
Magnetic and electrical
characterization of superconductors

Philippe VANDERBEMDEN

University of Liège, Belgium

Philippe.Vanderbemden@ulg.ac.be



Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012



Superconducting materials today

Bulk
materials

Thin
films

Wires 
&  tapes

Transport
of current

Electronics
& µ-waves 

Large 
magnetic fields

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012
3



Technological diagram
(much simplified)

• Tc ~ 10-120 K
• µ0Hc ~ 1-100 T
• Jc ~ 102 – 105 A/cm²

H

J

TJ

H

c

c

Tc

Many applications
require Jc >104 A/cm2

Aims of applied research :
↑↑ Jc for fixed T and µ0H (ex. 77 K and 1 T)
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Purpose of this lecture
To better understand how we can characterize the 

electrical and magnetic propeties of materials through 

TRANSPORT measurements and MAGNETIC measurements

 

V

Magnetic field H

H
Current source

Transport current
(applied externally)

Induced current
(by the applied magnetic field)
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Outline

• Transport measurements - R(T) 
• Transport measurements  - E(J)

• Magnetic measurements (general)
• Magnetic measurements - M(H)
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Outline

• Transport measurements - R(T) 
• Transport measurements  - E(J)

• Magnetic measurements (general)
• Magnetic measurements - M(H)
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V

The main difficulty for transport 
measurements on superconductors = ?

I

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012



Influence of contact resistance & wire resistance

V
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4-contact measurement (Kelvin connections)

A, B = current contacts
a, b = voltage contacts

4-wire connexions are used to eliminate contact resistances and wire resistances
(i) The current contact resistances and wire resistances are outside the measurement circuit 
(ii) The voltage contact resistances and wire resistances can be neglected  

with respect to the resistance of the voltmeter

Examples : 
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A B 

a b

A B a b

NB : for AC measurements : twisted wires are required to avoid inductive pick-up loops !!!



H. Kamerlingh-Onnes

Tc critical temperature

In addition to giving the critical temperature of the superconductor, a R(T) measurement
in the presence of a magnetic field can be helpful in characterizing

(i) anisotropy effects
(ii) granularity and connectivity between grains 
(iii) the phase diagram (irreversibility line of the material)

These characteristics of HTS materials are briefly recalled hereafter
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Example for type-I superconductor  (Hg)



Ex : Y - 123 single crystal 
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(i)  Anisotropy

(J || B) = “force-free”
configuration
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The flow of current density J
is easier in the ab planes
than along the c-axis :

Jc (|| ab) > Jc (|| c)

The pinning of flux lines B is
larger for B || ab than for B || c



Transport current 
 

J

Intergranular current   JCJ  

Shielding currents 
 

H

Intergranular current   J
Intragranular current   J

Applied magnetic field

CJ
CG  

 

Grain alignment - or texturation - is a key ingredient 
to improve the intergranular critical current density

(ii)   Granularity

JCJ < JCG

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012



JCJ

JCG
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Non-textured Textured

Microstructure of HTS ceramics : an example with Bi-2212

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012

LOW   Jc
HIGH  Jc



HC1(T)

H

T0 Tc

HC2(T)

Hirr(T)
Jc = 0

useful for
applications

Irreversibility fields of some
HTS materials at T = 77 K

Bi-2212 : < 0.1 T
Bi-2223 : 0.3 T
Y-123 : 7-10 T

(relevant for high-temperature superconductors)

(iii)   Irreversibility line

(irreversible)

(reversible)
R ≠ 0
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Typical  R(T) curve
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Ex:  YBa2Cu3O7

The width of the transition requires a given criterion to define Tc
(usual criterion : inflexion point [change of curvature] but others are possible)
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Typical  R(T) curve

The use of a log scale can be very useful the temperature above which
electrical resistance merges from the noise level  (= irreversibility line ?)
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Ex:  YBa2Cu3O7

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012



Some (slightly more complicated) examples…
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A

a b

B 

Anisotropy
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A

B 

a b

A
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B 

Anisotropy



I-

grain Grain boundary

I
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Granularity

Temperature (K)
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A shoulder in R(T) – possibly using a log scale for R 
is a clear signature of the presence of one or more grain boundaries



I-
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Some artefacts or difficulties …

Temperature (K)
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Back to
LINEAR
SCALE

?

The peak in R(T) just above the superconducting transition is a (relatively)
common feature usually attributed to inhomogeneities and current redistribution
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Some artefacts or difficulties …

A larger current means also a much larger power dissipated in current contacts
(P = R I² !) and, possibly, sample heating and error in the temperature measurement
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Ex:  Bi-2223 ceramic



I-
Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012

Other errors …

Bad sample or bad contact resistance

Try again with new contacts !

« Jumping » contact

Try again with new contacts !
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A well-known error from the 
QD Physical Property Measurement System (PPMS)

Temperature (K)

?

