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A B S T R A C T

Within machine learning, the supervised learning field aims at model-
ing the input-output relationship of a system, from past observations
of its behavior. Decision trees characterize the input-output relation-
ship through a series of nested if− then− else questions, the testing
nodes, leading to a set of predictions, the leaf nodes. Several of such
trees are often combined together for state-of-the-art performance:
random forest ensembles average the predictions of randomized de-
cision trees trained independently in parallel, while tree boosting
ensembles train decision trees sequentially to refine the predictions
made by the previous ones.

The emergence of new applications requires scalable supervised
learning algorithms in terms of computational power and memory
space with respect to the number of inputs, outputs, and observa-
tions without sacrificing accuracy. In this thesis, we identify three
main areas where decision tree methods could be improved for which
we provide and evaluate original algorithmic solutions: (i) learning
over high dimensional output spaces, (ii) learning with large sample
datasets and stringent memory constraints at prediction time and (iii)
learning over high dimensional sparse input spaces.

A first approach to solve learning tasks with a high dimensional output
space, called binary relevance or single target, is to train one decision
tree ensemble per output. However, it completely neglects the po-
tential correlations existing between the outputs. An alternative ap-
proach called multi-output decision trees fits a single decision tree
ensemble targeting simultaneously all the outputs, assuming that all
outputs are correlated. Nevertheless, both approaches have (i) exactly
the same computational complexity and (ii) target extreme output
correlation structures. In our first contribution, we show how to com-
bine random projection of the output space, a dimensionality reduc-
tion method, with the random forest algorithm decreasing the learn-
ing time complexity. The accuracy is preserved, and may even be im-
proved by reaching a different bias-variance tradeoff. In our second
contribution, we first formally adapt the gradient boosting ensem-
ble method to multi-output supervised learning tasks such as multi-
output regression and multi-label classification. We then propose to
combine single random projections of the output space with gradient
boosting on such tasks to adapt automatically to the output correla-
tion structure.

The random forest algorithm often generates large ensembles of
complex models thanks to the availability of a large number of obser-
vations. However, the space complexity of such models, proportional
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to their total number of nodes, is often prohibitive, and therefore
these modes are not well suited under stringent memory constraints
at prediction time. In our third contribution, we propose to compress
these ensembles by solving a `1-based regularization problem over
the set of indicator functions defined by all their nodes.

Some supervised learning tasks have a high dimensional but sparse
input space, where each observation has only a few of the input vari-
ables that have non zero values. Standard decision tree implementa-
tions are not well adapted to treat sparse input spaces, unlike other
supervised learning techniques such as support vector machines or
linear models. In our fourth contribution, we show how to exploit al-
gorithmically the input space sparsity within decision tree methods.
Our implementation yields a significant speed up both on synthetic
and real datasets, while leading to exactly the same model. It also re-
duces the required memory to grow such models by exploiting sparse
instead of dense memory storage for the input matrix.
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R É S U M É

Parmi les techniques d’apprentissage automatique, l’apprentissage
supervisé vise à modéliser les relations entrée-sortie d’un système,
à partir d’observations de son fonctionnement. Les arbres de déci-
sion caractérisent cette relation entrée-sortie à partir d’un ensemble
hiérarchique de questions appelées les noeuds tests amenant à une
prédiction, les noeuds feuilles. Plusieurs de ces arbres sont souvent
combinés ensemble afin d’atteindre les performances de l’état de l’art:
les ensembles de forêts aléatoires calculent la moyenne des prédic-
tions d’arbres de décision randomisés, entraînés indépendamment et
en parallèle alors que les ensembles d’arbres de boosting entraînent
des arbres de décision séquentiellement, améliorant ainsi les prédic-
tions faites par les précédents modèles de l’ensemble.

L’apparition de nouvelles applications requiert des algorithmes
d’apprentissage supervisé efficaces en terme de puissance de calcul
et d’espace mémoire par rapport au nombre d’entrées, de sorties,
et d’observations sans sacrifier la précision du modèle. Dans cette
thèse, nous avons identifié trois domaines principaux où les méthodes
d’arbres de décision peuvent être améliorées pour lequel nous four-
nissons et évaluons des solutions algorithmiques originales: (i) ap-
prentissage sur des espaces de sortie de haute dimension, (ii) appren-
tissage avec de grands ensembles d’échantillons et des contraintes
mémoires strictes au moment de la prédiction et (iii) apprentissage
sur des espaces d’entrée creux de haute dimension.

Une première approche pour résoudre des tâches d’apprentissage
avec un espace de sortie de haute dimension, appelée «binary relevance»
ou «single target», est l’apprentissage d’un ensemble d’arbres de
décision par sortie. Toutefois, cette approche néglige complètement
les corrélations potentiellement existantes entre les sorties. Une ap-
proche alternative, appelée «arbre de décision multi-sorties», est
l’apprentissage d’un seul ensemble d’arbres de décision pour toutes
les sorties, faisant l’hypothèse que toutes les sorties sont corrélées.
Cependant, les deux approches ont (i) exactement la même complex-
ité en temps de calcul et (ii) visent des structures de corrélation de
sorties extrêmes. Dans notre première contribution, nous montrons
comment combiner des projections aléatoires (une méthode de ré-
duction de dimensionnalité) de l’espace de sortie avec l’algorithme
des forêts aléatoires diminuant la complexité en temps de calcul de
la phase d’apprentissage. La précision est préservée, et peut même
être améliorée en atteignant un compromis biais-variance différent.
Dans notre seconde contribution, nous adaptons d’abord formelle-
ment la méthode d’ensemble «gradient boosting» à la régression
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multi-sorties et à la classification multi-labels. Nous proposons en-
suite de combiner une seule projection aléatoire de l’espace de sortie
avec l’algorithme de «gradient boosting» sur de telles tâches afin de
s’adapter automatiquement à la structure des corrélations existant en-
tre les sorties.

Les algorithmes de forêts aléatoires génèrent souvent de grands
ensembles de modèles complexes grâce à la disponibilité d’un grand
nombre d’observations. Toutefois, la complexité mémoire, proportion-
nelle au nombre total de noeuds, de tels modèles est souvent pro-
hibitive, et donc ces modèles ne sont pas adaptés à des contraintes
mémoires fortes lors de la phase de prédiction. Dans notre troisième con-
tribution, nous proposons de compresser ces ensembles en résolvant
un problème de régularisation basé sur la norme `1 sur l’ensemble
des fonctions indicatrices défini par tous leurs noeuds.

Certaines tâches d’apprentissage supervisé ont un espace d’entrée
de haute dimension mais creux, où chaque observation possède seule-
ment quelques variables d’entrée avec une valeur non-nulle. Les im-
plémentations standards des arbres de décision ne sont pas adaptées
pour traiter des espaces d’entrée creux, contrairement à d’autres tech-
niques d’apprentissage supervisé telles que les machines à vecteurs
de support ou les modèles linéaires. Dans notre quatrième contribu-
tion, nous montrons comment exploiter algorithmiquement le creux
de l’espace d’entrée avec les méthodes d’arbres de décision. Notre
implémentation diminue significativement le temps de calcul sur des
ensembles de données synthétiques et réelles, tout en fournissant ex-
actement le même modèle. Cela permet aussi de réduire la mémoire
nécessaire pour apprendre de tels modèles en exploitant des méth-
odes de stockage appropriées pour la matrice des entrées.
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1
I N T R O D U C T I O N

Progress in information technology enables the acquisition and stor-
age of growing amounts of rich data in many domains including
science (biology, high-energy physics, astronomy, etc.), engineering
(energy, transportation, production processes, etc.), and society (en-
vironment, commerce, etc.). Connected objects, such as smartphones,
connected sensors or intelligent houses, are now able to record videos,
images, audio signals, object localizations, temperatures, social inter-
actions of the user through a social network, phone calls or user to
computer program interactions such as voice help assistant or web
search queries. The accumulating datasets come in various forms
such as images, videos, time-series of measurements, recorded trans-
actions, text etc. WEB technology often allows one to share locally
acquired datasets, and numerical simulation often allows one to gen-
erate low cost datasets on demand. Opportunities exist thus for com-
bining datasets from different sources to search for generic knowl-
edge and enable robust decision.

All these rich datasets are of little use without the availability of au-
tomatic procedures able to extract relevant information from them in
a principled way. In this context, the field of machine learning aims at
developing theory and algorithmic solutions for the extraction of syn-
thetic patterns of information from all kinds of datasets, so as to help
us to better understand the underlying systems generating these data
and hence to take better decisions for their control or exploitation.

Among the machine learning tasks, supervised learning aims at
modeling a system by observing its behavior through samples of
pairs of inputs and outputs. The objective of the generated model
is to predict with high accuracy the outputs of the system given pre-
viously unseen inputs. A genomic application of supervised learning
would be to model how a DNA sequence, a biological code, is linked
to some genetic diseases. The samples used to fit the model are the
input-output pairs obtained by sequencing the genome, the inputs, of
patients with known medical records for the studied genetic diseases,
the outputs. The objective is here twofold: (i) to understand how the
DNA sequence influences the appearing of the studied genetic dis-
eases and (ii) to use the predictive models to infer the probability of
contracting the genetic disease.

The emergence of new applications, such as image annotation, per-
sonalized advertising or 3D image segmentation, leads to high dimen-
sional data with a large number of inputs and outputs. It requires
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2 introduction

scalable supervised learning algorithms in terms of computational
power and memory space without sacrificing accuracy.

Decision trees (Breiman et al., 1984) are supervised learning mod-
els organized in the form of a hierarchical set of questions each one
typically based on one input variable leading to a prediction. Used in
isolation, trees are generally not competitive in terms of accuracy, but
when combined into ensembles (Breiman, 2001; Friedman, 2001), they
yield state-of-the-art performances on standard benchmarks (Caru-
ana et al., 2008; Fernández-Delgado et al., 2014; Madjarov et al., 2012).
They however suffer from several limitations that make them not al-
ways suited to address modern applications of machine learning tech-
niques in particular involving high dimensional input and output
spaces.

In this thesis, we identify three main areas where random forest
methods could be improved and for which we provide and evalu-
ate original algorithmic solutions: (i) learning over high dimensional
output spaces, (ii) learning with large sample datasets and stringent
memory constraints at prediction time and (iii) learning over high di-
mensional sparse input spaces. We discuss each one of these solutions
in the following paragraphs.

high dimensional output spaces New applications of ma-
chine learning have multiple output variables, potentially in very
high number (Agrawal et al., 2013; Dekel and Shamir, 2010), asso-
ciated to the same set of input variables. A first approach to address
such multi-output tasks is the so-called binary relevance / single tar-
get method (Spyromitros-Xioufis et al., 2016; Tsoumakas et al., 2009),
which separately fits one decision tree ensemble for each output vari-
able, assuming that the different output variables are independent. A
second approach called multi-output decision trees (Blockeel et al.,
2000; Geurts et al., 2006b; Kocev et al., 2013) fits a single decision
tree ensemble targeting simultaneously all the outputs, assuming that
all outputs are correlated. However in practice, (i) the computational
complexity is the same for both approaches and (ii) we have often nei-
ther of these two extreme output correlation structures. As our first
contribution, we show how to make random forest faster by exploit-
ing random projections (a dimensionality reduction technique) of the
output space. As a second contribution, we show how to combine
gradient boosting of tree ensembles with single random projections
of the output space to automatically adapt to a wide variety of corre-
lation structures.

memory constraints on model size Even with a large num-
ber of training samples n, random forest ensembles have good com-
putational complexity (O(n logn)) and are easily parallelizable lead-
ing to the generation of very large ensembles. However, the resulting
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models are big as the model complexity is proportional to the num-
ber of samples n and the ensemble size. As our third contribution, we
propose to compress these tree ensembles by solving an appropriate
optimization problem.

high dimensional sparse input spaces Some supervised
learning tasks have very high dimensional input spaces, but only a
few variables have non zero values for each sample. The input space
is said to be “sparse”. Instances of such tasks can be found in text-
based supervised learning, where each sample is often mapped to
a vector of variables corresponding to the (frequency of) occurrence
of all words (or multigrams) present in the dataset. The problem is
sparse as the size of the text is small compared to the number of
possible words (or multigrams). Standard decision tree implementa-
tions are not well adapted to treat sparse input spaces, unlike models
such as support vector machines (Cortes and Vapnik, 1995; Scholkopf
and Smola, 2001) or linear models (Bottou, 2012). Decision tree imple-
mentations are indeed treating these sparse variables as dense ones
raising the memory needed. The computational complexity also does
not depend upon the fraction of non zero values. As a fourth contri-
bution, we propose an efficient decision tree implementation to treat
supervised learning tasks with sparse input spaces.

1.1 publications

This dissertation features several publications about random forest
algorithms:

• (Joly et al., 2014) A. Joly, P. Geurts, and L. Wehenkel. Random
forests with random projections of the output space for high dimen-
sional multi-label classification. In Machine Learning and Knowl-
edge Discovery in Databases, pages 607–622. Springer Berlin
Heidelberg, 2014.

• (Joly et al., 2012) A. Joly, F. Schnitzler, P. Geurts, and L. We-
henkel. L1-based compression of random forest models. In European
Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, 2012.

• (Buitinck et al., 2013) L. Buitinck, G. Louppe, M. Blondel, F. Pe-
dregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A.
Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt,
and G. Varoquaux. Api design for machine learning software: experi-
ences from the scikit-learn project. arXiv preprint arXiv:1309.0238,
2013.

and also the following submitted article:



4 introduction

• H. Fares, A. Joly, and P. Papadimitriou. Scalable Learning of Tree-
Based Models on Sparsely Representable Data.

Some collaborations were made during the thesis, but are not dis-
cussed within this manuscript:

• (Sutera et al., 2014) A. Sutera, A. Joly, V. François-Lavet, Z. A.
Qiu, G. Louppe, D. Ernst, and P. Geurts. Simple connectome infer-
ence from partial correlation statistics in calcium imaging. In JMLR:
Workshop and Conference Proceedings, pages 1–12, 2014.

• (Delierneux et al., 2015a) C. Delierneux, N. Layios, A. Hego, J.
Huart, A. Joly, P. Geurts, P. Damas, C. Lecut, A. Gothot, and C.
Oury. Elevated basal levels of circulating activated platelets predict
icu-acquired sepsis and mortality: a prospective study. Critical Care,
19(Suppl 1):P29, 2015a.

• (Delierneux et al., 2015b) C. Delierneux, N. Layios, A. Hego, J.
Huart, A. Joly, P. Geurts, P. Damas, C. Lecut, A. Gothot, and
C. Oury. Prospective analysis of platelet activation markers to predict
severe infection and mortality in intensive care units. In journal of
thrombosis and haemostasis, volume 13, pages 651–651.

• (Begon et al., 2016) J.-M. Begon, A. Joly, and P. Geurts. Joint learn-
ing and pruning of decision forests. In Belgian-Dutch Conference
On Machine Learning, 2016.

The following article has been submitted:

• C. Delierneux, N. Layios, A. Hego, J. Huart, C. Gosset, C. Lecut,
N. Maes, P. Geurts, A. Joly, P. Lancellotti, P. Damas, A. Gothot,
and C. Oury. Incremental value of platelet markers to clinical vari-
ables for sepsis prediction in intensive care unit patients: a prospective
pilot study.

1.2 outline

In Part i of this thesis, we start by introducing in Chapter 2 the key
concepts about supervised learning: (i) what are the most popular
supervised learning models, (ii) how to assess the prediction perfor-
mance of a supervised learning model and (iii) how to optimize the
hyper-parameters of theses models. We also present some unsuper-
vised projection methods, such as random projections, which trans-
form the original space to another one. We describe more in detail
the decision tree model classes in Chapter 3. More specifically, we
describe the methodology to grow and to prune such trees. We also
show how to adapt decision tree growing and prediction algorithms
to multi-output tasks. In Chapter 4, we show why and how to com-
bine models into ensembles either by learning models independently
with averaging methods or sequentially with boosting methods.
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In Part ii, we first show how to grow an ensemble of decision trees
on very high dimensional output spaces by projecting the original out-
put space onto a random sub-space of lower dimension. In Chapter 5,
it turns out that for random forest models, an averaging ensemble of
decision trees, the learning time complexity can be reduced without
affecting the prediction performance. Furthermore, it may lead to ac-
curacy improvement (Joly et al., 2014). In Chapter 6, we propose to
combine random projections of the output space and the gradient tree
boosting algorithm, while reducing learning time and automatically
adapting to any output correlation structure.

In Part iii, we leverage sparsity in the context of decision tree en-
sembles. In Chapter 7, we exploit sparsifying optimization algorithms
to compress random forest models while retaining their prediction
performances (Joly et al., 2012). In Chapter 8, we show how to lever-
age input sparsity to speed up decision tree induction.

During the thesis, I made significant contributions to the open
source scikit-learn project (Buitinck et al., 2013; Pedregosa et al., 2011)
and developed my own open source libraries random-output-trees1,
containing the work presented in Chapter 5 and Chapter 6, and clus-
terlib2, containing the tools to manage jobs on supercomputers.

