithm works well: the number of penalty updates is significantly
lower than the number of nodes in the search tree corresponding to model FBP, meaning that for
the majority of nodes no updates are required. This approach is computationally much cheaper
than using a dedicated method to generate a feasible initial solution at each node of the tree (or to
prove that such a solution does not exist).

7 Conclusion

We have introduced and analyzed the Equitable Traveling Salesman Problem (ETSP). We have shown
that the problem is NP-Hard, even when the graph is complete. Two integer programming models are
presented for the ETSP, and we compare their linear programming relaxations. One model can be solved
through a traditional branch-and-cut approach, whereas the other model is embedded in a branch-and-
price framework. The pricing problem in the branch-and-price approach amounts to finding a minimum
weight matching. Computational experiments on adapted TSPLib instances show that the best results
are obtained with the branch-and-cut approach.
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