See the following application note :



Outline

• Transport measurements - R(T) 
• Transport measurements - E(J)

• Magnetic measurements (general)
• Magnetic measurements - M(H)
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Electric field   E  (V/m)

∫=−
b

a
ba dl.EVV

E uniform and parallel to the
segment between a and b

E

[V/m]

Electric field voltage difference
voltage drop
[volts], [V]

Particular case : 

E

dl
a b

a bE


ba VVE −

=

(OK when no time-dependent 
magnetic flux density) 
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Local quantity Global quantity



Current density  J  (A/m²)

dSn.JI
S
∫∫=

J uniform and  ⊥ S

J
[A/m²]

S

current density current
[A]

Local quantity Global quantity

Particular case : 

S

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012

S
IJ =
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Linear conductor

Non-linear conductor

I (A)

V (V)

V (V)

I (A)

J (A/m²)

E (V/m)

E (V/m)

J (A/m²)

(slope)  ρ =  resistivity (Ω.m)(slope)  R = resistance (Ω)

(slope)  = ??? (slope)  = ???



E 

J 

The definition of Jc requires a electric field threshold often 
(by convention) referred as  Ec = 1 µV/cm.

Jc

Ec
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In practice …

n

c
c J

JE)J(E 







=

log(E) 

Jc

Ec log(J) 

n

Most high-Tc superconductors have a non-linear characteristic 
which can be described by a power law



V

The main difficulty for transport 
measurements on superconductors = ?

I
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Rc
Rc
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Solution : pulsed currents

J

time 

Jc

E
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Caution : inductive pick-up

J

time 

Jc

E

J(t)  → B(t) → E(t)  ∝ dJ(t)/dt ! 

E(t) ∝
dJ/dt

time 
E

In practice, some compensation circuit is needed (Rogowski coil, dummy loop…)



Outline

• Transport measurements - R(T) 
• Transport measurements - E(J)

• Magnetic measurements (general)
• Magnetic measurements - M(H)
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« I often say that when you can measure
what you are speaking about 
and can express it in numbers,
you know something about it.
But when you cannot measure it, 
when you cannot express it numbers,
your knowledge is of a 
meagre and unsatisfactory kind »

Sir William  J. THOMSON
Lord KELVIN

1824-1907
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B = µ0 (H + M)

H = magnetic field [A / m]
M = magnetization [A / m]
B = magnetic induction [T]

What are we talking about ?
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m = magnetic moment [A.m2]

M = magnetization [A / m]
(= m / V)

And a little bit more …

χ = magnetic susceptibility
(= dM / dH)

χ = magnetic susceptibility
(= M / H) [DC]

[AC]

DC

AC

M

H 
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m = magnetic moment    
M = m / V

B = magnetic induction  
without sample H = B/µ0

i = magnet current
H = k. i (k ~ magnet)

What do we need to measure ?

M (H)
obtained through 

measuring…
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dt
dNV Φ

−=

A lot of magnetic measurements are carried out using Faraday’s law

Applications :

• Extraction method (cf. PPMS)

• Vibrating Sample Magnetometer (VSM)

• Measure of a flux variation with 
analog or digital integration

How can we measure ?

H(t) → dΦ(t)/dt  → ∆Φ

Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012



NB :  Analog or digital integration using sensing coils wrapped around the sample
enables the magnetic properties to be determined in various « exotic » configurations
Note that, in this case, the measured quantity is B = the magnetic flux density

To study anisotropy effects

To study the (so-called) 
« crossed-field » effects
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Phys. Rev. B 75 (2007) 174515



Absolute value |χ| sign
Superconductor

(perfect diamagnetic) between 0 and 1 < 0

Diamagnetic very small (<<1) < 0

Paramagnetic small (< 1 ) > 0

Ferromagnetic
(Fe, Co, Ni)

large (>> 1) > 0

Types of magnetic materials
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A magnetized sample (e.g. M > 0) of finite size creates a field 
in the surrounding space and within the sample itself.

This field – called demagnetizing field  HD – is always 
opposite in direction to the sample magnetization. 

The total applied field, HT, is the sum of the field generated by the magnet H, 
and the demagnetizing field HD. In the simple case H // HD, one has

HT = H + HD

with

HD = - D M = - D χ HT. 

D represents the dimensionless demagnetizing factor

Demagnetizing effects

H 
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D is always contained between 0 et 1. 
In first (and good) approximation, D only depends on the sample geometry.
For a cylinder (diameter d, length L parallel to H), one has

L >> d          L ~ d L << d
D << 1 D ~ 1/3 D ~ 1

The total field HT is simply given by 

The demagnetizing factor  “D” 

χ+
=

D
HHT 1
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Therefore …

For ferromagnetic materials, 
HT is smaller than H ("de-magnetizing")

while for superconductors, 
HT is bigger than H ("re-magnetizing" ?).

Demagnetizing effects can be omitted if D χ << 1
but should be always considered otherwise !
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NB : To understand magnetic flux penetration in 
Type-II superconductors of finite size, see…

…. as well as all Helmut Brandt’s papers  



How to estimate D ?

1. From the sample dimensions

Ellipses :  analytical formulas
Cylinders : tables, see e.g.

D
HHT −

=
1

H
D

HM T 







−
−

=−=
1

1

2. From measurements in superconductors 
at H < HC1 (→ χ = -1)

M

H 
| slope | = 1 / (1-D)apparent 

susceptibility !
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Note however the important distinction :

Demagnetizing effects should always be taken into account
when the sample cannot be considered infinitely long

BUT…

the conventional « demagnetzing factor » approach, strictly
speaking, is valid for linear materials.

