Cytotoxic T-lymphocyte-associated protein 4-Ig effectively controls immune activation and inflammatory disease in a novel murine model of leaky severe combined immunodeficiency

Stéphanie Humblet-Baron, MD, PhD,a,b Susann Schönefeldt, MSc,a,b Josselyn E. Garcia-Perez, MSc,a,b Frédéric Baron, MD, PhD,c Emanuela Pasciuto, PhD,a,b and Adrian Liston, PhD,a,b Leuven and Liege, Belgium

Background: Severe combined immunodeficiency can be caused by loss-of-function mutations in genes involved in the DNA recombination machinery, such as recombination-activating gene 1 (RAG1), RAG2, or DNA cross-link repair 1C (DCLRE1C). Defective DNA recombination causes a developmental block in T and B cells, resulting in high susceptibility to infections. Hypomorphic mutations in the same genes can also give rise to a partial loss of T cells in a spectrum including leaky severe combined immunodeficiency (LS) and Omenn syndrome (OS). These patients not only experience life-threatening infections because of immunodeficiency but also experience inflammatory/autoimmune conditions caused by the presence of autoreactive T cells.

Objective: We sought to develop a preclinical model that fully recapitulates the symptoms of patients with LS/OS, including a model for testing therapeutic intervention.

Methods: We generated a novel mutant mouse (Dclre1cleaky) that develops a LS phenotype. Mice were monitored for inflammatory symptoms, including wasting, dermatitis, colitis, autoimmune conditions, resulting in increased survival.

Results: Dclre1cleaky mice present with a complete blockade of B-cell differentiation, with a leaky block in T-cell differentiation resulting in an oligoclonal T-cell receptor repertoire and enhanced cytokine secretion. Dclre1cleaky mice also had inflammatory symptoms, including wasting, dermatitis, colitis, hypereosinophilia, and high IgE levels. Development of a preclinical murine model for LS allowed testing of potential treatment, with administration of cytotoxic T-lymphocyte-associated protein 4-Ig reducing disease symptoms and immunologic disturbance, resulting in increased survival.

Conclusion: These data suggest that cytotoxic T-lymphocyte-associated protein 4-Ig should be evaluated as a potential treatment of inflammatory symptoms in patients with LS and those with OS. (J Allergy Clin Immunol 2017; [[]]; [[]].)

Key words: Leaky severe combined immunodeficiency, Artemis, regulatory T cell, cytotoxic T-lymphocyte-associated protein 4, immune dysregulation

Severe combined immunodeficiency (SCID) disorders are characterized by a profound defect in the adaptive immune system with a partial or total loss of function of T and B cells. Patients are highly susceptible to severe opportunistic infections, and their survival expectancy is limited unless they receive early allogeneic hematopoietic stem cell transplantation. An important cause of SCID is mutation in genes, such as recombination-activating gene 1 (RAG1), RAG2, DNA cross-link repair 1C (DCLRE1C), and DNA ligase 4 (LIG4), which produce proteins that are part of the DNA recombination machinery. During the V(D)J recombination of the T-cell receptor (TCR) or B-cell receptor (BCR), RAG1 and RAG2 recognize the recombination signal sequence and cleave double-stranded DNA, followed by formation of the hairpin loop at the end of the open DNA. In complex with other proteins, ARTEMIS (the product of DCLRE1C) then cleaves these hairpin loops to allow ligation of the newly formed DNA strand by DNA ligase IV (the product of LIG4). In the absence of any of these components, defective V(D)J recombination blocks the formation of a functional TCR or BCR, leading to an early block of T- and B-cell differentiation.1

In addition to the typical SCID phenotype, hypomorphic mutations in the RAG1, RAG2, and DCLRE1C genes can cause Omenn syndrome (OS) and leaky severe combined immunodeficiency (LS). OS is characterized by early and severe inflammatory symptoms, including generalized erythroderma, diarrhea, hepatosplenomegaly, lymphadenopathy with hypereosinophilia, and increased IgE levels. Unlike SCID, T cells are detected in the blood of patients in the absence of maternal engraftment and demonstrate peripheral activation and oligoclonal expansion of self-reactive T cells.2 Patients with LS show even higher levels of blood T cells (although still reduced relative to those in healthy subjects) of an oligoclonal nature.2 Patients with LS can present with a later clinical onset of disease with combined immunodeficiency and immune dysregulation, leading to autoimmune manifestations, mostly autoimmune cytopenia. Both patients with OS and those with LS are highly susceptible to cancer of lymphoid origin.3 In most patients with OS and LS, residual activity of the protein is detected. Specifically, large deletions and mutations in the catalytically functional domains (β-lactamase and β-CASP
Abbreviations used
BCR: B-cell receptor
CTLA4: Cytotoxic T-lymphocyte-associated protein 4
DCLRE1C: DNA cross-link repair 1C
ENU: N-ethyl-N-nitrosourea
Foxp3: Forkhead box p3
GFP: Green fluorescent protein
LIG4: DNA ligase 4
LS: Leaky severe combined immunodeficiency
OS: Omenn Syndrome
RAG: Recombination-activating gene
SCID: Severe combined immunodeficiency
SP: Single-positive
TCM: Central memory T
TCR: T-cell receptor
Treg: regulatory T

domains) of the ARTEMIS protein lead to an absence of protein and SCID, whereas mutations in the C-terminal domain can result in OS/LS phenotypes.3,5 OS and LS appear to lie on a spectrum of immunodeficiency, with potential for similar mutations to manifest with different clinical presentations.3,5