1 https://github.com/arjoly/random-output-trees

2 https://github.com/arjoly/clusterlib

https://github.com/arjoly/random-output-trees
https://github.com/arjoly/clusterlib
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2
S U P E RV I S E D L E A R N I N G

Outline

In the field of machine learning, supervised learning aims at find-
ing the best function which describes the input-output relation of a
system only from observations of this relationship. Supervised learn-
ing problems can be broadly divided into classification tasks with
discrete outputs and into regression tasks with continuous outputs.
We first present major supervised learning methods for both classifi-
cation and regression. Then, we show how to estimate their perfor-
mance and how to optimize the hyper-parameters of these models.
We also introduce unsupervised projection techniques used in con-
junction with supervised learning methods.

Supervised learning aims at modeling an input-output system from
observations of its behavior. The applications of such learning meth-
ods encompass a wide variety of tasks and domains ranging from
image recognition to medical diagnosis tools. Supervised learning al-
gorithms analyze the input-output pairs and learn how to predict the
behavior of a system (see Figure 2.1) by observing its responses, de-
scribed by output variables y1, . . . ,yd, also called targets, to its envi-
ronment described by input variables x1, . . . , xp, also called features.
The outcome of the supervised learning is a function f modeling the
behavior of the system.

Inputs
x1, . . . , xp

System Outputs
y1, . . . ,yd

Figure 2.1: Input-output view of a system.

Supervised learning has numerous applications in the multimedia,
in biology, in engineering or in the societal domain:

• Identification of digits from photos, such as house number from
street photos or digit post code from letters.

• Automatic image annotation such as detecting tumorous cells
or identifying people in photos.

• Detection of genetic diseases from DNA screening.

• Disease diagnostic based on clinical and biological data of a
patient.

7



8 supervised learning

• Automatic text translation from a source language to a target
language such as from French to English.

• Automatic voice to text transcription from audio records.

• Market price prediction on the basis of economical and perfor-
mance indicators.

We introduce the supervised learning framework in Section 2.1. We
describe in Section 2.2 the most common classes of supervised learn-
ing models used to map the outputs of the system to its inputs. We
introduce how to assess their performances in Section 2.3, how to
compare the model predictions to a ground truth in Section 2.4 and
how to select the best hyper-parameters of such models in Section 2.5.
We also show some input space projection methods in Section 2.6, of-
ten used in combination with supervised learning models improving
the computational time and / or the accuracy of the model.

2.1 introduction

The goal of supervised learning is to learn the function f mapping an
input vector x = (x1, . . . , xp) of a system to a vector of system outputs
y = (y1, . . . ,yd), only from observations of input-output pairs. The
set of possible input (resp. output) vectors form the input space X

(resp. output space Y).
Once we have identified the input and output variables, we start

to collect input-output pairs, also called samples. Table 2.1 displays
5 samples collected from a system with 4 inputs and 3 outputs. We
distinguish three types of variables: binary variables taking only two
different values, like the variables x1 and y1; categorical variables tak-
ing two or more possible values, like variables x2 and y2, and numer-
ical variables having numerical values, like x2, x4 and y3. A binary
variable is also a categorical variable. For simplicity, we will assume
in the following without loss of generality that binary and categorical
variables have been mapped from the set of their k original values to
a set of integers of the same cardinality {0, . . . ,k− 1}.

Table 2.1: A dataset formed of samples of pairs of four inputs and three
outputs.

x1 x2 x3 x4 y1 y2 y3

0 0.25 A 0.25 True Small 1.8

? −2 B 3. True Average 1.7

0 3 C 2. False ? 1.65

1 10.7 ? −3. False Big 1.59

1 0. A 2. False Big ?
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When we collect data, some input and/or output values might be
missing or unavailable. Tasks with missing input values are said to
have missing data. Missing values are marked by a “?” in Table 2.1.

We classify supervised learning tasks into two main families based
on their output domains. Classification tasks have either binary out-
puts as in disease prediction (y ∈ {Healthy, sick}) or categorical out-
puts as in digits recognition (y ∈ {0, . . . , 9}). Regression tasks have
numerical outputs (y ∈ R) such as in house price predictions. A clas-
sification task with only one binary output (resp. categorical output)
is called a binary classification task (resp. multi-class classification
task). A multi-class classification task is assumed to have more than
two classes, otherwise it is a binary classification task. In the pres-
ence of multiple outputs, we further distinguish multi-label classifi-
cation tasks which associate multiple binary output values to each
input vector. In the multi-label context, the output variables are also
called “labels” and the output vectors are called “label set”. From a
modeling perspective, multi-class classification tasks are multi-label
classification problems whose labels are mutually exclusive. Table 2.2
summarizes the different supervised learning tasks.

Table 2.2: The output domain determines the supervised learning task.

Supervised learning task Output domain

Binary classification Y = {0, 1}

Multi-class classification Y = {0, 1, . . . ,k− 1} with k>2

Multi-label classification Y = {0, 1}d with d>1

Multi-output multi-class classification Y = {0, 1, . . . ,k− 1}d

with k > 2,d > 1

Regression Y = R

Multi-output regression Y = Rd with d>1

We will denote by X an input space, and by Y an output space.
We denote by PX,Y the joint (unknown) sampling density over X× Y.
Superscript indices (xi,yi) denote (input, output) vectors of an obser-
vation i ∈ {1, . . . ,n}. Subscript indices (e.g. xj,yk) denote components
of vectors. With these notations supervised learning can be defined
as follows:

Supervised learning

Given a learning sample
(
(xi,yi) ∈ (X× Y)

)n
i=1

of n observations in
the form of input-output pairs, a supervised learning task is defined
as searching for a function f∗ : X → Y in a hypothesis space H ⊂ YX
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Table 2.3: Common losses to measure the discrepancy between a ground
truth y and either a prediction or a score y ′. In classification, we
assume here that the ground truth y is encoded with {−1, 1} val-
ues.

Regression loss

Square loss `(y,y ′) = 1
2(y− y

′)2

Absolute loss `(y,y ′) = |y− y ′|

Binary classification loss

0-1 loss `(y,y ′) = 1(y 6= y ′)
Hinge loss `(y,y ′) = max(0, 1− yy ′)

Logistic loss `(y,y ′) = log(1+ exp(−2yy ′))

that minimizes the expectation of some loss function ` : Y× Y → R+

over the joint distribution of input / output pairs:

f∗ = arg min
f∈H

EPX,Y{`(f(x),y)}. (2.1)

The choice of the loss function ` depends on the property of the
supervised learning task (see Table 2.3 for their definitions):

• In regression (Y = R), we often use the squared loss, except
when we want to be robust to the presence of outliers, samples
with abnormal output values, where we prefer other losses such
as the absolute loss.

• In classification tasks (Y = {0, . . . ,k − 1}), the reported perfor-
mance is commonly the average 0− 1 loss, called the error rate.
However, the model does not often directly minimize the 0− 1
loss as it leads to non convex and non continuous optimization
problems with often high computational cost. Instead, we can
relax the multi-class or the binary constraint by optimizing a
smoother loss such as the hinge loss or the logistic loss. To get a
binary or multi-class prediction, we can threshold the predicted
value f(x).

Figure 2.2 plots several loss discrepancies `(1,y ′) whenever the
ground truth is y = 1 d as a function of the value y ′ predicted by
the model. The 0− 1 loss is a step function with a discontinuity at
y ′ = 1. The hinge loss has a linear behavior whenever y ′ 6 1 and is a
constant with y ′ > 1. The logistic loss strongly penalizes any mistake
and is zero only if the model is correct with an infinite score. The
plot also highlights that we can use regression losses for classification
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Predicted value y′
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Absolute loss
Hinge loss
Logistic loss
Squared loss

Figure 2.2: Loss discrepancies `(1,y ′) with y = 1. (Adapted from (Hastie
et al., 2009))

tasks. It shows that regression losses penalize any predicted value y ′

different from the ground truth y. However, this is not always the
desired behavior. For instance whenever y = 1 (resp. y = 0), regres-
sion losses penalize any score greater than y ′ > 1 (resp. smaller than
y ′ < 0), while the model truly believes that the output is positive
(resp. negative). This is often the reason why regression losses are
avoided for classification tasks.

2.2 classes of supervised learning algorithms

Supervised learning aims at finding the best function f in a hypothe-
sis space H to model the input-output function of a system. If there
is no restriction on the hypothesis space H, the model f can be any
function f ∈ YX.

Consider a binary function f which has p binary inputs. The binary
function is uniquely defined by knowing the output values of the 2p

possible input vectors. The hypothesis space of all binary functions
contains 22

p
binary functions. If we observe n different input-output

pair assignments, there remain 22
p−n possible binary functions. For

a binary function of p = 5 inputs, we have 22
5
= 4294967296 possi-

ble binary functions. If we observe n = 16 input-output pair assign-
ments among the 25 = 32 possible ones, we still have 22

5−16 = 65536

possible binary functions. The number of possible functions highly
increases with the cardinality of each variable. The hypothesis space
will be even larger with a stochastic function, where different output
values are possible for each possible input assignment.

By making assumptions on the model class H, we can largely re-
duce the size of the hypothesis space. For instance in the previous
example, if we assume that 2 out of the 5 binary input variables are
independent of the output, there remain 22

3
= 256 possible functions.
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The correct function would be uniquely identified by observing the 8
possible assignments.

Given the data stochasticity, those model classes can directly model
the input-output mapping f : X → Y, but also the conditional proba-
bility P(y|x) and predictions are made through

f(x) = arg min
ŷ∈Y

Ey|x [L(y, ŷ)] = arg min
ŷ

∫
Y

L(y, ŷ)dP(y|x). (2.2)

We will present some of the most popular model classes: linear
models in Section 2.2.1; artificial neural networks in Section 2.2.2
which are inspired from the neurons in the brain; neighbors-based
models in Section 2.2.3 which find the nearest samples in the training
set; decision tree based-models in Section 2.2.4 (and in more details in
Chapter 3). Note that we introduce ensemble methods in Section 2.2.4
and discuss them more deeply in Chapter 4.

2.2.1 Linear models

Let us denote by x ∈ Rp =
[
x1 . . . xp

]T
a vector of input variables.

A linear model f̂ is a model having the following form

f̂(x) = β0 +

p∑
j=1

βjxj =
[
1 xT

]
β

where the vector β ∈ R1+p is a concatenation of the intercept β0 and
the coefficients βj.

Given a set of n input-output pairs {(xi,yi) ∈ (X,Y)}ni=1, we re-
trieve the coefficient vector β of the linear model by minimizing a
loss ` : Y× Y→ R+:

min
β

n∑
i=1

`(yi, f̂(xi)) = min
β

n∑
i=1

`(yi,
[
1 xi

T
]
β). (2.3)

With the square loss `(y,y ′) = 1
2(y−y

′)2, there exists an analytical
solution to Equation 2.3 called ordinary least squares. Let us denote
by X ∈ Rn×(1+p) the concatenation of the input vectors with a first
column of X full of ones to model the intercept β0 and by y ∈ Rn the
concatenation of the output values. We can now express the sum of
squares in matrix notation:

n∑
i=1

`(y, f̂(xi)) =
1

2

n∑
i=1

(yi − f̂(xi))2 (2.4)

=
1

2
(y − Xβ)T (y − Xβ) (2.5)
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The first order differentiation of the sum of squares with respect to β
yields to

∂

∂β

n∑
i=1

`(y, f̂(xi)) = XT (y − Xβ). (2.6)

The vector minimizing the square loss is thus

β = (XTX)−1XTy. (2.7)

The solution exists only if XTX is invertible.
Whenever the number of inputs plus one p+ 1 is greater than the

number of samples n, the analytical solution is ill posed as the ma-
trix XTX is rank deficient (rank(XTX) < p+ 1). To ensure a unique
solution, we can add a regularization penalty R with a multiplying
constant λ ∈ R+ on the coefficients β of the linear model:

min
β

n∑
i=1

L(yi,β0 +
p∑
j=1

βjx
i
j) + λR(β1, . . . ,βp). (2.8)

With a `2-norm constraint on the coefficients, we transform the or-
dinary least square model into a ridge regression model (Hoerl and
Kennard, 1970):

min
β

n∑
i=1

yi −β0 − p∑
j=1

βjx
i
j

2 + λ p∑
j=1

β2j . (2.9)

One can show (see Section 3.4.1 of (Hastie et al., 2009)) that the con-
stant λ controls the maximal value of all coefficients βj in the ridge
regression solution.

With a `1-norm constraint (R(β1, . . . ,βp) =
∑p
j=1 |βj|) on the coef-

ficient β1, . . . ,βp, we have the Lasso model (Tibshirani, 1996b):

min
β

n∑
i=1

yi −β0 − p∑
j=1

βjx
i
j

2 + λ p∑
j=1

|βj|. (2.10)

Contrarily to the ridge regression, the Lasso has no closed formed
analytical solution even though the resulting optimization problem
remains convex. However, we gain that the `1-norm penalty sparsifies
the coefficients βj of the linear model. If the constant λ tends towards
infinity, all the coefficients will be zero βj = 0. While with λ = 0,
we have the ordinary least square formulation. With λ moving from
+∞ to 0, we progressively add variables to the linear model with a
magnitude

∑p
j=1 |βj| depending on λ. The monotone Lasso (Hastie

et al., 2007) further restricts the coefficient to monotonous variation
with respect to λ and has been shown to perform better whenever the
input variables are correlated.
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(a)

(b) Original input space (c) Non-linear transformation

Figure 2.3: The logistic linear model on the bottom left is unable to find a
separating hyperplane. If we fit the linear model on the distance
from the center of circle, we separate perfectly both classes as
shown in the bottom right.

A combination of the `1-norm and the `2-norm constraints on the
coefficients is called an elastic net penalty (Zou and Hastie, 2005).
It shares both the property of the Lasso and the ridge regression:
sparsely selecting coefficients as in Lasso and considering groups of
correlated variables together as in the ridge regression. With a care-
ful design of the penalty term R, we can enforce further properties
such as selecting variables in groups of pre-defined variables with
the group Lasso (Meier et al., 2008; Yuan and Lin, 2006) or taking into
account the variable locality in the coefficient vector β while adding
a new variable to the linear model with the fused Lasso (Tibshirani
et al., 2005).

By selecting an appropriate loss and penalty term, we have a wide
variety of linear models at our disposal with different properties. In
regression, an absolute loss leads to the least absolute deviation al-
gorithm (Bloomfield and Steiger, 2012) which is robust to outliers.
In classification, we can use a logistic loss to model the class prob-
ability distribution leading to the logistic regression model. With a
hinge loss, we aim at finding a hyperplane which maximizes the sep-
arations between the classes leading to the support vector machine
algorithm (Cortes and Vapnik, 1995).

A linear model can handle non linear problems by applying first
a non linear transformation to the input space X. For instance, con-
sider the classification task of Figure 2.3a where each class is located
on a concentric circle. Given the non linearity of the problem, we can
not find a straight line separating both classes in the cartesian plane
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as shown in Figure 2.3b. If instead we fit a linear model on the dis-

tance from the origin
√
x21 + x

2
2 as illustrated in Figure 2.3c, we find

a model separating perfectly both classes. We often use linear mod-
els in conjunction with kernel functions (presented in Section 2.6.3),
which provide a range of ways to achieve non-linear transformations
of the input space.

2.2.2 (Deep) Artificial neural networks

An artificial neural network is a statistical model mimicking the struc-
ture of the brain and composed of artificial neurons. A neuron, as
shown in Figure 2.4a, is composed of three parts: the soma, the cell
body, processes the information from its dendrites and transmits its
results to other neurons through the axon, a nerve fiber. An artificial
neuron follows the same structure (see Figure 2.4b) replacing biolog-
ical processing by numerical computations. The basic neuron (Rosen-
blatt, 1958) used for supervised learning consists in a linear model of
parameters β ∈ Rp+1 followed by an activation function φ:

f̂neuron(x) = φ

β0 + p∑
j=1

βjxj

 .

The activation function replicates artificially the non linear activa-
tion of real neurons. It is a scalar function such as a hyperbolic tan-
gent φ(x) = tanh(x), a sigmoid φ(x) = (1 + e−x)−1 or a rectified
linear function φ(x) = max(0, x).

(a) Biological neuron

ŷ

Output
φΣ

1

Inputs

β0

x1
β1

x2

β2

(b) Artificial neuron

Figure 2.4: A biological neuron (on the left) and an artificial neuron (on the
right).

More complex artificial neural networks are often structured into
layers of artificial neurons. The inputs of a layer are the input vari-
ables or the outputs of the previous layer. Each neuron of the layer
has one output. The neural network is divided into three parts as in
Figure 2.5: the first and last layers are respectively the input layer and
the output layer, while the layers in between are the hidden layers. The
hidden layer of Figure 2.5 is called a fully connected layer as all the
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neurons (here the input variables) from the previous layer are con-
nected to each neuron of the layer. Other layer structures exist such
as convolutional layers (Krizhevsky et al., 2012; LeCun et al., 2004)
which mimic the visual cortex (Hubel and Wiesel, 1968). A network
is not necessarily feed forward, but can have a more complex topol-
ogy for example recurrent neural networks (Boulanger-Lewandowski
et al., 2012; Graves et al., 2013) mimic the brain memory by forming
internal cycles of neurons. Neural networks with many layers are also
known (LeCun et al., 2015) as deep neural networks.