For type-II superconductors, only (semi-) analytical
calculations and numerical modelling are appropriate !
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Outline

• Transport measurements - R(T) 
• Transport measurements - E(J)

• Magnetic measurements (general)
• Magnetic measurements - M(H)
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V

Magnetic field H

H
Current source

Transport current
(applied externally)

Induced current
(by the applied magnetic field)

Transport measurement Magnetic measurement

ADVANTAGE of
magnetic measurements :

DRAWBACK of
magnetic measurements :



Bean model : relation  B ↔ Jc

HC1 → 0

J = + Jc ,   -Jc or   0

Critical state

curl B  =  µ0J

Hypotheses : 

HC2 →∞ Very strong pinning

Model  : 
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Bean model : relation  B ↔ Jc

H

2a

(1)  supercond. ∞ || applied field
(ex. inifinite slab)

curl B = ± µ0Jc ou  0

2 additional hypotheses 

(2) Jc = constant (indep. of B)

0ouJ
y
B

c0µ=∂
∂
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Bean model : relation  B ↔ Jc

2a

M = -H 

M 

H

= (Jc a) / 2

Indirect 
determination of Jc

Remnant magnetization

H



Different “M(H)” curves for type II (hard) 
superconductor as a function of Hmax

  

  

H / Hp

-3 -2 -1 0 1 2 3

[M
(H

)] 
/ H

p

-1.0

-0.5

0.0

0.5

1.0

(b)
 (-1) slope

+ Hp / 2

- Hp / 2

H / Hp

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
[M

(H
)] 

/ H
p

-0.6

-0.4

-0.2
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0.4

0.6

  

  

(a)
(-1) slope  

   

   

Hmax = 3 Hp Hmax = 0.5 Hp

The difference betw. M↓ and M↑
is Hp (= Jc.a) in the case of an infinite slab

BUT… this is only true when the maximum field Hmax is large enough ! 
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The relation between ∆M and Jc depends 
on the geometry of the sample
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2a

H
2a

Infinite slab Infinite cylinder

a
MJc

∆
=

a
MJc 2

3∆
=

H



And what happens in the case of Jc(B) ?
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J. Appl. Phys. 66 (6)  15 September 1989

Jc

B 








+

=
1

1
1 BB

BJJ cc

A model of Jc(B) is required !

Ex : Kim model

B1

Jc1/2

Jc1



Consequences on the magnetic field penetration 
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Constant Jc Jc(B)

Local slope = Jc

Completely different magnetization curves are expected !



Infinite slab with Jc ∝ (1/B)
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µ0H (T)
-3 -2 -1 0 1 2 3

µ 0M
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2 )
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True Jc
Jc from M(H)

Remarkably, the Jc(B) can often (not always…) be determined from ∆M, 
provided that the magnetic field range does not extend too close to 0 and to Hmax !

OK



And what happens if the superconductor
cannot be assumed to be infinite ?
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Modelling needed !



Magnetic field H
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A typical M(H) curve at “medium” applied fields…



Magnetic field H
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And when the applied field is very large …

H irr

The irreversibility field can be determined from the point where the upper and 
lower branches of the magnetization loop merge into one 
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µ0H (T)
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A typical curve for YBa2Cu3O7
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A typical curve for YBa2Cu3O7

H || cH || ab

Anisotropy of the current loops should be taken into account 
to determine the critical current density Jc

H

H

Cube

c
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Anisotropic Bean model

But some results have been published for quite a long time now  !

Appl. Phys. Lett. 55 (3),17 July ,1989

b

a
x

y

py
dx

dy

Analytical calulations can be made in simple geometries (ex. rectangle) 
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And what happens if we consider an E-J curve
instead of the Bean model ?

H(t) → B(t)

Do NOT forget
Faraday’s law 

dt
dBaE 






=

22a

There always an electric field in magnetic experiments !
The amplitude of this field is much smaller than in transport experiments



Current density  : J  (A/m²)

Magnetic flux density : B (T)

Electric field : E (V/m)
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Do not forget to consider these 3 quantities…



Philippe VANDERBEMDEN – Lecture « Magnetic and electrical characterization of superconductors » ESAS school June 10-15, 2012

Consequence …

E 

Jc

Ec

J 

The amplitude of 
induced currents 
increases for 
large dB/dt !

Always specify 
dB/dt !
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Irreversibility field from
TRANSPORT and MAGNETIC

HC1(T)

H

T0 Tc

HC2(T)

Hirr(T)
Jc = 0

useful for
applications

(reversible)
R ≠ 0

MAGNETIC

(irreversible)

TRANSPORT

ΔM ≠ 0

1 2

Doyle et al., APL 73, 117 (1998)



Conclusion
 

V

Magnetic field H

H

Current source

Transport current
(applied externally)

Induced current
(by the applied magnetic field)
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Both kind of measurements are very useful
and can provide invaluable information on the material properties

BUT … Be always careful when interpreting the results !
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