A diverse set of hypotheses have been formulated to explain the coexistence of autoimmunity and immunodeficiency in patients with OS/LS.7 However, the lack of preclinical models for LS/OS with ARTEMIS deficiency has restricted both a functional understanding of the immune processes occurring and also the testing of therapeutic tools. Here we developed a novel LS mouse model caused by a hypomorphic point mutation in Dclre1c. Mutant mice have a macroscopic phenotype similar to that of patients with LS, including the presence of peripheral T-cell lymphocytes, development of spontaneous inflammatory diseases, and a high incidence of lymphoma development. Importantly, administration of the immunosuppressive drug cytotoxic T-lymphocyte-associated protein 4-Ig (CTLA4-Ig) resulted in control of inflammation and improved disease-free survival in comparison with control mice, identifying CTLA4-Ig as a potential treatment for patients with LS.

METHODS
Mice
Founder C57BL/6 male mice were treated with 100 mg/kg N-ethyl-N-nitrosourea (ENU) and bred to Foxp3GFP female mice to generate the Dclre1cleaky strain.1 First-generation male offspring were backcrossed to Foxp3GFP female mice to produce second-generation offspring, which were in turn intercrossed to produce the third generation for phenotype screening. Phenotype screening involved flow cytometric analysis for CD4 and Foxp3 (GFP) and identification of mice with values for the percentage of GFP+ cells (within the CD4+ population) more than 2 SDs from the norm. Identified variant offspring were intercrossed with female mice starting at 8 weeks of age at a dose of 25 mg/kg administered intraperitoneally every other week. Mice were maintained in specific pathogen-free facilities of the University of Leuven. All experiments were approved by the University of Leuven ethics committee.

Western blotting
Thymocytes were homogenized in lysis buffer consisting of 100 mM/L NaCl, 50 mM/L Tris-HCl (pH 7.5), 1% Triton X-100, 2 mM/L dithiothreitol, 1 mM/L EDTA, phosphatase inhibitor (Sigma-Aldrich, St Louis, Mo), and protease inhibitor (Pierce, Rockford, Ill) and then incubated on ice for 30 minutes. Cells were sonicated, and lysate was prepared. The NuPAGE Precast Gel System was used for Western blotting (Life Technologies, Grand Island, NY). Ten to 20 µg of lysate was separated on 4–12% bis-Tris acrylamide gels and blotted on a polyvinylidene difluoride membrane (GE Healthcare, Fairfield, Conn). Membranes were incubated with polyclonal IgG rabbit anti-mouse/human Artemis (1:1000, PA5-26741; Thermo Scientific, Waltham, Mass) and mouse anti–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:10000, GA1R; Thermo Scientific) and developed by using Western Lightning Plus-ECL (PerkinElmer, Waltham, Mass) and the imaging system G:Box XRQ (Syngene, Cambridge, United Kingdom). Quantification was performed with AIDA software (version 5.0; Raytest, Straubenhardt, Germany).

TCR Vβ CDR3 size spectratype analysis
Total splenocytes were harvested and conserved in RNA Later stabilization reagent (Trizol, Thermo Fisher Scientific). RNA was then extracted with the RNEasy Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Genomic DNA was removed by using recombinant RNase-free DNaseI (Roche, Mannheim, Germany). cDNA was synthesized from RNA (2 µg) by using oligo(dT)20 primers with the Transcripter First Strand cDNA Synthesis Kit (Roche). Seminested PCR was performed with sense primers for a panel of murine Vβ families and 2 µM anti-sense primers (Integrated DNA Technologies, Leuven, Belgium), as previously described. CDR3 size spectratype analysis was performed with GeneMapper version 4.0 Software (Applied Biosystems, Foster City, Calif).