1

x1

x2

x3

1

ŷ

Hidden
layer

Input
layer

Output
layer

Figure 2.5: A neural network with an input layer, a fully connected hidden
layer and an output layer.

Artificial neurons form a graph of variables. Through this repre-
sentation, we can learn such models by applying gradient based op-
timization techniques (Bengio, 2012; Glorot and Bengio, 2010; LeCun
et al., 2012) to find the coefficient vector associated to each neuron
minimizing a given loss function.

2.2.3 Neighbors based methods

The k-nearest neighbors model is defined by a distance metric d and
a set of samples. At learning time, those samples are stored in a
database. We predict the output of an unseen sample by aggregat-
ing the outputs of the k-nearest samples in the input space according
to the distance metric d, with k being a user-defined parameter.

More precisely, given a training set
(
(xi,yi) ∈ (X× Y)

)n
i=1

and a
distance measure d : X × X → R+, an unseen sample with value
in the input space x is assigned a prediction through the following
procedure:

1. Compute the distances d(xi, x) in the input space, ∀i = 1, . . . ,n,
between the training samples xi and the input vector x.

2. Search for the k samples in the training set which have the small-
est distance to the vector x.
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3. In classification, compute the proportion of samples of each
class among these k-nearest neighbors: the final prediction is
the class with the highest proportion. This corresponds to a
majority vote over the k nearest neighbors. In regression, the
prediction is the average output of the k-nearest neighbors.

The k-nearest neighbor method adapts to a wide variety of scenar-
ios by selecting or by designing a proper distance metric such as the
euclidean distance or the Hamming distance.

2.2.4 Decision tree models

A decision tree model is a hierarchical set of questions leading to a
prediction. The internal nodes, also called test nodes, test the value of
a feature. In Figure 2.6, the starting node, also called root node, tests
whether the feature “Petal width” is bigger or smaller than 0.7cm.
According to the answer, you follow either the right branch (> 0.7cm)
leading to another test node or the left branch (6 0.7cm) leading to
an external node, also called a leaf. To predict an unseen sample, you
start at the root node and follow the tree structure until reaching a
leaf labelled with a prediction. With the decision tree of Figure 2.6, an
iris with petal width smaller than 0.7cm is an iris Setosa.

Petal width?

Setosa

0.7cm 6

Petal width?

Petal length?

Versicolor

5.25cm 6

Virginica

> 5.25cm

1.65cm 6

Sepal length?

Sepal length?

Virginica

5.85cm 6

Versicolor

> 5.85cm

5.95cm 6

Virginica

> 5.95cm

> 1.65cm

> 0.7cm

Figure 2.6: A decision tree classifying iris flowers into its Setosa, Versicolor
or Virginica varieties according to the width and length of its
petals and sepals.

A classification or a regression tree (Breiman et al., 1984) is built
using all the input-output pairs ((xi,yi) ∈ (X× Y))ni=1 as follows: for
each test node, the best split (Sr,Sl) of the local subsample S reaching



18 supervised learning

the node is chosen among the p input features combined with the
selection of an optimal cut point. The best sample split (Sr,Sl) of S
minimizes the average reduction of impurity

∆I((yi)i∈S, (yi)i∈Sl , (y
i)i∈Sr)

= I((yi)i∈S) −
|Sl|

|S|
I((yi)i∈Sl) −

|Sr|

|S|
I((yi)i∈Sr), (2.11)

where I is the impurity of the output such as the entropy in classifica-
tion or the variance in regression. The decision tree growth continues
until we reach a stopping criterion such as no impurity I((yi)i∈S) = 0.

To avoid over-fitting, we can stop earlier the tree growth by adding
further stopping criteria such as a maximal depth or a minimal num-
ber of samples to split a node.

Instead of a single decision tree, we often train an ensemble of such
models:

• Averaging-based ensemble methods grow an ensemble by ran-
domizing the tree growth. The random forest method (Breiman,
2001) trains decision trees on bootstrap copies of the training
set, i.e. by sampling with replacement from the training dataset,
and it randomizes the best split selection by searching this split
among k out of the p features at each nodes (k 6 p).

• Boosting-based methods (Freund and Schapire, 1997; Friedman,
2001) build iteratively a sequence of weak models such as shal-
low trees which perform only slightly better than random guess-
ing. Each new model refines the prediction of the ensemble by
focusing on the wrongly predicted training input-output pairs.

We further discuss decision tree models in Chapter 3 and ensemble
methods in Chapter 4.

2.2.5 From single to multiple output models

With multiple outputs supervised learning tasks, we have to infer the
values of a set of d output variables y1, . . . ,yd (instead of a single
one) from a set of p input variables x1, . . . , xp. We hope to improve
the accuracy and / or computational performance by exploiting the
correlation structure between the outputs. There exist two main ap-
proaches to solve multiple output tasks: problem transformation pre-
sented in Section 2.2.5.1 and algorithm adaptation in Section 2.2.5.2.
We present here a non exhaustive selection of both approaches. The
interested reader will find a broader review of the multi-label litera-
ture in (Gibaja and Ventura, 2014; Madjarov et al., 2012; Tsoumakas
et al., 2009; Zhang and Zhou, 2014) and of the multi-output regression
literature in (Borchani et al., 2015; Spyromitros-Xioufis et al., 2016).
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2.2.5.1 Problem transformation

The problem transformation approach transforms the original multi-
output task into a set of single output tasks. Each of these single
output tasks is then solved by classical classifiers or regressors. The
possible output correlations are exploited through a careful reformu-
lation of the original task.

independent estimators The simplest way to handle multi-
output learning is to treat all outputs in an independent way. We
break the prediction of the d outputs into d independent single out-
put prediction tasks. A model is fitted on each output. At prediction
time, we concatenate the predictions of these d models. This is called
the binary relevance method (Tsoumakas et al., 2009) in multi-label
classification and the single target method (Spyromitros-Xioufis et al.,
2016) in multi-output regression. Since we consider the outputs inde-
pendently, we neglect the output correlation structure. Some methods
may however benefit from sharing identical computations needed for
the different outputs. For instance, the k-nearest neighbor method can
share the search for the k-nearest neighbors in the input space, and
the ordinary linear least squares method can share the computation
of (XTX)−1XT in Equation 2.7.

estimator chain If the outputs are dependent, the model of a
single output might benefit from the values of the correlated outputs.
In the estimator chain method, we sequentially learn a model for each
output by providing the predictions of the previously learnt models
as auxiliary inputs. This is called a classifier chain (Read et al., 2011)
in classification and a regressor chain (Spyromitros-Xioufis et al.,
2016) in regression.

More precisely, the estimator chain method first generates an order
o on the outputs for instance based on prior knowledge, the output
density, the output variance or at random. Then with the training
samples and the output order o, it sequentially learns d estimators:
the l-th estimator fol aims at predicting the ol-th output using as
inputs the concatenation of the input vectors with the predictions
of the models learnt for the l − 1 previous outputs. To reduce the
model variance, we can generate an ensemble of estimator chains by
randomizing the chain order (and / or the underlying base estimator),
and then we average their predictions.

In multi-label classification, Cheng et al. (2010) formulates a Bayes
optimal classifier chain by modeling the conditional probability of
PY|X(y|x). Under the chain rule, we have

PY|X(y|x) = PY1|X(y1|x)

d∏
j=2

PYj|X,Y1,...,Yj−1(yj|x,y1, . . . ,yj−1). (2.12)
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Each estimator of the chain approximates a probability factor of the
chain rule decomposition. Using the estimation of PY|X made by the
chain and a given loss function `, we can perform Bayes optimal pre-
diction:

h∗(x) = arg min
y ′
EY|X`(y

′,y). (2.13)

error correcting codes Error correcting codes are techniques
from information and coding theory used to properly deliver a mes-
sage through a noisy channel. It first codes the original message, and
then corrects the errors made during the transmission at decoding
time. This idea have been applied to multi-class classification (Diet-
terich and Bakiri; Guruswami and Sahai, 1999), multi-label classifica-
tion (Cisse et al., 2013; Ferng and Lin, 2011; Guo et al., 2008; Hsu et al.,
2009; Kajdanowicz and Kazienko, 2012; Kapoor et al., 2012; Kouzani
and Nasireding, 2009; Zhang and Schneider, 2011) and multi-output
regression (Tsoumakas et al., 2014; Yu et al., 2006) tasks by viewing
the predictions made by the supervised learning model(s) as a mes-
sage transmitted through a noisy channel. It transforms the original
task by encoding the output values with a binary error correcting
code or output projections. One classifier is then fitted for each bit
of the code or output projection. At prediction time, we concatenate
the predictions made by each estimator and decode them by solving
the inverse problem. Note that the output coding might also have for
objective to reduce the dimensionality of the output space (Hsu et al.,
2009; Kapoor et al., 2012).

pairwise comparisons In multi-label tasks, the ranking by pair-
wise comparison approach (Hüllermeier et al., 2008) aims to generate
a ranking of the labels by making all the pairwise label comparisons.
The original tasks is transformed into d(d − 1)/2 binary classifica-
tion tasks where we compare if a given label is more likely to ap-
pear than another label. The datasets comparing each label pair is
obtained by collecting all the samples where only one of the outputs
is true, but not both. This approach is similar to the one-versus-one
approach (Park and Fürnkranz, 2007) in multi-class classification task,
however we can not directly transform the ranking into a prediction,
i.e. label set. To decrease the prediction time, alternative ranking con-
struction schemes have been proposed (Mencia and Fürnkranz, 2008;
Mencía and Fürnkranz, 2010) requiring less than d(d− 1)/2 classifier
predictions.

The Calibrated label ranking method (Brinker et al., 2006;
Fürnkranz et al., 2008) extends the previous approach by adding a
virtual label which will serve as a split point between the true and the
false labels. For each label, we add a new tasks using all the samples
comparing the label i to the virtual label whose value is the opposite
of the label i. To the d(d− 1)/2 tasks, we effectively add d tasks.



2.2 classes of supervised learning algorithms 21

label power set For multi-label classification tasks, the label
power set method (Tsoumakas et al., 2009) encodes each label set
in the training set as a class. It transforms the original task into a
multi-class classification task. At prediction time, the class predicted
by the multi-class classifier is decoded thanks to the one-to-one map-
ping of the label power set encoding. The drawback of this approach
is to generate a large number of classes due to the large number of
possible label sets. For n samples and d labels, the maximal number
of classes is max(2d,n). This leads to accuracy issues if some label
sets are not well represented in the training set. To alleviate the explo-
sion of classes, rakel (Tsoumakas and Vlahavas, 2007) generates an
ensemble of multi-class classifiers by subsampling the output space
and then applying the label power set transformation.

2.2.5.2 Algorithm adaptation

The algorithm adaptation approach modifies existing supervised
learning algorithms to handle multiple output tasks. We show here
how to extend the previously presented models classes to multi-
output regression and to multi-label classification tasks.

linear-based models Linear-based models have been adapted
to multi-output tasks by reformulated their mathematical formu-
lation using multi-output losses and (possibly) regularization con-
straints enforcing assumptions on the input-output and the output-
output correlation structures. The proposed methods are based for
instance on extending least-square regression (Baldassarre et al., 2012;
Breiman and Friedman, 1997; Dayal and MacGregor, 1997; Evgeniou
et al., 2005; Similä and Tikka, 2007; Zhou and Tao, 2012) (with pos-
sibly regularization), canonical correlation analysis (Izenman, 1975;
Van Der Merwe and Zidek, 1980), support vector machine (Elisseeff
and Weston, 2001; Evgeniou and Pontil, 2004; Evgeniou et al., 2005;
Jiang et al., 2008; Xu, 2012), support vector regression (Liu et al.,
2009; Sánchez-Fernández et al., 2004; Vazquez and Walter, 2003; Xu
et al., 2013), and conditional random fields (Ghamrawi and McCal-
lum, 2005).

(deep) artificial neural networks Neural networks han-
dles multi-output tasks by having one node on the output layer per
output variable. The network minimizes a global error function de-
fined over all the outputs (Ciarelli et al., 2009; Nam et al., 2014; Specht,
1991; Zhang, 2009; Zhang and Zhou, 2006). The output correlation
are taken into account by sharing the input and the hidden layers
between all the outputs.

nearest neighbors The k-nearest neighbors algorithm predicts
an unseen sample x by aggregating the output value of the k near-
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est neighbors of x. This algorithm is adapted to multi-output tasks
by sharing the nearest neighbors search among all outputs. If we just
share the search, this is called binary relevance of k-nearest neighbors
in classification and single target of k-nearest neighbors in regression.
Multi-output extensions of the k-nearest neighbors modifies how the
output values of the nearest neighbors are aggregated for the pre-
dictions for instance it can utilize the maximum a posteriori princi-
ple (Cheng and Hüllermeier, 2009; Younes et al., 2011; Zhang and
Zhou, 2007) or it can re-interpret the output aggregation as a ranking
problem (Brinker and Hüllermeier, 2007; Chiang et al., 2012),

decision trees The decision tree model is a hierarchical struc-
ture partitioning the input space and associating a prediction to each
partition. The growth of the tree structure is done by maximizing
the reduction of an impurity measure computed in the output space.
When the tree growth is stopped at a leaf, we associate a prediction
to this final partition by aggregating the output values of the train-
ing samples. We adapt the decision tree algorithm to multi-output
tasks in two steps (Blockeel et al., 2000; Clare and King, 2001; De’Ath,
2002; Noh et al., 2004; Segal, 1992; Vens et al., 2008; Zhang, 1998): (i)
multi-output impurity measures are used to grow the structure as
the sum over the output space of the entropy or the variance; (ii) the
leaf predictions are obtained by computing a constant minimizing a
multi-output loss function such as the `2-norm loss in regression or
the Hamming loss in classification. We discuss in more details how to
adapt the decision tree algorithm to multi-output tasks in Section 3.5.

Instead of growing a single decision tree, they are often combined
together to improve their generalization performance. Random forest
models (Breiman, 2001; Geurts et al., 2006a) averages the predictions
of several randomized decision trees and has been studied in the con-
text of multi-output learning (Joly et al., 2014; Kocev et al., 2007, 2013;
Madjarov et al., 2012; Segal and Xiao, 2011).

ensembles Ensemble methods aggregate the predictions of mul-
tiple models into a single one so to improve its generalization perfor-
mance. We discuss how the averaging and boosting approaches have
been adapted to multi-output supervised learning tasks.

Averaging ensemble methods have been straightforwardly adapted
by averaging the prediction of multi-output models. Instead of averag-
ing scalar predictions, it averages (Joly et al., 2014; Kocev et al., 2007,
2013; Madjarov et al., 2012; Segal and Xiao, 2011) the vector predic-
tions of each model of the ensemble. If the learning algorithm is not
inherently multi-output, we could use one the problem transforma-
tion techniques as in rakel (Tsoumakas and Vlahavas, 2007), which
uses the label power set transformation, or ensemble of estimator
chain (Read et al., 2011).
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Boosting ensembles are grown by sequentially adding weak models
minimizing a selected loss, such as the Hamming loss (Schapire and
Singer, 2000), the ranking loss (Schapire and Singer, 2000), the `2-
norm loss (Geurts et al., 2006b) or any differentiable loss function (see
Chapter 6).

2.3 evaluation of model prediction performance

For a given supervised learning model f trained on a set of samples(
(xi,yi) ∈ (X× Y)

)n
i=1

, we want a model having good generalization
able to predict unseen samples. Otherwise said, the model f should
have minimal generalization error over the input-output pair distri-
bution, where the generalization error is defined as:

Generalization error = EPX,Y{`(f(x),y)} (2.14)

for a given loss function ` : Y× Y→ R+.
Evaluating Equation 2.14 is generally unfeasible, except in the rare

cases where (i) the input-output distribution PX,Y is fully known and
(ii) for restricted classes of models. In practice, neither of these condi-
tions are met. However, we still need a principle way to approximate
the generalization error.

A first approach to approximate Equation 2.14 is to evaluate the er-
ror of the model f on the training samples L =

(
(xi,yi) ∈ (X× Y)

)n
i=1

leading to the resubstitution error:

Resubstitution error =
1

|L|

n∑
(x,y)∈L

`(f(x),y) (2.15)

A model with a high resubstitution error often has a high general-
ization error and indeed underfits the data. The linear model shown
in Figure 2.7a underfits the data as it is not complex enough to fit the
non linear data (here a second degree polynomial). Instead, we can
fit a high order polynomial model to have a zero resubstitution error
as illustrated in Figure 2.7b. This complex model has poor generaliza-
tion error as it perfectly fits the noisy samples unable to retrieve the
second order parabola. Such overly complex models with zero resub-
stitution error and non zero generalization error are said to overfit
the data. Since a zero resubstitution error does not imply a low gen-
eralization error, it is a poor proxy of the generalization error.

