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Chapter 771

Actinomadura R39 D-Ala-D-Ala
Carboxypeptidase

DATABANKS

MEROPS name: D-Ala-D-Ala carboxypeptidase

(Actinomadura-type)

MEROPS classification: clan SE, family S13, peptidase

S13.002

Tertiary structure: Available

Species distribution: superkingdoms Archaea, Bacteria

Reference sequence from: Actinomadura sp. R39

(UniProt: P39045)

Name and History

After the discovery of the penicillin-sensitive Streptomyces

R61 D-Ala-D-Ala carboxypeptidase ([1], see Chapter 766), a

similar soluble enzyme was found in the culture medium of

Actinomadura R39 (formerly Streptomyces R39) [2]. Like

its R61 counterpart, it catalyzed transpeptidation reactions

when supplied with adequate substrates [3�6]. Inactivation

by β-lactam antibiotics results from the formation of a cova-

lent bond with the essential serine residue [7].
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Activity and Specificity

The catalyzed reactions are:

R-D-Ala-D-Ala1 H2O �! R-D-Ala1 D-Ala

(carboxypeptidase)

R-D-Ala-D-Ala1 R0-NH2 �! R-D-Ala-NH-R01 D-Ala

(transpeptidase)

where R-D-Ala-D-Ala and R0-NH2 are the donor and

acceptor substrates, respectively.

The enzyme also exhibits a so-called endopeptidase

activity, i.e. it can release a C-terminal residue bearing a

large and complex side chain, which is in fact a facet of

its carboxypeptidase activity.

Substrate Specificity

Good activity is observed if R 5 N-α-acetyl-L-Lys, N-α,
N-ε-diacetyl-L-Lys and N-α-acyl-meso-A2pm-(L). Peptide

specificity studies on the R39 enzyme have shown that the

enzyme strongly interacts with a structural element con-

sisting of the dipeptide meso-A2pm (L)-D-Ala, which is a

direct mimic of the stem peptides from the Actinomadura

organism (R 5 A2pm in the reaction described above). It

seems very likely that the major substrates in vivo also

contain this structural element, i.e. these substrates have a

non-cross-linked N-terminus. These could be either

monomers (carboxypeptidase activity) or oligomers/poly-

mers (endopeptidase activity) [8].

The C-terminal residue can be replaced by Gly (10%

efficiency), D-Glu (100%) or D-Leu (75%). Replacement

of the penultimate D-Ala residue by D-Leu, Gly or L-Ala

yields substrates on which the enzyme is not significantly

active [2,9].

The only good acceptors are glycine and D-amino

acids, but the latter may have complex side chains. For

instance, they may be derivatives of meso-A2pm in which

the amino and carboxyl groups on the D center are free

while those on the L center are engaged in peptide bonds.

The best substrates closely mimic the donor and acceptor

parts of the peptides in the nascent Actinomadura pepti-

doglycan [5]. When supplied with compounds containing

both a D-Ala-D-Ala C-terminus and an adequately posi-

tioned amino group, such as the ‘natural’ pentapeptide

L-Ala-γ-D-Glu-(L)-A2pm-(L)-D-Ala-D-Ala, where A2pm is

the meso isomer, the enzyme catalyzes the formation of

dimers [6]. The DD-peptidase also acts as an esterase and

a thioesterase on compounds of general structure R-Xaa-

Y-CH(R0)-COOH, where Y is O or S [10] and Xaa is Gly

or a D residue, preferentially D-Ala. These compounds are

also utilized in transacylation reactions. Among these, the

best reported substrate is Bz-D-Ala-S-CH2-COOH (kcat 5
6 s21, kcat/ Km 5 330 000 M21 s21). The structural

requirements for the R group and stereospecificity of the

thioesters are somewhat modified when compared to

those for the peptides [11].

A detailed study of the reactions of 3-(D-cysteinyl)

propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl) propa-

noyl-D-alanyl-D-thiolactate, catalyzed by the enzyme,

showed DD-carboxypeptidase, DD-transpeptidase and DD-

endopeptidase activities. These results confirm the spe-

cificity of the enzyme for substrates exhibiting an

N-terminal Rv-CO- group whose Rv chain contains a free

D-amino acid center at the end of a rather long hydropho-

bic chain (for instance Rv 5 2OOC-CH(NH3
1 )-CH2-

S-CH2-CH2-CO) and indicate a preference for extended

D-amino acid leaving groups. It was concluded that ‘a

specific substrate for this enzyme, and possibly the

in vivo substrate, may consist of a partly cross-linked pep-

tidoglycan polymer where a free side chain N-terminal

un-cross-linked amino acid serves as the specific acyl

group in an endopeptidase reaction’ [8].