Flow cytometry
Single-cell suspensions were prepared from mouse thymus, bone marrow, spleen, and pooled lymph nodes (cervical, inguinal, mesenteric, axillary, and brachial). For intracellular cytokine staining, lymphocytes were plated at 5 × 105 cells/well in 96-well tissue-culture plates in complete RPMI containing phorbol 12-myristate 13-acetate (50 ng/mL; Sigma-Aldrich), ionomycin (250 ng/mL; Sigma-Aldrich), and monensin (1/1500; BD Biosciences, San Jose, Calif) for 4 hours at 37°C. All cells were fixed with BD Cytofix (BD Biosciences) or fixed and permeabilized with the eBioscience Foxp3 staining kit (eBioscience/Affymetrix, San Diego, Calif). Anti–murine antibodies included anti-CD4 (RM4-5), anti-CD8a (53-6.7), anti-Foxp3 (FJK-16s), anti-CD25 (Pc6.5), anti-CTLA4 (UC10-4B9), anti-CD69 (H1.2F3), anti-CD44 (IM7), anti-CD26 ligand (MEL-14), anti-B220 (RA3-6B2), anti-CD19 (eBioD3), anti-CD43 (eBioR2/60), anti-IgM (IgM14), anti-IgG (11-26c), anti-NK1.1 (PK136), anti-CD11b (M1/70), anti-CD122 (SHE27), anti-KLRG1 (2F1), anti-PD1 (J43), anti-CD3 (145-2c11), anti-CD24 (M1/12), anti-CD8α (53-6.7), anti-NKG2D (CX5), anti-Ly49D (4E5), anti-CD122 (TM-b1), anti–IFN-γ (XMG1.2), anti–IL-4 (BV6D-24G2), and anti–IL-17 (eBio17B7) from eBioscience and anti–Siglec-F (B56) and anti–Sigglec-F (E50-2440) from BD Biosciences.

Histology
Mouse tissues were preserved in 10% formalin and processed into paraffin-embedded tissue blocks by Histology Consultation Services (Eversen, Wash). Each block had thin (approximately 4-µm) sections cut on a microtome, mounted on glass slides, and stained with hematoxylin and eosin. Pathological diagnosis was performed by Biogenetics Research Laboratories, Greenbank, Wash.

ELISA-MSD
IgE titers in individual serum samples were determined by using a mouse IgE ELISA Ready-SET-Go! Kit (eBioscience), according to the manufacturer’s protocol. Cytokine serum levels were quantified by using V-Plex mouse Pro-inflammatory panel MSD (Meso Scale Discovery, Rockville, Md) plates, according to the manufacturer’s instructions.

1. C. All cells were fixed with BD Cytofix (BD Biosciences) or fixed and permeabilized with the eBioscience Foxp3 staining kit (eBioscience/Affymetrix, San Diego, Calif). Anti–murine antibodies included anti-CD4 (RM4-5), anti-CD8a (53-6.7), anti-Foxp3 (FJK-16s), anti-CD25 (Pc6.5), anti-CTLA4 (UC10-4B9), anti-CD69 (H1.2F3), anti-CD44 (IM7), anti-CD26 ligand (MEL-14), anti-B220 (RA3-6B2), anti-CD19 (eBioD3), anti-CD43 (eBioR2/60), anti-IgM (IgM14), anti-IgG (11-26c), anti-NK1.1 (PK136), anti-CD11b (M1/70), anti-CD122 (SHE27), anti-KLRG1 (2F1), anti-PD1 (J43), anti-CD3 (145-2c11), anti-CD24 (M1/12), anti-CD8α (53-6.7), anti-NKG2D (CX5), anti-Ly49D (4E5), anti-CD122 (TM-b1), anti–IFN-γ (XMG1.2), anti–IL-4 (BV6D-24G2), and anti–IL-17 (eBio17B7) from eBioscience and anti–Siglec-F (B56) and anti–Sigglec-F (E50-2440) from BD Biosciences.
Statistical analyses

Single comparisons were analyzed by using the nonparametric Mann-Whitney U test. All statistical analyses were carried out with GraphPad Prism (GraphPad Software, La Jolla, Calif). Data from mice diagnosed with tumors were excluded from cell subset and cytokine analysis. Homology alignment was performed by using HomoloGene and BLAST.

RESULTS

An ENU-induced mutation in ARTEMIS results in an LS phenotype

In a screen for modulators of regulatory T (Treg) cell numbers, we exposed C57Bl/6 mice to the ENU mutagen and intercrossed with the Foxp3GFP strain before flow cytometry–based screening for Treg cell numbers. One pedigree was isolated with the presentation of low CD4 T-cell counts and disproportionately low Treg cell counts within the blood (Fig 1, A). All-exon sequencing identified a point mutation in Dclre1c, the gene encoding ARTEMIS. This transition mutation (c.656T>C), named leaky, generated an amino acid substitution in position 219 coding for a proline instead of a leucine (Fig 1, B). The mutation conferred a L219P substitution (star) between the 2 active domains of the protein (β-lactamase, SM00849, and the β-CASP domain PF07522). D, L219P mutation is located in a region conserved across species. E, Western blot (left) and relative expression (right) of ARTEMIS protein in thymocytes from wild-type (n = 5) and Dclre1cleaky (n = 5) mice. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

FIG 1. New point mutation identified in Dclre1cleaky mice. By using ENU mutagenesis, leaky mice with a point mutation in ARTEMIS were identified. A, Leaky mice were identified with a low level of peripheral Treg cells in the blood. B, Sanger sequencing of Dclre1c, encoding for ARTEMIS, in wild-type and leaky mice confirmed a T-to-C mutation resulting in a lysine-to-proline mutation in amino acid change. C, Mutation confers a L219P substitution (star) between the 2 active domains of the protein (β-lactamase, SM00849, and the β-CASP domain PF07522). D, L219P mutation is located in a region conserved across species. E, Western blot (left) and relative expression (right) of ARTEMIS protein in thymocytes from wild-type (n = 5) and Dclre1cleaky (n = 5) mice. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