Since we assess the quality of the model with the training sam-
ples, the resubstitution error is optimistic and biased. Furthermore,
it favors overly complex models (as depicted in Figure 2.7). To im-
prove the approximation of the generalization error, we need to use
techniques which avoid to use the training samples for performance
evaluation. They are either based on sample partitioning methods,
such as hold out methods and cross validation techniques, or sample
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True function
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Noisy training samples

(a) Under-fitting (b) Over-fitting

Figure 2.7: The linear model on the left figure underfits the training samples,
while the high order polynomial model on the right overfits the
training samples.

resampling methods, such as bootstrap estimation methods. Since the
amount of available data and time are fixed for both the model train-
ing and the model assessment, there is a trade-off between (i) the
quality of the error estimate, (ii) the number of samples available to
learn a model and (iii) the amount of computing time available for
the whole process.

The hold out evaluation method splits the samples into a training
set LS, also called learning set, and a testing set TS commonly with a
ratio of 2/3 - 1/3. The hold out error is given by

Hold out error =
1

|TS|

∑
(x,y)∈TS

`(f(x),y). (2.16)

This methods requires a high number of samples as a large part of the
data is devoted to the model assessment impeding the model training.
If too few samples are allocated to the testing set, the hold out esti-
mate becomes unreliable as its confidence intervals widen (Kohavi
et al., 1995). Since the hold out error is a random number depending
on the sample partition, we can improve the error estimation by (i)
generating B random partitions (LSb, TSb)Bb=1 of the available sam-
ples, (ii) fitting a model fb on each learning set LSb and (iii) averag-
ing the performance of the B models over their respective testing sets
TSb:

Random subsampling error =
1

B

B∑
b=1

1

|TSb|

∑
(x,y)∈TSb

`(fb(x),y).

(2.17)

To improve the data usage efficiency, we can resort to cross-
validation methods, also called rotation estimation, which split the
samples into k folds {TS1, . . . , TSk} approximately of the same size.
Cross validation methods average the performance of k models
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(fl)kl=1 each tested on one of the k folds and trained using the k− 1
remaining folds:

CV error =
1

k

k∑
l=1

1

|TSl|

∑
(x,y)∈TSl

`(fl(x),y). (2.18)

The number of folds k is usually 5 or 10. If k is equal to the number
of samples (k = n), it is called leave-one-out cross validation.

Given that the folds do not overlap for cross validation methods,
we are tempted to assess the performance over the pooled cross val-
idation estimates with a given metric obtained by concatenating the
predictions made by each model fl over each of the k-folds

Pooled CV error=metric
(
(f1(x),y)(x,y)∈TS1_. . ._(fk(x),y)(x,y)∈TSk

)
,

(2.19)

where _ is the concatenation operator. There is no difference for
sample-wise losses such as the square loss. However, this is not the
case for metrics comparing a whole set of predictions to their ground
truth. Depending on the metrics, it has been showed that pooling may
or may not biase the error estimation (Airola et al., 2011; Forman and
Scholz, 2010; Parker et al., 2007).

We can improve the quality of the estimate by repeating the cross
validation procedures over B different k-fold partitions, averaging the
performance of the models fb,l over each associated testing set TSb,l:

Repeated CV error =
1

Bk

B∑
b=1

k∑
l=1

1

|TSb,l|

∑
(x,y)∈TSb,l

`(fb,l(x),y). (2.20)

If all combinations are tested exhaustively as in the leave-one-out
case, it is called complete cross validation. Since it is often too expen-
sive (Kohavi et al., 1995), we can instead draw several sets of folds at
random.

The bootstrap method (Efron, 1983) draws B bootstrap datasets
{B1, . . . ,BB} by sampling with replacement n samples from the origi-
nal dataset of size n. Each samples has a probability of 1− (1− 1

n)
n

to be selected in a bootstrap which is approximately 0.632 for large n.
A first approach to estimate the error is to train a model fb on each
bootstrap dataset and use the original dataset as a testing set:

Bootstrap error =
1

nB

B∑
b=1

∑
(x,y)∈Bb

`(fb(x),y). (2.21)

This leads to over optimistic results, given the overlap between the
training and the test data.

A better approach (discussed in Chapter 7.11 of (Hastie et al., 2009))
is to imitate cross validation methods by fitting on each bootstrap
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dataset a model fb and using the unused samples as a testing set.
This approach is called bootstrap leave-one-out:

LOO Bootstrap error =
1

n

n∑
i=1

1

|C−i|

∑
b∈C−i

`(fb(xi),yi), (2.22)

where C−i gives the bootstrap indices where the sample i was not
drawn. It is similar to a 2-fold repeated cross validation or random
subsampling error with a ratio of 2/3 - 1/3 for the training and testing
set. The estimation is thus biased as it uses approximately 0.632n
training samples instead of n. We can alleviate this bias due to the
sampling procedure through the “0.632” estimator which averages
the training error and LOO Bootstrap error:

0.632 estimator =0.632× LOO Bootstrap error

+ 0.368×Resubstitution error. (2.23)

Note that with very low sample size, it has been shown (Braga-Neto
and Dougherty, 2004) that the bootstrap approach yields better error
estimate than the cross validation approach.

Until now, we have assumed that the samples are independent and
identically distributed. Whenever this is no longer true, such as with
time series of measurements, we have to modify the assessment pro-
cedure to avoid biasing the error estimation. For instance, the hold
out estimate would train the model on the oldest samples and test
the model on the more recent samples. Similarly in the medical con-
text if we have several samples for one patient, we should keep these
samples together in the training set or in the testing set.

Partition-based methods (hold out, cross validation) break the as-
sumption in classification that the samples from the training set are
independent from the samples in the testing set as they are drawn
without replacement from a pool of samples. The representation of
each class in the testing set is thus not guaranteed to be the same
as in the training set. It is advised (Kohavi et al., 1995) to perform
stratified splits by keeping the same proportion of classes in each set.

2.4 criteria to assess model performance

Assessing the performance of a model requires evaluation metrics
which will compare the ground truth to a prediction, a score or a
probability estimate. The selection of an appropriate scoring or error
measure is essential and is dependent of the supervised learning task
and the goal behind the modeling.

A first approach to assess a model is to define a goal for the model
and to quantify its realization. For instance, a company wants to max-
imize its benefits and consider that the revenue must exceed the data
analysis cost of gathering samples, fitting a model and exploiting its
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predictions. Unfortunately, this model optimization criterion is hardly
expressible into economical terms. We could instead consider the ef-
fectiveness of the model such as the click-through-rate, used by on-
line advertising companies, which counts the number of clicks on
a link to the number of opportunities that users have to click on this
link. However, it is hard to formulate a model optimizing directly this
score and it requires to put the model into a production setting (or at
least simulate its behavior). Other optimization criteria exit that are
more amenable to mathematical analysis and numerical computation
such as the square loss or the logistic loss. Knowing the properties of
such criteria is necessary to make a proper choice.

We present binary classification metrics in Section 2.4.1. Then, we
show how to extend these metrics to multi-class classification tasks
in Section 2.4.2 and to multi-label classification tasks in Section 2.4.3.
We introduce metrics for regression tasks and multi-output regression
tasks in Section 2.4.4.

More details or alternative descriptions of these metrics can be
found in the following references (Ferri et al., 2009; Hossin and Su-
laiman, 2015; Sokolova and Lapalme, 2009). Note that I made signif-
icant contributions to the implementations and the documentations
of these metrics in the scikit-learn library (Buitinck et al., 2013; Pe-
dregosa et al., 2011).

2.4.1 Metrics for binary classification

Given a set of n ground truth values (yi ∈ {0, 1})ni=1 and their associ-
ated model predictions (ŷi ∈ {0, 1})ni=1, we can distinguish in binary
classification four categories of predictions (as shown in Table 2.4).
We denote by true positives (TP) and true negatives (TN) the predic-
tions where the model accurately predicts the target respectively as
true or false:

TP =

n∑
i=1

1(yi = 1; ŷi = 1), (2.24)

TN =

n∑
i=1

1(yi = 0; ŷi = 0). (2.25)

Whenever the model wrongly predicts the samples, we call false
positives (FP) samples predicted as true while their labels are false
and false negatives (FN) samples predicted as false while their labels
are true:

FN =

n∑
i=1

1(yi = 1; ŷi = 0), (2.26)

FP =

n∑
i=1

1(yi = 0; ŷi = 1). (2.27)
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Table 2.4: For a binary classification task, the prediction of a model is di-
vided into fours categories leading to a confusion matrix.

Truly positive Truly negative

Predicted positive True positive False positive

Predicted negative False negative True negatives

Together, the true positive, true negatives, false negatives and false
positives form the so called confusion or contingency matrix shown
in Table 2.4.

Two common metrics to assess classification performance are the
error rate, the average of the 0− 1 loss, and its complement the accu-
racy:

Error rate =
1

n

n∑
i=1

1(yi 6= ŷi), (2.28)

Accuracy = 1− Error rate =
1

n

n∑
i=1

1(yi = ŷi). (2.29)

Both metrics can be expressed in term of the confusion matrix:

Error rate =
FP+ FN

n
, (2.30)

Accuracy =
TN+ TP

n
. (2.31)

The error rate does not distinguish the false negatives from the false
positives. Similarly, the accuracy does not differentiate true positives
from true negatives. Thus, two classifiers may have exactly the same
accuracy or error rate, while leading to a totally different outcome
by increasing either the number of misses (false negatives) or the
number of false alarms (false positives). Furthermore, the error rate
and the accuracy can be overly optimistic whenever there is a high
class imbalance. A classification task with 99.99% of samples in one
of the classes would easily lead to an accuracy of 99.99% (and an
error rate of 0.01%) by alway predicting the most common class. The
choice of an appropriate metric thus depends on the properties of the
classification task, such as the class imbalance.

To differentiate false positives from false negative, we can assess
separately the proportion of correctly classified positive and negative
samples. This leads to the true positive rate (resp. true negative rate)
which computes the proportion of correctly classified positive (resp.
negative) samples:

True positive rate =
TP

TP+ FN
(2.32)

True negative rate =
TN

TN+ FP
(2.33)
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The complement of the true positive rate (resp. true negative rate) is
the false negative rate (resp. false positive rate):

False negative rate = 1− True positive rate =
FN

TP+ FN
, (2.34)

False positive rate = 1− True negative rate =
FP

TN+ FP
. (2.35)

The true positive rate is also called sensitivy and tests the ability of
the classifier to correctly classify all positive samples as true. A test
with 100% sensitivity implies that all positive samples are correctly
classified. However, this does not imply that all samples are correctly
classified. A classifier predicting all samples as true leads to 100% sen-
sitivity and totally neglects false positives. We have to look to the true
negative rate, also called specifity, which tests the ability of the clas-
sifier to correctly classify all negative samples as negative. A perfect
classifier should thus have a high sensitivity and a high specifity. In
the medical domain, the sensitivity and the specificity are often used
to characterize and to choose the behavior of diagnosis tests such as
pregnancy tests.

The average of the specifity and sensitivity is called the balanced
accuracy:

Balanced accuracy =
True positive rate + True negative rate

2
(2.36)

=
specifity + sensitivty

2
(2.37)

=
1

2

TP

TP+ FN
+
1

2

TN

TN+ FP
. (2.38)

In the information retrieval context, a user sets a query to an infor-
mation system, e.g. a web search engine, to detect which documents
are relevant among a collection of such documents. In such systems,
the collection of documents is often extremely large with only a few
relevant documents to a given query. Due to the small proportion of
relevant documents, we want to maximize the precision, the fraction
of correctly predicted documents among the predicted documents. Bi-
nary classification tasks with a high class imbalance can be viewed as
an information retrieval problems. In the context of binary classifica-
tion tasks, the precision is expressed as

Precision =
TP

TP+ FP
, (2.39)

To have a perfect precision, one could predict all documents or
samples as negative (as irrelevant documents). In parallel, we want
also to maximize the recall, the proportion of correctly predicted true
samples among the true samples. The recall is a synonym for true
positive rate and sensitivity.
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The precision and recall are often combined into a single number
by computing the F1 score, the harmonic mean of the precision and
recall,

F1 =
2

1
Precision + 1

Recall

. (2.40)

Some classifiers associate a score or a probability f̂(x) to a sample
instead of a class label. We can threshold these continuous predic-
tions by a constant τ to compute the number of true positives, false
positives, false negatives and true negatives:

TP(τ) =

n∑
i=1

1(yi = 1; f(xi) > τ), (2.41)

TN(τ) =

n∑
i=1

1(yi = 0; f(xi) 6 τ), (2.42)

FN(τ) =

n∑
i=1

1(yi = 0; f(xi) > τ), (2.43)

FP(τ) =

n∑
i=1

1(yi = 1; f(xi) 6 τ). (2.44)

By varying τ, we can first derive performance curves to analyze
the prediction performance of those more models and then select a
classifier performance point with pre-determined classification per-
formance.

The receiver operating characteristic (ROC) curve (Fawcett, 2006)
plots the true positive rate as a function of the false positive rate by
varying the threshold τ as shown in Figure 2.8a. The receiver, the
model user, can indeed choose any point on the curve to operate at
a given model specifity / sensitivity tradeoff. A random estimator
has its performance on the line ((0, 0), (1, 1)), while a perfect classifier
has the points (0, 1) with 0% of false positive rate and 100% of true
positive rate on its curve. Any curve below the random line can be re-
versed symmetrically to the line ((0, 0), (1, 1)) by flipping the classifier
prediction. The ROC curve is often used in the clinical domain (Metz,
1978) and coupled to a cost analysis to determine the proper thresh-
old τ. The area under the ROC curve can be interpreted as (Hanley
and McNeil, 1982) the probability to rank with a higher score one
true sample than one false sample chosen at random.

The precision-recall (PR) curve is the precision as a function of the
recall as shown in Figure 2.8b. The ROC curve and the PR curves are
linked as there is a one to one mapping between points in the ROC
space and in the precision-recall space (Davis and Goadrich, 2006).
However conversely to the ROC curve, the precision recall curve is
sensitive to the class imbalance between the positive and negative
classes. Since both the precision and recall do not take into account



2.4 criteria to assess model performance 31

0 1
False positive rate

0

1

Tr
ue

 n
eg

at
iv

e 
ra

te

Classifier
Random

(a) ROC curve

0 1
Recall

0

1

P
re

ci
si

on

(b) PR curve

Figure 2.8: A receiver operating characteristic curve and a precision-recall
curve of a classifier and a random model.

the amount of true negatives, the precision-recall curve (compared to
the ROC curve) focuses on how well the estimator is able to classify
correctly the positive class.

2.4.2 Metrics for multi-class classification

From binary classification to multi-class classification, the output
value is no more restricted to two classes and can go up to k-classes.
Given the ground truths (yi ∈ {1, ...,k})ni=1 and the associated model
predictions (ŷi ∈ {1, ...,k})ni=1, we can now divide the model predic-
tions into k2 categories leading to a k× k confusion matrix:

cl1,l2 =

n∑
i=1

1(yi = l1; ŷi = l2) ∀l1, l2 ∈ {1, ...,k}. (2.45)

Metrics such as the accuracy, the error rate or the log loss (see Ta-
ble 2.3) naturally extend to multi-class classification tasks. To extend
other binary classification metrics (such as those developed in Sec-
tion 2.4.1), we need to break the k× k confusion matrix into a set of
2× 2 confusion matrices.

A first approach is to consider that each class l is in turns the posi-
tive class while the remaining labels form together the negative class.
We thus have k confusion matrices whose true positives TPl, true neg-
atives TNl, false negatives FNl and false positives FPl for the class
l ∈ {1, . . . ,k} are

TPl = cl,l, (2.46)

TNl =

k∑
j=1,j6=l

cj,j, (2.47)

FNl =

k∑
j=1,j6=l

cj,k, (2.48)
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FPl =

k∑
j=1,j6=l

ck,j. (2.49)

By averaging a metric M computed on each derived confusion ma-
trix, we have the so called macro-averaged (Sokolova and Lapalme,
2009) of the corresponding binary classification metric

macro−M =
1

k

k∑
l=1

M(TPl, TNl, FNl, FPl).

Note that the balanced accuracy in binary classification is thus equal
to the macro-specificity or macro-sensitivity in multi-class classifica-
tion.

Another useful averaging is the micro-averaging (Sokolova and La-
palme, 2009). It uses as true positives TPµ and true negatives TNµ
the sum of the diagonal elements of the confusion matrix and as false
negatives FNµ (resp. false positives FPµ) the sum of the lower (resp.
upper) triangular part of the confusion matrix:

TPµ =

k∑
l=1

cl,l, (2.50)

TNµ =

k∑
l=1

cl,l, (2.51)

FNµ =

k∑
l=1

k∑
j=1:j<l

cl,j, (2.52)

FPµ =

k∑
l=1

k∑
j=1:j>l

cl,j). (2.53)

Each averaging has its own properties: the macro-averaging consid-
ers that each class has the same importance and the micro-averaging
reduces the importance given to the minority classes.

2.4.3 Metrics for multi-label classification and ranking

From binary to multi-label classification, the ground truths (yi ∈
{0, 1}d)ni=1 and the model predictions (ŷi ∈ {0, 1}d)ni=1 are no longer
scalars, but vectors of size d or label sets. Both representations are
interchangeable. Usually, the number of labels associated to a sample
is small compared to the total number of labels.