Mechanism

In the hydrolysis reaction, the enzyme follows the classi-

cal acyl enzyme pathway of serine proteases:

E1 S 2 ES - ES*1 P1 - E1 P2

where ES* is the acyl enzyme. With the peptide Ac2-L-

Lys-D-Ala-D-Ala, acylation is the rate-limiting step, and

the acyl enzyme cannot be detected. By contrast, deacyla-

tion is strongly rate limiting with most thioesters [12].

Assays and Influence of Physicochemical
Conditions

The hydrolysis of peptides is monitored by a colorimetric,

discontinuous assay of the released D-alanine [13], while

that of the thioesters can be followed directly at 250 nm

[10]. Transpeptidation was formerly quantified by high-

voltage paper electrophoresis [3], but HPLC techniques

are now preferred [14]. The enzyme presents a broad opti-

mum pH between 5.5 and 9.5. Transpeptidation is favored

by high pH, high ionic strength and high and low acceptor

and donor concentrations, respectively ([5] and unpub-

lished results of the authors).

Inhibitors

Antibiotics of the β-lactam family are very efficient tran-

sient inactivators that acylate the active-site serine

according to the pathway described above for the sub-

strates, but no P1 is formed (due to the β-lactam struc-

ture) and the deacylation step is very slow (102321026

s21), so that an inactive acyl enzyme accumulates

[15,16]. Among the presently known enzymes, the R39
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DD-peptidase is one of the most penicillin sensitive. With

some but not all β-lactams, the deacylation step does not

yield the expected penicilloic acid but involves the cleav-

age of the C5-C6 bond of the antibiotic [17].

Boronic acids were also found to be excellent revers-

ible inhibitors [18,19]. In particular, (D-α-aminopimelyla-

mino)-D-1-ethylboronic acid, designed to be a

peptidoglycan-mimetic transition state analog inhibitor of

R39, was found to be a potent inhibitor of the peptidase

with a Ki value of 32 6 6 nM [19]. Since it binds some

30 times more strongly than the analogous peptide sub-

strate, the boronate may well represent a transition state

analog.

Structural Chemistry

Several X-ray structures of R39 have been determined, in

its apo form [20] or in complex with different inhibitors

or peptides [19,21,22].

The structure of R39 is composed of three domains:

a penicillin-binding domain and two domains of

unknown functions (Figure 771.1). The latter two

domains are inserted in the penicillin-binding domain,

between the SXXK and SXN motifs, in the way of

‘Matryoshka dolls’. The penicillin-binding domain

shares its overall fold with other penicillin-binding pro-

teins and the serine β-lactamases: the R39 active site is

located in an extended groove between a five-stranded

antiparallel β-sheet and a cluster of α-helices. The struc-

tures with peptidoglycan mimetic peptide, cephalosporin

or boronic acid have confirmed the importance of the

A2pm side chain for the affinity of substrates and inhibi-

tors with R39.

Preparation

The enzyme was initially extracted and purified from cul-

ture filtrates of the original Actinomadura R39 strain

[23]. Much higher yields were later obtained when the

cloned gene was reintroduced into the R39 strain itself by

electroporation of the pDML15 plasmid [24].

Biological Aspects

The physiological role of the R39 DD-peptidase is unclear.

Homologous proteins have a preferential endopeptidase

role in vivo but they are not essential for cell survival.

Distinguishing Features

Among the penicillin-binding proteins (PBPs), the R39

enzyme is remarkable for its high activity on simple pep-

tides and thioesters, its ability to catalyze the formation

of dimers and its high sensitivity to most β-lactams. This

latter property has been utilized in the design of a sensi-

tive method for the assay of β-lactams in biological fluids

[25].

Related Enzymes

The sequence of the enzyme can be aligned with those of

Bacillus subtilis PBP-4a [26] and of E. coli PBP-4

(Chapter 769) with 46 and 19% of identical residues,

respectively. The X-ray structures of these proteins have

confirmed their structural similarity with R39 [27,28].

Although the three proteins share some enzymatic simi-

larities, their sensitivities to penicillins and cephalospor-

ins can be very different. For instance, the B. subtilis

PBP-4a reacts with benzylpenicillin 200-fold more slowly

than the R39 enzyme. It is related to the Streptomyces

R61 DD-peptidase (Chapter 766) by its high activity

against -D-Ala-D-Ala terminated peptides.

Further Reading

The properties of DD-peptidases and their structural and

functional relationships with β-lactamases have been con-

sidered in detail by Frère & Joris [29], Joris et al. [30],

Frère et al. [31], Ghuysen [32] and Jamin et al. [33].

Extensive details on the low molecular mass PBPs are

given in a recent review [34].
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