The discrepancy between Dclre1cKO mice,8 with near-complete T cell deficiency, and Dclre1cleaky mice, with reduced but detectable numbers of T cells in all mice, spurred further characterization of T-cell development in the mutant strain. Dclre1cKO mice display a block in thymocyte development at the double-negative stage during VDJ rearrangement.8 Dclre1cleaky mice also exhibited decreased absolute numbers of total thymic cells in comparison with wild-type mice (Fig 2, A). Furthermore, percentages of double-negative cells were enhanced in ARTEMIS mutant mice compared with those in wild-type mice in both young and old animals (Fig 2, B). Double-positive cell counts were severely reduced in leaky mice (Fig 2, C); however, unlike knockout animals, both single-positive (SP) CD8+ T cells (SP CD8+) and CD4+ T cells (SP CD4+) were detected in Dclre1cleaky mice (Fig 2, D and E). This result indicates a hypomorphic allele, allowing a fraction of thymocytes to rearrange competent TCRs for further progress to the next developmental stage. Detailed immunophenotyping of the thymus showed a dominant presence of recirculating cells within the SP T-cell population in Dclre1cleaky mice in comparison with wild-type animals (see Fig E1 in this article’s Online Repository at www.jacionline.org).

The LS phenotype in human subjects has been described as a strongly reduced but still present number of CD3+ T cells in the peripheral blood caused by hypomorphic mutation in known SCID genes, including DCLRE1C.2 In Dclre1cleaky mice both mature CD4+ and CD8+ T cells were present in the spleen, although at significantly lower numbers (Fig 3, A-C, and see Fig E2, D, in this article’s Online Repository at www.jacionline.org).
T cells were also present in the lymph nodes (see Fig E2). Importantly, in almost all leaky mice analyzed, Treg cell numbers were disproportionately reduced (Fig 3, D, and see Fig E2, E). Patients with an LS phenotype have a restricted T-cell repertoire.2 This prompted us to analyze the diversity of the TCR repertoire in the spleens of wild-type and leaky mice through TCR spectratyping. Consistent with the patient phenotype, we observed that Dclre1^{leaky} mice displayed a very limited TCR repertoire compared with wild-type mice (Fig 3, E). Together, these results indicate that leaky mice recapitulate the oligoclonal nature of the T-cell repertoire observed in patients with LS because of restricted T-cell differentiation.

Regarding other immune cell compartments, B cells were almost absent in leaky mice, with an early block between the pro–B-cell and pre–B-cell stage during bone marrow development with a conserved pro–B-cell compartment (median, 3.3% from total bone marrow cells for wild-type mice vs 3.4% for Dclre1^{leaky} mice) and a near-absent pre–B-cell compartment (median, 4.3% from total bone marrow cells for wild-type mice vs 0.2% for Dclre1^{leaky} mice; P = .003; Fig 3, F). The percentage of natural killer and myeloid cells was increased in ARTEMIS mutant mice because of the reduction in T- and B-lymphocyte numbers, but absolute numbers were similar (Fig 3, H-J). However, an altered activation profile was observed in natural killer cells from Dclre1^{leaky} mice (see Fig E2, F and G). Therefore Dclre1^{leaky} mice fit the immunologic criteria for LS, with severe but partial defects in TCR/BCR rearrangement but otherwise intact immune systems.

Leaky mice develop inflammatory pathology
Published mice with mutations in ARTEMIS phenocopy the classical SCID presentation of patients with DCLRE1C mutations,8-11 with defects in T and B cells causing immunodeficiency but no spontaneous disease,8-11 apart from an increased incidence of tumor under a specific backcross.12 By contrast, Dclre1^{leaky} mice recapitulate the LS phenotype present in a subset of DCLRE1C patients13 with spontaneous immune activation. The clonal T cells from leaky mice that underwent successful TCR rearrangement demonstrated high levels of oligoclonal peripheral expansion (Fig 3, E), with enhanced proliferation (Fig 4, A, and see Fig E3, A, in this article’s Online Repository at www.jacionline.org). These expanded cells were mainly of an effector phenotype, with a significantly decreased naive T-cell compartment (Fig 4, B and C, and Fig E3, B and C). Interestingly, CD122 expression was increased in CD8⁺ central memory T (TCM) cells, suggesting that Dclre1^{leaky} T cells might have a higher reliance on IL-15 for homeostasis (see Fig E3, D). This is further illustrated by an expansion over time of this specific CD8⁺ TCM cell population in Dclre1^{leaky} mice, whereas this
population stays stable in wild-type animals (Fig 4, B and C, and see Fig E3, B and C). Indeed, splenic absolute numbers of CD8+ TCM cells increase 10-fold in old (median, 0.47 × 10^6) versus young (median, 0.04 × 10^6; P < .001) Dclre1cleyky mice, although the overall number remains less than the wild-type cell number (median, 3.1 × 10^6 and 2.7 × 10^6 cells [not significant] in old and young mice, respectively).