The accuracy (Ghamrawi and McCallum, 2005), also called subset
accuracy, has a direct extension in multi-label classification

Accuracy =
1

n

n∑
i=1

1(yi = ŷi), (2.54)
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and requires for each prediction that the predicted label set matches
exactly the ground truth. This is an overly pessimistic metric, espe-
cially for high dimensional label space, as it penalizes any single mis-
take made for one sample. The complement of the subset accuracy is
called the subset 0-1 loss ().

In information theory, the Hamming distance compares the num-
ber of differences between two coded messages. The Hamming error
metric (Schapire and Singer, 1999) averages the Hamming distance
between the ground truth and the model prediction over the samples

Hamming error =
1

n

1

d

n∑
i=1

d∑
j=1

1(yij 6= ŷij). (2.55)

By contrast to the subset accuracy, the Hamming error is an optimistic
metric when the label space is sparse. For a sufficiently large number
of samples and a label density1 ε → 0, a (useless) model predicting
always the presence of a label if its frequency of apparition is higher
than 0.5 in the training set will roughly have a Hamming error of ε.
In some situations, the label density ε is so small that (more useful)
models have hardly an Hamming error lower than ε.

Both the Hamming error and the subset accuracy ignore the spar-
sity of the label space leading to either overly optimistic or pessimistic
error. Multi-label metrics should be aware of the label space sparsity.

In statistics, the Jaccard index J or Jaccard similarity coefficient com-
putes the similarity between two sets. Given two sets A and B, the
Jaccard index is defined as

J(A,B) =
|A∩B|
|A∪B|

with J(∅, ∅) = 1. (2.56)

With label sets encoded as boolean vectors x,y ∈ {0, 1}d, the Jaccard
index becomes

J(x,y) =
xTy

1Tdx+ 1
T
dy− x

Ty
, (2.57)

where 1d is a vector of ones of size d. The Jaccard similarity
score (Godbole and Sarawagi, 2004), also sometimes called accuracy,
averages over the samples the Jaccard index between the ground
truths and the model predictions:

Jaccard similarity score =
1

n

n∑
i=1

J(yi, ŷi). (2.58)

By contrast to the Hamming loss, the Jaccard similarity score puts
more emphasis on the labels in the ground truth and the ones pre-
dicted by the models. Moreover, it totally ignores all the negative

1 The label density is the average number of labels per samples on the ground truth
divided by the size of the label space.
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labels. The Jaccard similarity score can be viewed as “local” measure
of similarity and the Hamming loss a “global” measure of distance.

A fitted model f applied to an input vector x can go beyond label
prediction and associate to each label j a score or a probability esti-
mate f(x)j. When the density of the label space ε is small and the size
of the label space d is very high, it is often hard to correctly predict
all labels. Instead, the classifier can rank or score all the labels. We de-
veloped here metrics for such classifiers with different possible goals,
e.g. to predict correctly the label with the highest score f(x)j.

Note that in the following, we use indifferently the notation | · | to express
the cardinality of a set or the `1-norm of a vector.

If only the top scored label has to be correctly predicted, we are
minimizing the one error(Schapire and Singer, 1999) which computes
the fraction of labels with the highest score or probability that are
incorrectly predicted:

One error =
1

n

n∑
i=1

I

(
yij 6= 1 : j = arg max

j∈{1,...,d}
f(xi)j

)
. (2.59)

If we want to discover all the true labels at the expense of some false
labels, the coverage error (Schapire and Singer, 2000) is the metrics to
minimize. It counts the average number of labels with the highest
scores or probabilities to consider to cover all true labels:

Coverage error =
1

n

n∑
i=1

max
j:yij 6=1

∣∣{k : f(xi)k > f(xi)j
}∣∣ . (2.60)

For a label density of ε, the best coverage error is thus εd and the
worst is d.

If we want to ensure that pairwise label comparisons are correctly
made by the classifier, we will minimize the (pairwise) ranking loss
metrics (Schapire and Singer, 1999). It counts for each sample the
number of wrongly made pairwise comparisons divided by the num-
ber of true labels and false labels

Ranking loss =
1

n

n∑
i=1

1

|yi|

1

d− |yi|

∣∣{(k, l):f(xi)k<f(xi)l,yik=1,y
i
l=0
}∣∣

(2.61)

The ranking loss is between 0 and 1. A ranking loss of 0 (resp. 1)
indicates that all pairwise comparisons are correct (resp. wrong).

If we want that the classifier gives on average a higher score to
true labels, we will use the label ranking average precision met-
ric (Schapire and Singer, 2000) to assess the accuracy of the models.
For each samples yi, it averages over each true labels j the ratio be-
tween (i) the number of true label (i.e. yi = 1) with higher scores
or probabilities than the label j to (ii) the number of labels (yi) with
higher score f(xi) than the label j. Mathematically, we average the
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LRAP of all pairs of ground truth yi and its associated prediction
f(xi):

LRAP(f̂) =
1

|TS|

n∑
i=1

1

|yi|

∑
j∈{k:yik=1}

|Lij(y
i)|

|Lij(1d)|
, (2.62)

where
Lij(q) =

{
k : qk = 1 and f̂(xi)k > f̂(xi)j

}
.

The best possible average precision is thus 1. Note that the LRAP
score is equal to fraction of positive labels if all labels are predicted
with the same score or all negative labels have a score higher than the
positive one.

Let us illustrate the computation of the previous metrics with a
numerical example. We compare the ground truth y of n = 2 samples
in a label of size d = 5 to the probability score f(x) given by the
classifier:

y =

[
1 0 1 0 0

1 0 0 0 0

]
,

f(x) =

[
0.75 0.6 0.1 0.8 0.15

0.25 0.8 0.1 0.15 0.3

]
.

Thresholding f(x) at 0.5 yields the prediction ŷ of the classifier:

ŷ = f(x) 6 0.5

[
1 1 0 1 0

0 1 0 0 0

]

Here, you will find the detailed computation of all previous metrics:

Accuracy = 0+ 0 = 0,

Hamming loss =
1

2

1

5
5 = 0.5,

Jaccard similarity score =
1

2

(
1

4
+
0

2

)
= 0.125,

Top error =
1

2
(1+ 1) = 2,

Coverage error =
5+ 3

2
= 4

Ranking loss =
1

2

(
1

2

1

3
(1+ 3) +

1

4

1

1
2

)
≈ 0.583,

LRAP =
1

2

(
1

2
(
1

2
+
2

5
) +

1

1

1

3

)
≈ 0.392.

While the previous metrics are suited to assess multi-label clas-
sification models, we can complement these metrics with those de-
veloped for binary classification tasks, e.g. specifity, precision, ROC
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AUC,. . . (see Section 2.4.1). They are well understood in their respec-
tive domains and have attractive properties such as a good handling
of class imbalance. We extend those metrics in three steps: (i) we
break the ground truth and the model prediction vectors into its
elements, (ii) we concatenate the elements into groups such as all
predictions associated to a given sample or all samples associated
to a given label and (iii) we average the binary classification met-
rics over each group. We will focus here on three averaging methods:
macro-averaging, micro-averaging and sample-averaging. Each aver-
aging method stems from a vision and different sets of assumptions.

If we view the multi-label classification task as a set of independent
binary classification tasks, we compute the metrics M over each out-
put separately and average the performance over all d labels leading
the macro-averaging version (Yang, 1999) of the metrics M:

macro-M((yi)ni=1, (ŷi)ni=1) =
1

d

d∑
j=1

M((yij)
n
i=1, (ŷij)

n
i=1)). (2.63)

If instead we view each sample as the result of a query (like in
a search engine), we want to evaluate the quality of each query (or
sample) separately. Under this perspective, the sample-averaging ap-
proach (Godbole and Sarawagi, 2004) computes and averages the met-
ric M over each sample separately:

sample-M((yi)ni=1, (ŷi)ni=1) =
1

n

n∑
i=1

M(yi, ŷi). (2.64)

The micro-averaging approach (Yang, 1999) views all label-sample
pairs as forming an unique binary classification task. It compute the
metric M as if all label predictions were independent:

M-micro((yi)ni=1, (ŷi)ni=1) =M((yij)i,j=(1,...,n), (ŷ
i
k)i,j=(1,...,n))).

(2.65)

2.4.4 Regression metrics

Given a set of n ground truths (yi ∈ R)ni=1 and their associated model
predictions (ŷi ∈ R)ni=1, regression tasks are often assessed using the
mean square error (MSE), the average of the square loss, expressed
by

MSE =
1

n

n∑
i=1

(
yi − ŷi

)2
. (2.66)

From the mean square error, we can derive the r2 score, also called
the coefficient of determination. It is the fraction of variance explained
by the model:

r2 = 1−
MSE

Output variance
(2.67)
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= 1−

∑n
i=1(y

i − ŷi)2∑n
i=1(y

i − 1
n

∑n
l=1 y

l)2
(2.68)

The r2 score is normally between 0 and 1. A r2 score of zero indicates
that the models is no better than a constant, while a r2 of one indi-
cates that the model perfectly explains the output given the inputs. A
negative r2 score might occur and it indicates that the model is worse
than a constant model.

Square-based metrics are highly sensitive to the presence of out-
liers with abnormally high prediction errors. The mean absolute error
(MAE), the average of the absolute loss, is often suggested as a robust
replacement of the MSE:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (2.69)

These single output metrics naturally extend to multi-output re-
gression tasks. The multi-output mean squared error and mean abso-
lute error for an output space size d is given by

MSE =
1

n

1

d

n∑
i=1

||yi − ŷi||2`2 , (2.70)

MAE =
1

n

1

d

n∑
i=1

||yi − ŷi||`1 . (2.71)

These measures average the metrics over all outputs assuming they
are independent.

Similarly, averaging the r2 score over each output leads to the
macro-r2 score:

macro-r2 = 1−
1

d

d∑
j=1

∑n
i=1(y

i
j − ŷ

i
j)
2∑n

i=1(y
i
j −

1
n

∑n
l=1 y

l
j)
2

. (2.72)

An alternative extension of the r2 score is to consider the total frac-
tion of the output variance, or more strictly the sum of the variance
over each output, explained by the model

variance-r2 = 1−
MSE

Total output variance
(2.73)

= 1−

∑n
i=1 ||y

i − ŷi||2`2∑n
i=1 ||y

i − 1
n

∑n
l=1 y

l||2`2

, (2.74)

which is equal to 1 minus the fraction of explained variance (Bakker
and Heskes, 2003).

The variance-r2 is a variance weighted average of the r2 score. We
can reformulate the variance-r2 as:

variance-r2 = 1−

∑n
i=1

∑d
j=1(y

i
j − ŷ

i
j)
2

Total output variance
(2.75)
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= 1−

d∑
j=1

wj

∑n
i=1(y

i
j − ŷ

i
j)∑n

i=1(y
i
j −

1
n

∑n
l=1 y

l)2
(2.76)

with wj =
∑n
i=1(y

i
j−

1
n

∑n
l=1 y

l
j)
2

Total output variance . By contrast, the macro-r2 score would

have uniform weights wj = 1
d ∀j in Equation 2.76.

2.5 hyper-parameter optimization

Supervised learning algorithms can be viewed as a function A :

(X × Y)ni=1 × A → H taking as input a learning set L =(
(xi,yi) ∈ (X× Y)

)n
i=1

and a set of hyper-parameters α ∈ A and out-
putting a function f in a hypothesis space H ⊂ YX. The hypothesis
space A is defined through one or several hyper-parameter variables
that can be either discrete, like the number of neighbors for a nearest
neighbors model, or continuous, like the multiplying constant of a
penalty loss in penalized linear models.

We need hyper-parameter tuning methods to find the best hyper-
parameter set α∗ ∈ A that minimizes the expectation of some loss
function ` : Y× Y → R+ over the joint distribution of input / output
pairs PX,Y:

α∗ = arg min
α∈A

EPX,Y{`(A(L,α)(x),y)}. (2.77)

Directly optimizing Equation 2.77 is in general not possible as it
consists in minimizing the generalization error over unseen samples.
Thus, we resort to validation techniques to split the samples into one
(or more) validation set(s) Svalid to estimate the generalization error
(see Section 2.3) and to select the best set of hyper-parameter α∗:

α∗ ≈ arg min
α∈A

∑
(x,y)∈Svalid

{`(A(L,α)(x),y)}. (2.78)

Note that we can optimize a metric defined over a set of samples
instead a loss as the area under the ROC curve.

In its simplest form, the hyper-parameter search assesses all pos-
sible hyper-parameter sets α ∈ A. While it is optimal on the vali-
dation set(s), this is impractical as the size of the hyper-parameter
space A is often unbounded. The hyper-parameter space often con-
sists of continuous hyper-parameter variables leading to an infinite
number of possible hyper-parameter sets. Whenever the number of
hyper-parameter sets is finite (|A| < ∞), we are limited by computa-
tional budget constraints. Instead, we resort to evaluate a subset of
the hyper-parameter space A− ⊂ A:

α∗ ≈ arg min
α∈A−

∑
(x,y)∈Svalid

{`(A(L,α)(x),y)}. (2.79)
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The classical approach to design a finite and reduced subspace A−

is to sample the hyper-parameter space A through a manually de-
fined grid. A too coarse grid will miss the optimum hyper-parameter
set α∗, while a too fine grid will be very costly. In (Hsu et al., 2003),
Hsu et al. suggests a two-stage approach: (i) a coarse parameter grid
first identifies regions of interest in the hyper-parameter space, and
then a finer grid locates the optimum. Nevertheless, we might still
miss the optimal hyper-parameter set α∗ since the objective function
of Equation 2.79 is not necessarily convex nor concave

How to wrongly optimize and / or to wrongly validate a

model?
Given a set of samples S and a supervised learning algorithm A, one
wants simultaneously to find the hyper-parameter set α∗ and estimate
the generalization error of the associated model f.

A wrong approach would be to use directly one of the validation
techniques presented in Section 2.3 dividing the sample set S into
(multiple) pair(s) of a training set and a test set (Strain,Stest). If we
select the best hyper-parameter set α∗ based on the test set(s) Stest,
then the approximation of the generalization error on Stest is biased:
the hyper-parameter set α∗ has been selected on the same test set(s).
Another approach would be to repeat independently the described
process using different partitions of the sample set S to first select the
best model and then to estimate the generalization error. However,
the generalization error is still biased: we might use the same samples
to train, to select or to validate the model.

The correct approach is to use nested validation techniques. We first
divide the sample set into (multiple) pair(s) of a test set Stest and
training-validation set Strain-valid. Then we again apply a validation
technique to split the training-validation set into (multiple) pair(s)
of a training set Strain and a validation set Svalid. The models f with
hyper-parameter α are first trained on Strain, then we select the best
hyper-parameter set α∗ on Svalid. We finally estimate the generaliza-
tion error of the overall model training and selection procedure by
re-training a model on Strain-valid using the best hyper-parameter set
α∗ on the testing set Stest.

Proper validation is necessary and comes at the expense of the sam-
ple efficiency and computing time. Note that nested validation meth-
ods are not needed if we want solely either to select the best model
or to estimate the generalization error of a given model.

In the grid search approach, we first sample each hyper-parameter
variable and then build all possible combinations of hyper-parameter
sets. However, some of these hyper-parameter variables have no or
small influence on the performances of the models. In these con-
ditions, large hyper-parameter grids are doomed to fail due to the
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explosion of hyper-parameter sets. Random search techniques (Solis
and Wets, 1981) tackles such optimization problems by (i) defining
a distribution over the optimization variables, (ii) drawing random
values from this distribution and (iii) selecting the best one out of
these values. (Bergstra and Bengio, 2012) have shown that random
hyper-parameter search scales better than grid search as the search
is not affected by the hyper-parameter variables having few or no in-
fluence on the model performance. As an illustration, let us consider
a model with one parameter and one without impact on its general-
ization error. Sampling 9 random hyper-parameter sets would yield
more information than making a 3× 3 grid as we evaluate 9 different
values of the dependent variable in the random search instead of 3 in
the grid.

For a continuous loss and a continuous hyper-parameter space,
Bayesian hyper-parameter optimization (Bergstra et al., 2011; Hutter
et al., 2011; Snoek et al., 2012) goes beyond random search and mod-
els the performance of a supervised learning algorithm A with hyper-
parameters α. Starting from an initial Gaussian prior over the hyper-
parameter space, it refines a posterior distribution of the model error
with each new tested sets of hyper-parameters. New hyper-parameter
sets are drawn to minimize the overall uncertainty and the model er-
ror.

2.6 unsupervised projection methods

Supervised learning aims at finding the best function f which maps
the input space X to the output space Y given a set of n samples(
(xi,yi) ∈ (X× Y)

)n
i=1

. However with very high dimensional input
space, we need a very high number of samples n to find an accu-
rate function f. This is the so-called curse of dimensionality. Another
problem arises if the model f is unable to model the input-output re-
lationship because the model classes H is too restricted, for instance
a linear model will fail to model quadratic data.