The high T-cell activation in Dclre1cleyky mice was also demonstrated by the increased percentage of cells expressing CD69 at their cell surfaces, a marker of early T-cell activation (Fig 4, D, and see Fig E3, E). By contrast, no difference in expression of CD127, KLRG1, or PD1 was observed in CD8+ T-cell subsets (Fig 4, E); however, a transient boost in short-lived effector cells (SLECs) was observed in leaky mice at young ages, with resolution in older mice (see Fig E4 in this article’s Online Repository at www.jacionline.org).

To determine whether the activated T cells in leaky mice were producing an inflammatory environment, we assessed cytokine release. Within Dclre1cleyky mice, numbers of Th1 (IFN-γ–secreting CD4+ T cells), Th2 (IL-4–secreting CD4+ T cells), and Th17 (IL-17–secreting CD4+ T cells) cells were all increased compared with those in wild-type animals (Fig 4, F, and see Fig E3, F), with serum increases in IFN-γ levels also observed (Fig 4, G).

The inflammatory T-cell phenotype of Dclre1cleyky mice was associated with immune pathology. More than 50% of leaky mice had a wasting disease with lower weight, poor grooming, an abnormal hunched posture, or signs of severe dermatitis (Fig 5, A and B, and see Fig E5, A-C, in this article’s Online Repository at www.jacionline.org). When evaluated based on histology, all leaky analyzed mice showed signs of lymphoreticular infiltrates in different organs, including the lung, liver, gastrointestinal tract,
pancreas, lymph nodes, and skin, with signs of severe vasculitis (Fig 5, C). Disease was accompanied by a high number of eosinophils in both the spleen and peripheral blood (Fig 5, D), and a substantial increase in IgE levels (>50,000 ng/mL) was detected in the sera of 26% of leaky mice (compared with 7% of age-matched control mice). Consistently, IL-5 in the sera of Dclre1cleaky mice was detected at a higher level (see Fig E6 in this article’s Online Repository at www.jacionline.org). In addition, tumors of a lymphoid origin developed in 15% of Dclre1cleaky mice at 8 to 10 months of age (Fig 5, A and E, and see Fig E5, D), a level similar to that of spontaneous tumors reported in patients with LS or OS and DCLRE1C mutations.

CTLA4-Ig treatment prevents immune pathology in ARTEMIS mutant mice with LS

The development of a new animal model that recapitulated the key clinical features of LS allowed the testing of potential therapeutic interventions. The Dclre1cleaky phenotype was associated with peripheral T-cell activation, including high IL-4, high IgE, and increased eosinophil levels, which are characteristics of Treg cell deficiency and TH2-mediated disease. These observations prompted us to treat leaky mice with CTLA4-Ig to investigate whether disease could be prevented by this treatment, which was shown previously to be effective in suppressing TH2 responses in mice with low Treg cell numbers. Untreated leaky mice showed normal weight curves until 6 months of age, at which point wasting (Fig 6, A) and premature mortality (27% of mice) were noted (Fig 6, B). By contrast, the CTLA4-Ig–treated leaky mice did not exhibit wasting, and no premature mortality was observed (Fig 6, A and B). Furthermore, none of the Dclre1cleaky mice receiving CTLA4-Ig treatment had any symptoms of skin inflammation (Fig 6, C) and hyper-IgE (Fig 6, D). These observations indicate the efficacy of CTLA4-Ig for the autoimmune-related manifestations of LS. By contrast, however, colitis was not improved with CTLA4-Ig treatment, and 15% of Dclre1cleaky mice treated with CTLA4-Ig had tumors, an incidence similar to the untreated
group, indicating that CTLA4-Ig administration does not prevent the development of thymic lymphoma (Fig 6, C).

Although the precise mechanism of action of CTLA4 is still under debate, there is strong evidence suggesting that reducing ligand access to the costimulation molecule CD28 constitutes one of its principal functions. An immunologic analysis of the effects of CTLA4-Ig treatment on control and leaky mice found that the main immune phenotype caused by CTLA4-Ig treatment...
was a pronounced and sustained decrease in CD4$^+$ T-cell counts, including a further reduction of the Treg cell subset (Fig 7, A-C, and see Fig E8, A and B, in this article’s Online Repository at www.jacionline.org). This is in accordance with the fact that CD28 costimulation is critical for T-cell peripheral survival, with a more profound requirement present in Treg cells. Furthermore, we observed a lower percentage of CD4$^+$ T-cell proliferation (Fig 7, D, and see Fig E8, C) and activation (Fig 7, E, and see Fig E8, D) in the spleen and lymph nodes after CTLA4-Ig treatment. Regarding cytokine secretion, there was a strong reduction in the absolute number of cytokine-secreting T cells because of the generic blockade on T-cell activation (Fig 7, F-H), specifically in T$_{H2}$ cells as a reflection of better control of T$_{H2}$ over T$_{H1}$ by CTLA4-Ig. In addition, levels of IFN-γ and TNF-α were significantly lower in the serum of Dclre1leaky mice receiving CTLA4-Ig (Fig 7, I and J). Finally, it is worth noting that all significant immune differences induced by CTLA4-Ig treatment were observed in both littermate control and Dclre1leaky mice, indicating that the successful ablation of immune pathology in leaky mice is driven by the same immunologic processes initiated by CTLA4 in control mice.