Unsupervised projection methods lift the original space X of size p
to another space Z of size q. If the projection lowers the size of the
original space (q < p), this is a dimensionality reduction technique.
In the context of supervised learning, we hope to break the curse of
dimensionality with such projection methods while speeding up the
model training. If the projections perform non linear transformations
of the input space, it might also improve the model performance. For
instance, a linear estimator will be able to fit quadratic data if we en-
rich the input variables with their quadratic and bilinear forms. Note
that projecting the input space to two or three dimensions (q ∈ {2, 3})
is an opportunity to get insights on the data through visualization.

We present three popular unsupervised projection methods and
discuss their properties: (i) the principal component analysis ap-
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3 6

2

6

Figure 2.9: The principal components, shown as black arrows, are the or-
thogonal vectors maximizing the variance of the samples drawn
here from a multivariate Gaussian distribution.

proach in Section 2.6.1, which aims to find a subspace maximizing
the total variance of the data; (ii) random projection methods in Sec-
tion 2.6.2, which project the original space onto a lower dimensional
space while approximately preserving pairwise euclidean distances,
and (iii) kernel functions in Section 2.6.3, which compute pairwise
sample similarities lifting the original space to a non linear one.

2.6.1 Principal components analysis

The principal component analysis (PCA) method (Jolliffe, 2002) is a
technique to find from a set of samples (xi ∈ X)ni=1 an orthogonal
linear transformation Zwhich maximizes the variance along each axis
of the transformed space as shown in Figure 2.9.

Principal component analysis reduces the dimensionality of the
dataset by keeping a fraction of the principal components vectors
which totalize a large amount of the total variance. If we keep only
two components, PCA allows to visualize high dimensional datasets
as illustrated in Figure 2.10 with digits.

Mathematically, we want to find the first principal component vec-
tor u1 which maximizes the variance along its direction:

u1 = arg max
u

n∑
i=1

||uTxi − uT
n∑
l=1

xl

n
||2`2

s.t. uTu = 1. (2.80)

Given that the covariance matrix C is given by

C =
∑
i=1

(xi −

n∑
l=1

xl

n
)(xi −

n∑
l=1

xl

n
)T ,
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Figure 2.10: We project the digits dataset (Lichman, 2013) from its 8 × 8
pixel space on the two principal components with the largest
variance (29% of the total variance). Digits such as 4 or 0 form
well defined clusters on this two dimensional space.

we have

u1 = arg max
u
uTCu+ λ1(1− u

Tu), (2.81)

where λ1 is the Lagrange multiplier of the normalization constraint.
By derivating with respect to u and setting the first derivative to

zero, we have that the maximum is indeed an eigen vector of the
covariance matrix:

Cu1 = λ1u
1 (2.82)

We also note that the variance along u1 is given by u1TCu1 = λ1.
Thus u1 is the eigenvector with the highest eigen value.

The following vector um+1 maximizing the variance are obtained
by imposing that the m+ 1-th vector is orthogonal to the m previous
one:

um+1 = arg max
um+1

um+1TCum+1

s.t. um+1Tum+1 = 1,

um+1Tul = 0 ∀l ∈ {1, . . . ,m}, (2.83)

or alternatively in Lagrangian form

arg max
um+1

um+1TCum+1+λm+1(1−u
m+1Tum+1)+

m∑
l=1

µlu
m+1Tul.

(2.84)

By differentiating with respect to ul and multiplying by um+1, we
have that the Lagrangian constants of the orthogonality constraints
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are equal to zero µl = 0 ∀l ∈ {1, . . . ,m}. And it follows that the
m+ 1-th principal component is the m+ 1-th eigen vector with the
m+ 1-th largest eigen value λm+1 since

Cum+1 = λm+1u
m+1,um+1TCum+1 = λm+1. (2.85)

2.6.2 Random projection

Random projection is a dimensionality reduction method which
projects the space onto a smaller random space. For randomly projec-
tion, the Jonhson-Lindenstrauss lemma gives the conditions of exis-
tence such that the distance between pairs of points is approximately
preserved.

Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,
1984)
Given ε > 0 and an integer n, let q be a positive integer such that
q > 8ε−2 lnn. For any sample (yi)ni=1 of n points in Rd there exists
a matrix Φ ∈ Rq×d such that for all i, j ∈ {1, . . . ,n}

(1−ε)||yi−yj||2 6 ||Φyi−Φyj||2 6 (1+ε)||yi−yj||2. (2.86)

Moreover, when d is sufficiently large, several random matrices sat-
isfy Equation 2.86 with high probability. In particular, we can con-
sider Gaussian matrices whose elements are drawn i.i.d. in N(0, 1/q),
as well as (sparse) Rademacher matrices whose elements are drawn in
the finite set

{
−
√
s
q , 0,

√
s
q

}
with probability

{
1
2s , 1− 1

s , 12s
}

, where

1/s ∈ (0, 1] controls the sparsity of Φ. If s = 3, we will say
that those projections are Achlioptas random projections (Achliop-
tas, 2003). When the size of the original space is p and s =

√
p, then

we will say that we have sparse random projection as in (Li et al.,
2006). Note a random sub-space (Ho, 1998) is also a random pro-
jection scheme (Candes and Plan, 2011): the projection matrix Φ is
obtained by sub-sampling with or without replacement the identity
matrix. Theoretical results proving 2.86 with high probability for each
random projection matrix can be found in the relevant paper.

The choice of the number of random projections q is a trade-off
between the quality of the approximation and the size of the resulting
embedding as illustrated in Figure 2.11.

2.6.3 Kernel functions

A kernel function k : X× X → R computes the similarity between
pairs of samples (usually in the input space). Machine learning al-
gorithms relying solely on dot products, such as support vector
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Figure 2.11: Given a set of samples (xi)2000i=0 ∈ R500 drawn from a Gaussian
distribution, a few random projections preserve on average the
distance between pairs of points up to a distortion ε.

Table 2.5: Some common kernel functions between two vectors xi and xj.

Kernels

Linear kernel k(xi, xj) = xiTxj

Polynomial k(xi, xj) = (xi
T
xj + r)d

Gaussian radial basis function k(xi, xj) = exp(−γ||xi − xj||22)

Hyperbolic tangent k(xi, xj) = tanh(κxiTxj + r)

machine (Cortes and Vapnik, 1995) or principal components analy-
sis (Jolliffe, 2002), are indeed using the linear kernel k(xi, xj) = xiTxj.
We can kernelize these algorithms by replacing their dot product
with a kernel presented in Table 2.5. This is the so called kernel
trick (Scholkopf and Smola, 2001). Kernel functions define non linear
projection schemes lifting the original space to the one defined by the
chosen kernel. It has been used in classification (Hsu et al., 2003), in
regression (Jaakkola and Haussler, 1999) and in clustering (Schölkopf
et al., 1997). Random kernels (Rahimi and Recht, 2007, 2009) can be
used to compress the input space.

The task shown in Figure 2.12b requires to classify points belong-
ing to one of two interleaved moons. Given the non linearities, we can
not linearly separate both classes as illustrated in Figure 2.12b with a
(linear) support vector machine. By lifting the linear kernel to the ra-
dial basis function kernel, the support vector machine algorithm now
separates both classes as shown in Figure 2.12c. Effectively, kernel
functions enable machine learning algorithms to handle a wide vari-
eties of structured and unstructured data such as sequences, graphs,
texts or vectors through an appropriate choice and design of kernel
functions.
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(a) Classification task

(b) Linear SVM (c) Radial basis function SVM

Figure 2.12: The classification task consists in discriminating points belong-
ing to one of the two interleaved moons (the blue or the red
dots). Given the non linearities of the data, a linear support vec-
tor machine is not able to find a hyperplane separating both
classes as shown in Figure 2.12b. By lifting the original input
space through the radial basis function kernel, we are now able
to separate both classes as illustrated in Figure 2.12c retrieving
the interleaved moons.
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D E C I S I O N T R E E S

Outline

Decision trees are non parametric supervised learning models map-
ping the input space to the output space. The model is a hierarchical
structure made of test and leaf nodes. Starting at the root node, the
top of the tree, the test nodes lead the reasoning through the tree
structure until reaching a leaf node outputting a prediction. In this
chapter, we first describe the decision tree model and show how to
predict unseen samples. Then, we present the methods and the tech-
niques to grow and to prune these tree structures. We also introduce
how to interpret a decision tree model to gain insights on the studied
systems and phenomena.

A decision tree is comparable to a human reasoning organized
through a hierarchical set of yes/no questions. As in medical diag-
nosis, an expert (here the doctor) diagnoses the patient state (“Is the
patient healthy or sick?”) by screening the patient body and by retriev-
ing important past patient history through a directed set of questions.
We can view each step of the reasoning as a branch of a decision tree
structure. Each answer leads either to another question refining a set
of hypotheses or finally to a conclusion, a prediction.

The binary questions at test nodes can target binary variables, like
“Do you smoke?”, categorical variables, like “Do you prefer pear or
apple to orange or lemon?”, or numerical variables, like “Is the out-
side temperature below 25 degree Celsius (77 degree Fahrenheit)?”.
Note that we can formulate multi-way questions as a set of binary
questions. For instance, the multi-way question “Do you want to eat
a pear, a peach or an apple?” is equivalent to ask sequentially “Do
you want to eat a pear or one fruit among peach and apple?”, then
you would also ask “Do you want to eat a peach or an apple?” if you
answered “a peach or an apple”.

With only numerical input variables, questions that are typically
asked are in the form “Is the value of variable x lower than a
given value?”. The decision tree is then a geometric structure par-
tionning the input space into a recursive set of p-dimensional (hy-
per)rectangles (also called p-orthotopes). The root node first divides
the whole input space into two half-spaces. Each of those may fur-
ther be divided into smaller (hyper)rectangles. The partition struc-
ture highlights the hierarchical nature of a decision tree. An artis-
tic example of such partitioning in a two dimensional space is the

46
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Figure 3.1: Reproduction of “Composition II in Red, Blue, and Yellow” of
Piet Mondrian.

“Composition II in Red, Blue, and Yellow” by Piet Mondrian1 shown
in Figure 3.1. Here, Piet Mondrian divides hierarchically the whole
painting into colored rectangles through heavy thick black lines. Each
black line is conceptually a testing node of a decision tree, while the
colored rectangles would be the predictions of leaves node.

Decision trees are popular machine learning model, because of sev-
eral nice properties:

• The hierarchical nature of the model takes into account non
linear effects between the inputs and outputs, as well as condi-
tional dependencies among inputs and outputs.

• Growing a decision tree is computationally fast.

• Decision tree techniques work with heterogeneous data combin-
ing binary, categorical or numerical input variables.

• Decision trees are interpretable models giving insights on the
relationship between the inputs and the outputs.

• The tree training algorithm can be adapted to handle missing in-
put values (Breiman et al., 1984; Friedman, 1977; Quinlan, 1989).

In Section 3.1, we present the structure of such models and how
to exploit these to predict unseen samples. We show in Section 3.2
how to train a decision tree model. In Section 3.3, we describe the
techniques used to prune a fully grown decision tree to the right
size: too shallow trees tend to under-fit the data as they might lack
predicting power, while large trees might overfit the data as they are
too complex. In Section 3.4, we show how to interpret a decision tree
to gain insights over the input-output relationships: (i) through input

1 Piet Mondrian (1872-1944) is a painter famous for his grid-based paintings partition-
ing the tableau through black lines into colored rectangles usually blue, red, yellow
and white
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variable importance measures and (ii) through the conversion of the
tree structure to a set of rules. In Section 3.5, we show how to extend
decision trees to handle multi-output tasks.

3.1 decision tree model

The binary decision tree model is a tree structure built by recursively
partitioning the input space. The root node is the node at the top
of the tree. We distinguish two types of nodes: (i) the test nodes,
also called internal nodes or branching nodes, and (ii) the leaves
outputting predictions, also called external nodes or terminal nodes.
A test node Nt has two children called the left child and the right
child; it furthermore has a splitting rule st testing whether or not
a sample belongs to its left or right child. For a continuous or cat-
egorical ordered input, the splitting rules are typically of the form
st(x) = xFt 6 τt testing whether or not the input value xFt is smaller
or equal to a constant τt. For a binary or categorical input, the split-
ting rule is of the form st(x) = xFt ∈ Bt testing whether or not the
input value xFt belongs to the subset of values Bt.

The decision tree of Figure 3.2 first splits the input space into two
disjoint partitions A2 = {x : xF1 6 τ1} and A3 = {x : xF2 > τ1} at
the root node N1. The node N1 has two children: N2 the left child
and N3 the right child. The node N2 is a leaf and thus a terminal
partition. The test node N3 further splits the input space based on
a categorical set B3 into partitions A4 = {x ∈ A3, xF3 ∈ B3} and
A5 = {x ∈ A3, xF3 ∈ B3} with A3 = A4 ∪ A5. The input space is
further split with 3 more testing nodes with two continuous splitting
rules (N4, N5) or one categorical splitting rule N8. The remaining
nodes N6, N7, N9, N10 and N11 are leaf nodes. In total, the decision
tree defines a partition of the input space into 11 (hyper)rectangles
(A1, . . . ,A11). A one to one relationship exists between the leaf nodes
and the subsets of this input space partition. Note that all partitions
of the input space are not expressible as a decision tree structure.

A decision tree predicts the output of an unseen sample by follow-
ing the tree structure as described by Algorithm 3.1. The recursive
process starts at the root node, then the splitting rules of the testing
nodes send the sample further down the tree structure. We traverse
the tree structure until reaching a leaf, a terminal node, outputting its
associated prediction value. A decision tree model f̂ : X → Y is then
expressible as a sum of indicator functions, denoted by 1, over the |T |

tree nodes:

f̂(x) =

|T |∑
t=1

βt1(x ∈ At)1(t is a leaf) (3.1)
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N1

N2

τ1 6 xF1

N3

N4

N6

τ4 6 xF4

N7

xF4 > τ4

xF3 ∈ B3

N5

N8

N10

xF8 ∈ B8

N11

xF8 6∈ B8

τ5 6 xF5

N9

xF5 > τ5

xF3 6∈ B3

xF1 > τ1

Figure 3.2: A binary decision tree structure containing 11 nodes: 5 test nodes
and 6 leaves nodes.

where βt is the prediction associated to a nodeNt. The computational
complexity of predicting an unseen sample is thus proportional to the
depth of the followed branch.

Algorithm 3.1 Predict a sample x with a decision tree.

1: function tree_predict(tree, x)
2: t← Index of the root node of the tree.
3: while the node Nt is not a leaf. do
4: if The splitting rule st(x) of node Nt is true then
5: t← Index of the left child of node Nt.
6: else
7: t← Index of the right child node Nt.
8: end if
9: end while

10: return βt.
11: end function

Binary versus multi-way partitions

Decision trees do not have to respect a binary tree structure. Each one
of their internal nodes could have more than two children with multi-
way splitting rules. However such multi-way partitions are equiva-
lent to a set of consecutive binary partitions. Furthermore, multi-way
splits tends to quickly fragment the training data during the deci-
sion tree growth impeding its generalization performance. In prac-
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tice, decision trees are therefore most of the time restricted to be bi-
nary. (Hastie et al., 2009)

3.2 growing decision trees

We grow a decision tree using a set of samples of input-output pairs.
Tree growth starts at the root node and divides recursively the input
space through splitting rules until we reach a stopping criterion such
as a maximal tree depth or minimum sample size in a node. For each
new testing node, we search for the best splitting rule to divide the
sample set at that node into two subsets. We hope to make partitions
“purer” at each new division. The decision tree growing procedure
has three main elements:

• a splitting rule search algorithm (see Section 3.2.1);

• stop splitting criteria (see Section 3.2.3) which dictate whenever
we stop the development of a branch;

• a leaf labelling rule (see Section 3.2.2) determining the output
value of a terminal partition.

Putting all those key elements together leads to the decision tree
growing algorithm shown in Algorithm 3.2.

Algorithm 3.2 Grow a decision tree using the sample set L =

{(xi,yi) ∈ X× Y}ni=1.

1: function grow_tree(L)
2: q =EmptyQueue()
3: Initialize the tree structure with the root node (N1)
4: q.enqueue((1,L)).
5: while q is not empty do
6: (t,Lt)← q.dequeue( )
7: if Node Nt satisfies one stopping criterion then
8: Label node t as a leaf using samples Lt
9: else

10: Search for the best splitting rule st using samples Lt.
11: Split Lt into Lt,r and Lt,l using the splitting rule st.
12: Label node t as a test node with the splitting rule st.
13: q.enqueue((2t,Lt,l)).
14: q.enqueue((2t+ 1,Lt,r)).
15: end if
16: end while
17: return The grown decision tree.
18: end function
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st(x) = 1 st(x) = 0

Lt

Lt,l Lt,r

Figure 3.3: During tree growing (here for a binary classification task with
orange and black classes), we search for the best splitting rule st
to divide the sample set Lt reaching node t into a left Lt,l and a
right Lt,r subsets.