DISCUSSION

Although complete T-cell deficiency presents as profound immunodeficiency, incomplete forms, prototypically OS and LS, manifest as a paradoxical copresentation of immunodeficiency and immune dysregulation with spontaneous inflammatory/
autoimmune symptoms. Numerous hypotheses have been put forward to explain this paradox at the immunologic level, including a mismatch between available effector and Treg cell clones after oligoclonal expansion, reduced efficiency of thymic tolerance processes in the abnormal thymic tissue present, or a hyperstimulatory phenotype of dendritic cells created by peripheral T-cell deficiency.6,19 However, a limited range of preclinical models has hampered the ability to test these models and develop therapeutic strategies.

Mutations in ARTEMIS drive clinical phenotypes that fall in the SCID-OS-LS spectrum. Mouse models, by contrast, show a much more restricted phenotypic range because of the concentration on “knockout” mutations. Standard ARTEMIS knockout mice possess a SCID-like phenotype, although the presence of T cells in the periphery suggests a partial redundancy of ARTEMIS for TCR rearrangement in the thymus tissue present, or a hyperstimulatory phenotype of dendritic cells created by peripheral T-cell deficiency.8 Mutations in the C-terminal domain of ARTEMIS, which are more likely to promote a leaky phenotype in patients,4 have only a partial block in B- and T-domain of ARTEMIS, which are more likely to promote a leaky and hypereosinophilia. With symptomatic development in older disease, splenomegaly, inflammatory cytokines, high IgE levels, and hyperstimulatory phenotype of dendritic cells created by peripheral T-cell deficiency.

The serendipitous development of an LS preclinical model allowed for dissection of potential tolerance breakpoints and thus testing of intervention strategies. The most striking observation was the low number of Treg cells found in both the thymus and periphery. One could speculate that the only allowed V(D)J rearrangement in patients with LS is detrimental to Treg cell formation, maintenance, or both because of selection of TCR with a specific affinity.20 This low Treg cell phenotype can account for the imbalance in Th1/Th2 profile observed in Dclre1^{leaky} mice because of the asymmetry in Treg cell control over the 2 immune arms.14 Additional homeostatic “space filling” pressures can be extrapolated from the oligoclonal expansion and adoption of the effector memory T-cell phenotype observed in T cells. The logical extension of this immunologic presentation is that therapeutic intervention requires substitution for Treg cell deficiency, enhanced suppression of the Th1 response, and a counteraction of the enhanced CD80/CD86 stimulatory profile of lymphopoeic dendritic cells.

Current treatment for inflammatory manifestation in patients with LS/OS is based on nonspecific immunosuppressive drugs, such as corticosteroids and cyclosporine.13,21 Although these

FIG 7. CTLA4-Ig treatment effectively decreases inflammation in Dclre1^{leaky} mice. Dclre1^{leaky} mice and littermate controls (Ctrl) received CTLA4-Ig (25 mg/kg) every 2 weeks starting at 8 weeks of age. Mice were evaluated at 40 weeks of age for the immune cell compartment in the spleen. A, Kinetics of CD4⁺ T cells in blood at 3, 6, and 9 months of age. B, Percentage of total CD4⁺ T cells. C, Percentage of Treg (CD4⁺Foxp⁺) cells within CD4⁺ T cells. D and E, Ki67⁺ cells (Fig 7, D) and CD69⁺ cells (Fig 7, E). F-H, Absolute number of Tn₁ (IFN-γ–secreting CD4⁺) T cells; Fig 7, F, Tn₂ (IL-4–secreting CD4⁺) T cells; Fig 7, G, and Tn₁₇ cells (IL-17–secreting CD4⁺) T cells; Fig 7, H. I and J, Serum level of IFN-γ (one very high value for Dclre^{leaky} is not shown; Fig 7, I) and TNF-α (Fig 7, J). Medians and individual data points are shown. Fig 7, A, L, and J, represent 1 experiment, and Fig 7, B-H, represent data of 2 experiments. Untreated control mice (n = from 3 to 9) and untreated Dclre1^{leaky} mice (n = from 3 to 9), CTLA4-Ig–treated control mice (n = from 5 to 12) and CTLA4-Ig–treated Dclre1^{leaky} mice (n = from 5 to 11) were used.
treatments show some limited success, the combination of limited efficacy and undesirable side effects leave room for clinical improvement. New therapeutic approaches are being directed toward better targeted and specific treatment with less side effects, as illustrated with the use of thrombopoietin receptor agonist in the case of thrombocytopenia. The immunology-directed rationale of changes identified in our preclinical model identified CTLA4-Ig, a soluble version of CTLA4, as a key therapeutic candidate.

CTLA4-Ig meets all of the intervention criteria listed above. First, as a potent suppressive molecule used by Treg cells for immune suppression, CTLA4-Ig can be substitutive for Treg cells. Second, CTLA4-Ig is highly effective at quenching TGF responses. Third, CTLA4-Ig effectively competes with CD80/CD86 for CD28 binding, counteracting the increased expression of these molecules in lymphopenic dendritic cells. Because bimonthly administration of CTLA4-Ig to Dekre1cleaky mice resolved inflammation, prevented tissue damage, and improved overall survival, the immunologic rationale of CTLA4-Ig selection for murine LS treatment can be regarded as validated. Although abatacept demonstrates high efficiency in rodent studies, when considering clinical translation, additional options become available, with belatacept demonstrating higher affinity toward human CD86.

Overall, our study identified a novel mutation of ARTEMIS, resulting in a murine preclinical model of LS. Consistent with CD4+ T cells being the driver of inflammatory disease in patients with LS and based on assessment of the immunologic disturbances observed, CTLA4-Ig proved an effective drug to prevent disease manifestation and increase survival. By contrast, no improvement was observed in the increased incidence of lymphoma in these mice, which mirrors the patient’s presentation, indicating a mechanistically independent origin for the oncological components of disease. In addition, colitis seems to be resistant to CTLA4-Ig treatment. This observation is in accordance with clinical trials that showed failure of CTLA4-Ig in the treatment of patients with Crohn disease or ulcerative colitis secondary to the resistance of inhibition of TH17 by CTLA4. Together, these results call for a carefully controlled trial of CTLA4-Ig treatment of patients with OS/LS to investigate the potential for treating the autoimmune/inflammatory components of disease.

Key messages
- The Dekre1cleaky mouse recapitulates the symptoms and immunologic features of patients with LS/OS.
- CTLA4-Ig efficiently controls inflammation in these mice through tight regulation of CD4+ T cells.