3.2.1 Search among node splitting rules

During tree growing, we recursively partition the input space X and
the sample set L = {(xi,yi) ∈ X× Y}ni=1. At each testing node t, we
split the sample set Lt reaching node t into two smaller subsets Lt,l
and Lt,r using a binary splitting rule st : X → {0, 1} as shown in
Figure 3.3. This raises two questions (i) what is the set of available
binary and axis-wise splitting rules Ω(Lt) given a sample set Lt and
(ii) how to select the best one among all of them so as to make the
descendants “purer” than the parent node.

For a variable xj ∈ Xj of cardinality cj, the associated family Q(xj)

of splitting rules consists of all possible subsets of Xj:

Q(xj) =
{
st(x) ≡ 1(xj ∈ X ′) : X ′ ⊂ Xj

}
. (3.2)

The size of the splitting rule family is increasing exponentially with
the total number of possible values (|Q(xj)| = 2

|Xj|−1).
If the possible values of the variable xj are also ordered, we can

reduce the size of the splitting rule family Q(xj) from an exponential
number of candidates to a linear number of splitting rules (|Q(xj)| =

|Xj|− 1):

Q(xj) =

{
st(x) ≡ 1(xj 6 τ) : τ ∈ Xj

}
. (3.3)

With a numerical variable xj ∈ R, the number of possible splitting
rules is infinite. However, the training set is of finite size. We consider
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a family of splitting rules similar to Equation 3.3 with the possible
values X̃j available in the training set.

The selected splitting rule st should split the sample set Lt such
that the following conditions hold: the sample sets Lt,r and Lt,l are
non empty (Lt,r 6= ∅, Lt,l 6= ∅) forming a disjoint (Lt,l ∩Lt,r = ∅) and
non overlapping partition (Lt = Lt,l ∪Lt,r) of the original sample set
Lt. During the expansion of a test node t into a left child and a right
child, we thus select a splitting rule st among all possible splitting
rules Ω(Lt):

st ∈ Ω(Lt) =

{
s : s ∈

⋃
j∈{1,...,p}

Q(xj),

Lt,l = {(x,y) ∈ Lt : s(x) = 1},

Lt,r = {(x,y) ∈ Lt : s(x) = 0},

Lt,l 6= ∅,Lt,r 6= ∅

}
. (3.4)

We strive to select the “best” possible local splitting rule st for
the split at node t leading ideally to good generalization perfor-
mance. However, it is impossible to minimize directly the general-
ization error. Thus instead, we are going to minimize the resubstitu-
tion error, the error over the training set. However, obtaining such a
tree is trivial and it has poor generalization performance. A more
meaningful criterion is to search for the smallest tree minimizing
the resubstitution error. However, this optimization problem is a NP-
complete (Hyafil and Rivest, 1976). Instead, we greedily grow the
tree by maximizing the reduction of an impurity measure function
I : (X× Y)× . . .× (X× Y) → R. Mathematically, we define the im-
purity reduction ∆I obtained by dividing the sample set Lt into two
partitions (Lt,r,Lt,l) as

∆I(Lt,Lt,l,Lt,r) = I(Lt) −
|Lt,l|

|Lt|
I(Lt,l) −

|Lt,r|

|Lt|
I(Lt,r). (3.5)

The splitting rule selection problem (line 10 of the tree growing
Algorithm 3.2) is thus written as

st = arg max
s∈Ω(Lt)

∆I(Lt,Lt,l,Lt,r) (3.6)

Intuitively, the impurity I should be minimal whenever all samples
have the same output value. The node is then said to be “pure”

Given the additivity of the impurity reduction, the best split at
node t according to the impurity reduction computed locally is also
the best split at this node in terms of global impurity. The remaining
tree impurity Imp(T) of a tree T is the sum of the remaining impuri-
ties of all leaf nodes:

Imp(T) =
∑
t∈T

p(t)I(Lt)1(t is a leaf) (3.7)
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with p(t) = |Lt|/|L| the proportion of samples reaching node t. If we
develop the leaf node t into a test node, it leads to a new tree T ′ with
a new splitting rule st having a left tl and a right tr children node.
The overall impurity decreases from the original tree T to the bigger
tree T ′ and the impurity decrease is given by

Imp(T) − Imp(T ′) = p(t)I(Lt) − p(tl)I(Lt,l) − p(tr)I(Lt,r)

(3.8)

= p(t)∆I(Lt,Lt,l,Lt,r) (3.9)

Thus, the decision tree growing procedure is a repeated process aim-
ing at decreasing the total impurity as quickly as possible by suitably
choosing the local splitting rules.

In classification, a node is pure if all samples have the same class.
Given a sample set Lt reaching node t, we will denote by p(y =

l|t) = 1
|Lt|

∑
(x,y)∈Lt 1(y = l) the proportion of samples reaching

node t having the class l. A node will be pure if p(y = l|t) is equal
to 1 for a class l and zero for the others. The node impurity should
increase whenever samples with different classes are mixed together.
We require that the impurity measure I in classification satisfies the
following properties:

1. I is minimal only whenever the node is pure p(y = l|t) = 1 and
p(y = m|t) = 0 ∀m ∈ {1, . . . , l− 1, l+ 1, . . . ,k};

2. I is maximal only whenever p(y = l|t) = 1/k ∀l ∈ {1, . . . ,k};

3. I is a symmetric function with respect to the class proportions
p(y = 1|t), . . . ,p(y = k|t) so as not to favor any class.

A first function satisfying those three properties is the misclassifi-
cation error rate:

Error rate(Lt) = 1− max
l∈{1,...,k}

p(y = l|t). (3.10)

However, this is not an appropriate criterion. In practice, many can-
didate splitting rules have often the same error rate reduction, es-
pecially in the multi-class classification where only the number of
samples of the majority class matters.

Consider the following split selection problem, we have a binary
classification task with 500 negative and 500 positive samples. The
first splitting rule leads to a left child with 125 positive and 375 nega-
tive samples, while the right child has 375 positive and 125 negative
samples. The misclassification error reduction is thus given by:

500

1000
− 2

500

1000
(1−

375

500
) = 0.25.

Now, let’s consider a second splitting rule leading to a pure node
with 250 positive samples and another node with 250 positive and 500
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negative samples. This second split has the same impurity reduction
score leading to a tie:

500

1000
−
750

1000
(1−

500

750
) −

250

1000
(1−

250

250
) = 0.25.

The misclassification does not discriminate enough node purity as
it varies linearly with the fraction of the majority class. To solve this
issue, we add a fourth required properties to classification impurity
functions (Breiman et al., 1984):

4. I must be a strictly concave function with respect to the class
proportion p(y = l|t).

This fourth property will increase the granularity of impurity reduc-
tion scores leading fewer ties in splitting rule scores. It will reduce
the tree instability with respect to the training set.

Two more suitable classification impurity criteria satisfying all four
properties are the Gini index, a statistical dispersion measure, and the
entropy measure, an information theory measure.

Gini(Lt) =

k∑
l=1

p(y = l|t)(1− p(y = l|t)) (3.11)

Entropy(Lt) = −

k∑
l=1

p(y = l|t) logp(y = l|t) (3.12)

By minimizing the Gini index, we minimize the class dispersion.
While selecting the splitting rule based on the entropy measure min-
imizes the unpredictability of the target, the remaining unexplained
information of the output variable.

Given the strict concavity of the Gini index and entropy, we can
now discriminate the two splits of the previous example. The first
split would have an impurity reduction with the Gini index of 0.0625
and the entropy of ≈ 0.131. The second split with a pure node would
have an impurity reduction of ≈ 0.083 with the Gini index and of ≈
0.216 with the entropy. Based on these criteria, both measures would
choose the second split.

In regression tasks, we consider a node as pure if the dispersion of
the output values is zero. We require the impurity regression criterion
to be zero only if all output values have the same value. A common
dispersion measure used to grow regression trees is the empirical
variance

Variance(Lt) =
1

|Lt|

∑
(x,y)∈Lt

(y− ȳ)2 , with ȳ =
1

|Lt|

∑
(x,y)∈Lt

y

(3.13)

By maximizing the variance reduction, we are searching for a split-
ting rule minimizing the square loss `(y,y ′) = 1

2(y− y
′)2. Note that
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the Gini index and the empirical variance lead to the same impurity
measure for binary classification tasks and multi-label classification
tasks with output classes encoded with {0, 1} numerical variables.

3.2.2 Leaf labelling rules

When tree growing is stopped by the activation of a stop splitting cri-
terion, the newly created leaf needs to be labeled by an output value
(see line 8 of Algorithm 3.2). It is a constant βt chosen to minimize a
given loss function ` over the samples Lt = {(x,y) ∈ (X,Y)} reaching
the node t:

βt = arg min
β

∑
(x,y) ∈Lt

`(y,β). (3.14)

In regression tasks, we want to find the constant βt minimizing the
square loss in single output regression :

βt = arg min
β

∑
(x,y)∈Lt

1

2
(y−βt)

2 (3.15)

By setting the first derivative to zero, we have∑
(x,y) ∈Lt

(y−β) = 0 (3.16)

βt =
1

|L|t

∑
(x,y) ∈Lt

y. (3.17)

The constant leaf model minimizing the square loss is the average
output value of the samples reaching node t.

In classification tasks, the constant βt minimizing the 0 − 1 loss
(`0−1(y,y ′)) = 1(y 6= y ′)) is the most frequent class. The decision tree
can also be a class probability estimator by outputting the proportion
p(l|t) of samples of class l reaching node t from the sample set Lt.

Beyond constant leaf modeling

The leaf labelling rule can go beyond a constant model with su-
pervised learning models such as linear models (Frank et al., 1998;
Landwehr et al., 2005; Quinlan et al., 1992; Wang and Witten, 1996),
kernel-based methods (Torgo, 1997), probabilistic models (Kohavi,
1996) or even tree-ensemble models (Matthew et al., 2015). It increases
the modeling power of the decision tree at the expense of computing
time and new hyper-parameters.

3.2.3 Stop splitting criterion

The tree growth at a node t naturally stops if all the samples Lt
reaching the node t (i) share the same output value (zero impurity) or
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(ii) share the same input values (but not necessarily the same output)
as in this case we can not find a valid split of the data. In both cases,
we can not find a splitting rule to grow the tree further due to a lack
of data.

A tree developed in such ways is then said to be fully developed.
The question is “Should we stop sooner the tree growth?”. A testing
node t splits the data Lt into two partitions (Lt,l,Lt,r) leading to a
left child node tl and a right child node tr. If we denote by f̂t, f̂t,r
and f̂t,l the leaf models that would be assigned to the nodes t, tr or
tl, we have that the resubstition error reduction ∆Err associated to a
loss function ` is given by:

∆Err =
∑

(x,y)∈Lt

`(y, f̂t(x)) −
∑

(x,y)∈Lt,r

`(y, f̂t,r(x))

−
∑

(x,y)∈Lt,l

`(y, f̂t,l(x)) (3.18)

=
∑

(x,y)∈Lt,r

[
`(y, f̂t(x)) − `(y, f̂t,r(x))

]
+

∑
(x,y)∈Lt,l

[
`(y, f̂t(x)) − `(y, f̂t,l(x))

]
(3.19)

Since we choose f̂t,r and f̂t,l so as to minimize the resubstitution
error on their respective training data (Lt,l and Lt,r), the resubstitu-
tion error never increases through node splitting. With only “natural”
splitting rule, decision trees are optimally fitting the training data.

Stop splitting criteria avoid over-fitting by stopping earlier the tree
growth. They are either based on (i) structural properties or on (ii)
data statistics. Criteria computed on the left and the right children can
also discard splitting rules, for example requiring a minimal number
of samples in the left and right children to split a node.

Structural-based stop splitting criteria regularize the tree growth
by explicitly limiting the tree complexity, by restricting for example:

• branch depths or

• the total number of nodes.

In the second case, the order in which the tree nodes are split starts
to matter and can be chosen so as to maximize the total impurity
reduction.

Data-based stop splitting criteria stop the tree growth if some stati-
cal properties computed on the data used to split the node are below
a threshold such as

• the number of samples reaching the node,

• the number of samples reaching the left and right children ob-
tained after splitting,
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• the impurity reduction or

• the p-value of a significance test, such as a Chi-square test, test-
ing the independence of the split and the output variable.

3.3 right decision tree size

To find the right decision tree size, there are two main families of
complexity reduction techniques, also called pruning techniques: (i)
pre-pruning techniques stop the tree growth before the tree is fully
developed (line 5 of Algorithm 3.2 and presented in Section 3.2.3) and
(ii) post-pruning techniques remove tree nodes a posteriori setting a
trade-off between the tree size and the resusbstitution error. Both ap-
proaches lead to smaller decision trees aiming to improve generaliza-
tion performance and to simplify decision tree interpretation.

Pre-pruning criteria are straightforward tools to control the deci-
sion tree size. However, it is unclear which pruning level (or hyper-
parameter values) leads to the best generalization performance. Too
“strict” stop splitting criteria will grow shallow trees under-fitting the
data. While too “loose” stop splitting criteria have the opposite effect,
i.e., growing overly complex trees over-fitting the data.

While pre-pruning techniques select the tree complexity a priori,
post-pruning techniques select the optimal complexity a posteriori. A
naive approach to post-pruning would be to build independently a
sequence of decision trees with different complexity by varying the
stop splitting criteria, and then to select the one minimizing an ap-
proximation of the generalization error such as the error on a hold
out sample set. However, this is not computationally efficient as it
re-grows each time a (new) decision tree.

Post-pruning techniques first grow a single decision tree T with
very loose or no stop splitting criterion. This decision tree clearly
overfits the training data. Then, they select a posteriori a subtree T∗ ⊆
T among all possible subtrees of T . The original decision tree is thus
pruned by collapsing nodes from the original tree into new leaf nodes.
The post-pruning method minimizes a tradeoff between the decision
tree error over a sample set S and a function measuring the decision
tree complexity such as the number of nodes:

T∗(λ) = arg min
Ť⊂T

Error(S|Ť) + λComplexity(Ť). (3.20)

The cost complexity pruning method (Breiman et al., 1984), also
known as the weakest link pruning, implements Equation 3.20

through a complexity coefficient Cα measuring a tradeoff between
the resubstitution error of a tree Ť and its complexity |Ť | defined by
the number of leaves:

Cα(Ť) = resubstitution error(L|Ť) +α|Ť |. (3.21)
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For each α, there exists a unique tree Ťα minimizing the cost com-
plexity coefficient Cα. Large values of α lead to small trees, while
conversely small values of α allow bigger sub-trees. For the extreme
case α = 0 (resp. α = ∞), we have the original decision tree T0 (resp.
the subtree containing only the root node). One can show (Breiman
et al., 1984) that we can sequentially obtain the Ťα from the original
tree T by removing the node with the smallest increase in resubtitu-
tion error. We select the optimal subtree T∗ among all subtrees Ťα ⊆ T
by minimizing an approximation of the generalization error using for
instance cross-validation methods.

The reduced error pruning method (Quinlan, 1987), another post
pruning technique, splits the learning set into a training set and a
pruning set. It grows on the training set a large decision tree. Dur-
ing the pruning phase, it first computes the error reduction of prun-
ing each node and its descendants on the pruning set, then removes
greedily the node reducing the most the error. It repeats this two steps
procedure until the error on the pruning set starts increasing.

Other post pruning methods have been developed with pruning
criteria based on statistical procedures (Quinlan, 1987, 1993) or on
cost complexity criteria based on information theory (Mehta et al.,
1995; Quinlan and Rivest, 1989; Wallace and Patrick, 1993). Instead
of relying on greedy processes, authors (Almuallim, 1996; Bohanec
and Bratko, 1994) have proposed dynamic programming algorithms
to find an optimal sub-tree sequence minimizing the resubtistution
error with increasing tree complexity at the expense of computational
complexity.

3.4 decision tree interpretation

A strength of the decision tree model is its interpretability. A closer
inspection reveals that we can convert a decision tree model to a set
of mutually exclusive classification or regression rules. We get these
rules by following the path from each leaf to the root node. We have
converted the decision tree shown in Figure 3.4 to three sets of pre-
dicting rules, one for each class of iris flower (Versicolor, Virginica
and Setosa):

1. “If Petal width 6 0.7cm, then Setosa”

2. “If Petal width > 0.7cm and Petal width 6 1.65cm and Petal
length 6 5.25cm, then Versicolor.”

3. “If Petal width > 0.7cm and Petal width > 1.65cm and Sepal
length 6 5.95cm and Sepal length > 5.85cm, then Versicolor.”

4. “If Petal width > 0.7cm and Petal width 6 1.65cm and Petal
length > 5.25cm, then Virginica.”
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5. “If Petal width > 0.7cm and Petal width > 1.65cm and Sepal
length 6 5.95cm and Sepal length 6 5.85, then Virginica.”

6. “If Petal width > 0.7cm and Petal width > 1.65cm and Sepal
length > 5.95cm, then Virginica.”

Remark that given the binary hierarchical structure, some rules are re-
dundant and can be further simplified. For instance, we can collapse
the constraints “Petal width > 0.7cm and Petal width > 1.65cm” into
“Petal width > 1.65cm” for the 6-th rule.

Petal width?

Setosa

0.7cm 6

Petal width?

Petal length?

Versicolor

5.25cm 6

Virginica

> 5.25cm

1.65cm 6

Sepal length?

Sepal length?