REFERENCES
FIG E1. T-cell developmental defects in Dclre1c^{leaky} mice. Thymi from 8- to 10-month-old wild-type and Dclre1c^{leaky} mice (Fig E1, A-C) or 10-week-old mice (Fig E1, D-F) were analyzed for cell numbers and T-cell subsets by using flow cytometry. A, Representative flow cytometric plot from the thymus, including 2 mice within the Dclre1c^{leaky} phenotype spectrum. B and C, Thymocyte subset absolute cell numbers for double-negative (DN) and double-positive (DP; Fig E1, B) and the CD4⁺ and CD8⁺ single-positive (SP) and Treg cell (Fig E1, C) subsets. D, Representative flow cytometric plot for mature (CD3⁺CD69⁺) and immature (CD3⁺CD69⁻) cells within CD4⁺ and CD8⁺ SP subsets. E, Representative flow cytometric plot for the presence of recirculating cells (CD24⁺Qa2⁺) within CD3⁺CD69⁻ or CD3⁺CD69⁺ cells in CD4⁺ and CD8⁺ SP subsets. F, Percentage of recirculating T cells in the mature CD3⁺CD69⁻ subsets of the CD4⁺ and CD8⁺ SP compartment. Median and individual data points are shown. Fig E1, B and C, Pooled data from up to 11 experiments were used: wild-type mice (n = 5–14) and Dclre1c^{leaky} mice (n = 5–26). Fig E1, D-F, represents a single experiment: wild-type mice (n = 4) and Dclre1c^{leaky} mice (n = 4).
FIG E2. *Dclre1 cleaky* mice have an LS phenotype in the periphery. Lymph nodes from wild-type (WT) and *Dclre1 cleaky* mice were evaluated at 8 weeks of age and between 8 and 10 months of age. T-cell subsets were analyzed by using flow cytometry (A-E). A, Representative flow cytometric plot from the lymph nodes, including 2 mice within the *Dclre1 cleaky* phenotype spectrum. B and C, Percentage of total CD8\(^+\) and CD4\(^+\) T cells. D, Absolute numbers of CD8\(^+\) and CD4\(^+\) T cells in the spleen at 8 weeks of age. E, Percentage of Treg cells (CD4\(^+\) Foxp3\(^+\) cells) in the lymph nodes. F, NKG2D geometric mean fluorescence expression (gMFI) in splenic natural killer cells in 10-week-old mice. G, CD69 and Ly49D percentages in splenic natural killer cells in 10-week-old mice. Median and individual data points are shown. Fig E2, B-E, Pooled data from up to 11 experiments are shown: wild-type 8-week-old mice (n = 3), *Dclre1 cleaky* 8-week-old mice (n = 8), wild-type 8- to 10-month-old mice (n = 14), and *Dclre1 cleaky* 8- to 10-month-old mice (n = from 26 to 27). Fig E2, F and G, represent a single experiment: wild-type mice (n = 4) and *Dclre1 cleaky* mice (n = 4).
FIG E3. *Dclre1c^{lacy}* have increased T-cell activation and proinflammatory cytokines in serum. Lymph nodes from wild-type (WT) and *Dclre1c^{lacy}* mice were evaluated at 8 weeks of age and between 8 and 10 months of age (Fig E3, A-C, E, and F). T-cell subsets were analyzed by using flow cytometry. A, Percentage of CD4⁺ and CD8⁺ T cells expressing Ki67. B and C, CD4⁺ and CD8⁺ T-cell subpopulations were characterized as CD62L⁺CD44⁺ naive cells, CD62L⁻CD44⁺ TCM cells, and CD62L⁻CD44⁻ effector memory T cells (TEM) by using flow cytometry. Fig E3, B, shows the percentage of CD4⁺ naive, TCM, and TEM cells. Fig E3, C, Percentage of CD8⁺ naive, TCM, and TEM cells. D, Percentage of CD122⁺ cells within the CD8⁺ TCM cell subsets in 10-week-old mice. E, Percentage of CD4⁺ and CD8⁺ T cells expressing CD69. F, Cells from lymph nodes were stimulated in vitro for 4 hours with phorbol 12-myristate 13-acetate/ionomycin and CD4⁺ T cells evaluated for cytokine secretion, including IFN-γ, IL-4, and IL-17. Median and individual data points are shown.
FIG E4. Increased short-lived effector cell counts in young Dclre1^{cleaky} mice. CD8⁺ T cells were analyzed in a cohort of 10-week-old mice by using flow cytometry in the spleen and lymph nodes and compared with values in older mice (8-10 months old). A and B, Percentage of CD127⁺ KLRG1⁺ memory precursor effector cells (MPEC) and CD127⁻ KLRG1⁻ short-lived effector cells (SLEC) within CD44⁺ CD8⁺ subsets in the spleen (Fig E4, A) and lymph nodes (Fig E4, B). C and D, Percentage of Eomes⁺ and T-bet⁺ cells within CD8⁺ CD44⁺ CD62L⁻ subsets and effector memory T cells (TEM) in the spleen (Fig E4, C) and lymph nodes (Fig E4, D) of 10-week-old mice. E and F, Percentage of LAG3⁺ and TIM3⁺ cells within CD8⁺ CD44⁺ CD62L⁻ subsets and effector memory T cells (TEM) in the spleen (Fig E4, E) and lymph nodes (Fig E4, F) of 10-week-old mice. Median and individual data points are shown. Fig E4, A-F, represent a single experiment: wild-type mice (n = 4) and Dclre1^{cleaky} mice (n = 4).
FIG E5. *Dclre1*Δmy mice are affected by inflammatory diseases and are at higher risk for lymphoma. Mice from 8 to 10 months of age were evaluated at the time of death for disease incidence. **A,** Representative picture of a wild-type mouse. **B** and **C,** Representative picture of a *Dclre1*Δmy mouse, including hunched posture and dermatitis of the ear (arrow; Fig E5, **B**) and tail (arrow; Fig E5, **C**). **D,** Representative picture of a *Dclre1*Δmy mouse with a thymic tumor (arrow).
FIG E6. IL-5 levels are increased in sera of Dclre1c^{leaky} mice. Sera from mice from 8 to 10 months of age were evaluated for the presence of IL-5 by using the MSD assay. Median and individual data points are shown. Pooled data are from 2 experiments: wild-type (n = 4) and Dclre1c^{leaky} (n = 6) mice.
FIG E7. CTLA4-Ig treatment prevents immune pathology in Dclre1^{leaky} mice. Dclre1^{leaky} mice and littermate controls (Ctrl) were followed up for a longitudinal study with or without CTLA4-Ig treatment (25 mg/kg) every 2 weeks starting at 8 weeks of age. Mice were evaluated at 40 weeks of age. Representative pictures are of an untreated control mouse (A), a control mouse after CTLA4-Ig treatment (B), an untreated Dclre1^{leaky} mouse (C), and a Dclre1^{leaky} mouse after CTLA4-Ig treatment (D).
FIG E8. CTLA4-Ig treatment decreased total CD4^+ T-cell counts in Dclre1c^lacy^ mice and the overall inflammatory cytokine environment. Dclre1c^lacy^ mice and littermate controls (Ctrl) received CTLA4-Ig (25 mg/kg) every 2 weeks starting at 8 weeks of age. Mice were evaluated at 40 weeks of age for the immune cell compartment in lymph nodes. A. Percentages of total CD4^+ T cells. B. Percentage of Treg cells from total CD4^+ T cells. C and D. Ki67^+ cells (Fig E8, C) and CD69^+ cells (Fig E8, D) from total CD4^+ T cells. Median and individual data points are shown. Representative data are of 2 experiments: untreated control mice (n = from 5 to 10), untreated Dclre1c^lacy^ mice (n = 9), CTLA4-Ig–treated control mice (n = 11), and CTLA4-Ig–treated Dclre1c^lacy^ mice (n = from 7 to 11).