Virginica

5.85cm 6

Versicolor

> 5.85cm

5.95cm 6

Virginica

> 5.95cm

> 1.65cm

> 0.7cm

Figure 3.4: A decision tree is an interpretable set of rules organized hierar-
chically. For instance, we can recognize a Versicolor iris with two
sets of rules. Among the four input variables (petal width, petal
length, sepal width and sepal length), the decision tree shows
that only one input variable is necessary to classify the Setosa
iris variety.

The decision tree model also shows which input variables
x1, . . . , xp are important to predict the output variable(s) y. During
the decision tree growth, we select at each node t an axis-wise split-
ting rules st minimizing the reduction of an impurity measure ∆I di-
viding the samples Lt reaching the node into two subsets (Lt,l,Lt,r).
The mean decrease of impurity (MDI) of a variable xj (Breiman et al.,
1984) sums, over the nodes of a decision tree T where xj is used to
split, the total reduction of impurity associated to the split weighted
by the probability of reaching that node over the training set L:

MDI(xj) =
∑

{t∈T :xj is tested by st}

|Lt|

|L|
∆I(Lt,Lt,l,Lt,r). (3.22)
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Figure 3.5: Mean impurity decrease for each input variable of the Titanic
dataset for a decision tree whose complexity was chosen to max-
imize the accuracy score on a hold out pruning sample set.

The mean decrease of impurity scores and ranks the input vari-
ables according to their importances during the decision tree growth
process as illustrated in Figure 3.5. It takes into account variable cor-
relations, multivariate and non linear effects. As such, decision trees
are often used as pre-processing tools to select a fraction of the top
most important variables.

3.5 multi-output decision trees

Decision trees naturally extend from single output tasks to multi-
ple output tasks (Blockeel et al., 2000; Clare and King, 2001; De’Ath,
2002; Noh et al., 2004; Segal, 1992; Siciliano and Mola, 2000; Vens
et al., 2008; Zhang, 1998) such as multi-output regression, multi-label
classification or multi-class classification. No core modification are
needed. Instead, we need appropriate impurity measures and leaf la-
belling rules for the tree prediction Algorithm 3.1 and the tree growth
Algorithm 3.2. Note that a multi-output decision tree can still be
pruned (Struyf and Džeroski, 2005).

multi-output impurity measures During the decision tree
growth, we aim to select a splitting rule dividing the sample set Lt
reaching the node t into a left and a right sample sets (Lt,l,Lt,r). The
best multi-output splitting rule is the one maximizing the reduction
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of a multi-output impurity measure I. We can use native multi-output
impurity measures such as the variance in regression (Segal, 1992):

Variance(Lt) =
1

|Lt|

∑
(x,y)∈Lt

|y− ȳ|22 with ȳ =
1

|Lt|

∑
(x,y)∈Lt

y.

(3.23)

or any impurity criterion derived from an appropriate distance mea-
sure (Blockeel et al., 2000).

We can also extend known impurity measures, such as the Gini
index or the entropy (see Section 3.2.1), by summing the impurity
measures over each output (De’Ath, 2002):

Imo(S) =

d∑
j=1

I({(x,yj) ∈ S}), (3.24)

where S = {(xi,yi) ∈ (X× Y)}ni=1 is a sample set.
Since we can define an impurity measure on any set of outputs, we

can derive the mean decrease of impurity MDI (see Section 3.4) either
on all or a subset of the outputs.

leaf labelling and prediction rule In the multi-output
context, the leaf prediction βt of a node t is a constant vector of
output values chosen so as to minimize a multi-output loss function
` over the samples Lt = {(xi,yi) ∈ (X,Y)}ni=1 reaching the node:

βt = arg min
β

∑
(x,y) ∈Lt

`(y,β). (3.25)

In multi-output regression, the loss ` is commonly the `2-norm loss
`2(y,y ′) = 1

2 ||y− y
′||22 the multi-output extension of the square loss.

The constant βt minimizing the `2-norm loss is the average output
vector

βt =
1

|Lt|

∑
(x,y) ∈Lt

y. (3.26)

Whenever we extend the label rule assignment to multi-label and to
multi-output classification tasks, there are two common possibilities
either minimizing the subset 0− 1 loss which is equal to zero if only
if all outputs are correctly predicted `subset 0−1(y,y ′) = 1(y 6= y ′) and
the Hamming loss which counts among the d outputs the number of
wrongly predicted outputs `Hamming(y,y ′) =

∑d
j=1 1(yj 6= y ′j).

Minimizing the subset 0− 1 loss takes into account output corre-
lations. The constant vector βt minimizing this loss is the most fre-
quent output value combination. Note that the constant βt might not
be unique as we might have several output combinations with the
same frequency of appearance in the sample set reaching the leaf.



62 decision trees

The Hamming loss makes the assumption that all outputs are inde-
pendent. The constant βt minimizing this loss is the vector containing
the most frequent class of each output.

When the trees are fully developed with only pure leaves, minimiz-
ing the Hamming loss or the subset 0− 1 loss leads to identical leaf
prediction rules.
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B I A S - VA R I A N C E A N D E N S E M B L E M E T H O D S

Outline

Ensemble methods combine supervised learning models together so
as to improve generalization performance. We present two families of
ensemble methods: averaging methods and boosting methods. Aver-
aging ensembles grow independent unstable estimators and average
their predictions. Boosting methods increase sequentially their total
complexity by adding biased and stable estimators. In this chapter,
we first show how to decompose the generalization error of super-
vised learning estimators into their bias, variance and irreducible er-
ror components. Then we show how to exploit averaging techniques
to reduce variance and boosting techniques to sequentially decrease
bias.

Ensemble methods fit several supervised learning models instead of
a single one and combine their predictions. The goal is to reduce
the generalization error by solving the same supervised learning task
multiple times. We hope that the errors made by the different models
will compensate and thereby improve the overall accuracy whenever
we consider them together.

Real life examples of “ensemble methods” in the human society
are democratic elections. Each eligible person is asked to cast its vote
for instance to choose between political candidates. This approach
considers each person of the committee as an independent expert
and averages simultaneously their opinions. In supervised learning,
these kinds of voting mechanism are called “averaging methods”.

Instead of querying all experts independently, we can instead col-
lect their opinions sequentially. We ask to each new expert to refine
the predictions made by the previous ones. The expert sequence is
chosen so that each element of the sequence improves the accuracy
focusing on the unexplained phenomena. For instance in medical di-
agnosis, a person itself is the first one to assess its health status. The
next expert in the line is the general practitioner followed by a series
of specialists. We call these ensemble methods “boosting methods”.

The “averaging” approach aims to reduce the variability in the ex-
pert pool by averaging their predictions. At the other end, the “boost-
ing” approach carefully refines its predictions by cumulating the pre-
dictions of each expert.

In Section 4.1, we show how to decompose the error made by su-
pervised learning models into three terms: a variance term due to the

63
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variability of the model with respect the learning sample set, a bias
term due to a lack of modeling power of the estimator and an irre-
ducible error term due to the nature of the supervised learning task.
Averaging methods presented in Section 4.2 are variance reducing
techniques growing independently supervised learning estimators. In
Section 4.3, we show how to learn sequentially a series of estimators
through boosting methods increasing the overall ensemble complex-
ity and reducing the ensemble model bias.

4.1 bias-variance error decomposition

The expected error or generalization error Err associated to a loss ` :
Y× Y→ R+ of a supervised learning algorithm is a random variable
depending on the learning samples L = {(xi,yi) ∈ X× Y}ni=1 drawn
independently and identically from a distribution PX,Y and used to
fit a model fL : X → Y in a hypothesis space H ⊂ YX. We want here
to analyze the expectation of the generalization error Err over the
distribution of learning samples defined as follows:

EL(Err) = EL EPX,Y {`(fL(x),y)} (4.1)

= EL EPX
EPY|X

{`(fL(x),y)} (4.2)

Let us denote the Bayes model by fBayes(x) ∈ YX, the best model
possible minimizing the generalization error:

fBayes(x) = arg min
f∈YX

EPX,Y {`(f(x),y)} . (4.3)

For the squared loss `(y,y ′) = 1
2(y− y

′)2, we can decompose the
expected error over the learning set EL(Err) into three terms (see (Ge-
man et al., 1992) for the proof):

EL(Err) , EL EPX,Y

{
(fL(x) − y)

2
}

(4.4)

= EPX

{
VarL {fL(x)}+ Bias2(fL(x)) + VarPY|X

{y}
}

,

(4.5)

where

VarL {fL(x)} = EL

{(
fL(x) − favg(x)

)2} , (4.6)

Bias2(fL(x)) =
(
EL {fL(x)} (x) − fBayes(x)

)2 . (4.7)

We interpret each term of Equation 4.5 as follows:

• The variance of a supervised learning algorithm
EPX

VarL {fL(x)} describes the variability of the model with a
randomly drawn learning sample set L. Supervised learning
algorithms with a high variance have often a high complexity
which makes them overfit the data.
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Figure 4.1: Bias-variance decomposition of decision tree models of increas-
ing complexity on the Friedman1 dataset.

• The square bias EPX

{
Bias2(fL(x))

}
is the distance between the

average model and the Bayes model. Biased models are not com-
plex enough to model the input-output function. They are in-
deed underfitting the data.

• The irreducible error EPX
VarPY|X

{y} is the variance of the target
around its true mean. It is the minimal attainable error on a
supervised learning problem.

The bias-variance decomposition allows to analyze and to inter-
pret the effect of hyper-parameters. It highlights and gives insights
on their effects on the bias and the variance. In Figure 4.1, we have fit-
ted decision tree models with an increasing number of leaves on the
Friedman1 dataset (Friedman, 1991), a simulated regression dataset.
We first assess the resubstitution error over 300 samples and an ap-
proximation of the generalization error, the hold out error, computed
on an independent testing set of 20000 samples. We compute these
errors (see Figure 4.1a) by averaging the performance of decision tree
models over 100 learning sets L drawn from the same distribution
PX,Y. By increasing the number of leaves, the resubstitution error de-
creases up to zero with fully developed trees. On the other hand, the
hold out error starts increasing beyond 20 leaves indicating that the
model is under-fitting with less than 20 leaves and over-fitting with
more than 20 leaves. By increasing the number of leaves, we decrease
the bias as we grow more complex models as shown in Figure 4.1b. It
also increases the variance as the tree structures become more unsta-
ble with the learning set L .

In general, we have the following trends for a single decision tree
model. Large decision trees overfit and are unstable with respect to
the learning set L which corresponds to a high variance and a small
bias. Shallow decision trees, on the other hand, underfit the learning
set L and have stable structures, which corresponds to a small vari-
ance and a high bias. The pruning technique presented in Section 3.3
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allows to select a tradeoff between the variance and the bias of the
algorithm by adjusting the tree complexity.

The bias-variance decomposition of the square loss is by far the
most studied decomposition, but there nevertheless exist similar de-
compositions for other losses, e.g. see (Domingos, 2000) for a decom-
position of the polynomial loss `(y,y ′) = |y − y ′|p, see (Domingos,
2000; Friedman, 1997; Kohavi et al., 1996; Tibshirani, 1996a) for the
0− 1 loss, or see (James, 2003) for losses in general.

4.2 averaging ensembles

An averaging ensemble model fθ1,...,θM builds a set of M supervised
learning models {fθm}

M
θm=1, instead of a single one. Each model fθm

of the ensemble is different as we randomize and perturb the original
supervised learning algorithm at fitting time. We describe entirely the
induced randomization of one model fθm by drawing i.i.d. a random
vector of parameters θm from a distribution of model parameters Pθ.

In regression, the averaging ensemble predicts an unseen sample
by averaging the predictions of each model of the ensemble:

fθ1,...,θM(x) =

M∑
m=1

fθm(x). (4.8)

It minimizes the square loss (or its extension the `2-norm loss) be-
tween the ensemble model and its members:

fθ1,...,θM(x) = arg min
y∈Y

M∑
m=1

(y− fθm(x))
2. (4.9)

In classification, the averaging ensemble combines the predictions
of its members to minimize the 0-1 loss by a majority vote of all its
members:

fθ1,...,θM(x) = arg min
c∈Y

M∑
m=1

1(fθm(x) 6= c). (4.10)

An alternative approach, called soft voting, is to classify according
to the average of the probability estimates P̂fθm(x) provided by the
ensemble members:

fθ1,...,θM(x) = arg max
c ∈Y

M∑
m=1

P̂fθm(x)(Y = c). (4.11)

Both approaches have been studied and yield almost exactly the
same result, but soft voting provides smoother probability class es-
timates than majority vote (Breiman, 1996a; Zhou, 2012). The multi-
output extension to ensemble predictions often minimizes the Ham-
ming loss applying either soft-voting or majority voting to each out-
put independently. Minimizing the subset 0 − 1 loss for multi-label
tasks would lead to predict the most frequent label set.
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Ambiguity decomposition

The ambiguity decomposition (Krogh et al., 1995) of the square loss
shows that the generalization error of an ensemble fθ1,...,θM of M
models {fθm}

M
m=1 is always lower or equal than the average general-

ization error Ē of its members:

EPX
EPY|X

{
(y− fθ1,...,θM(x))2

}
= Ē− Ā 6 Ē (4.12)

with

Ē =
1

M

M∑
m=1

EPX
EPY|X

{
(y− fθm(x))

2
}

(4.13)

Ā =
1

M

M∑
m=1

EPX

{
(fθm(x) − fθ1,...,θM(x))2

}
(4.14)

The ambiguity term Ā is the variance of the ensemble around its av-
erage model fθ1,...,θM . The equality occurs only if all average models
are identical fθ1,...,θM = fθm ∀m ∈ {1, . . . ,M}.

Averaging ensemble models are obtained by first perturbing super-
vised learning models and then combining them. They aim to reduce
the generalization error of the ensemble compared to the original sin-
gle model by reducing the variance of the learning algorithm. Let us
illustrate the effects of an averaging method called bagging on the
bias and variance of fully grown decision trees. The bagging method
fits each estimator of the ensemble on a bootstrap copy of the learning
set. In Figure 4.2, we show the variance and the bias as function of the
number of fully grown decision trees in the bagging ensemble. With a
single decision tree, the variance is the dominating error component.
By increasing the size of the Bagging ensemble, the variance and the
hold out error are reduced, while leaving the bias mostly unchanged.

In Section 4.2.1, we show how the bias-variance decomposition of
a randomized supervised learning algorithm is affected by the en-
semble averaging method. In Section 4.2.2, we present how to induce
randomization without modifying the original supervised learning al-
gorithm. In Section 4.2.3, we describe specific randomization schemes
for decision tree methods leading to random forest models.

4.2.1 Variance reduction

Let us first study the bias-variance decomposition for a model fL,θ

trained on a learning set L whose randomness is entirely captured
by a random vector of parameters θ. The model fL,θ is thus a func-
tion of two random variables θ and the learning set L. It admits the
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Figure 4.2: Bias-variance decomposition of an ensemble of randomized and
fully developed decision tree models fitted on bootstrap copies
of the learning set (bagging method) for increasing ensemble
size on the Friedman1 dataset. The hold out error, variance and
squared bias are averaged over 100 independent learning and
testing sets of respective size 300 and 20000 samples.

following bias-variance decomposition of the generalization error for
the average square loss (Geurts, 2002):

EL,θ(Err) = EPX

{
VarL,θ {fL,θ(x)}+Bias2(fL,θ(x))+VarPY|X

{y}
}

, (4.15)

where

VarL,θ {fL,θ(x)} = EL,θ

{
(fL,θ(x) − EL Eθ {fθ(x)})

2
}

, (4.16)

Bias2(fL,θ(x)) =
(
EL Eθ {fL,θ(x)}− fBayes(x)

)2 . (4.17)

By comparison to the bias-variance decomposition of an unper-
turbed model (see Equation 4.15), we have two main differences:

1. The squared bias is now the distance between the Bayes model
fBayes and the average model EL Eθ {fL,θ(x)} over both the learn-
ing set L and the randomization parameter θ. Note that the
average model of the randomized algorithm is different from
the non-randomized model EL {fL(x)}. The randomization of
the original algorithm might increase the squared bias.

2. The variance VarL,θ {fL,θ(x)} of the algorithm now depends on
the two random variables L and θ. With the law of total vari-
ance, we can further decompose the variance term into two
terms:

VarL,θ {fL,θ(x)} = VarL
{

Eθ|L {fL,θ(x)}
}
+ EL Varθ|L {fL,θ(x)}

(4.18)
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The first term is the variance brought by the learning sets of the
average model over all parameter vectors θ. The second term de-
scribes the variance brought by the parameter vector θ averaged
over all learning sets L.

Now, we can study the bias-variance decomposition of the gener-
alization error for an ensemble model fL,θ1,...,θm whose constituents
{fL,θm}

M
m=1 depend each on the learning set L and a random param-

eter vector {θm}Mm=1 capturing the randomness of the models. The
bias-variance decomposition of the ensemble model fθ1,...,θm is given
by

EL,θ1,...,θM(Err) =EPX
VarL

{
Eθ1,...,θM|L {fL,θ1,...,θM(x)}

}
+ EPX

EL Varθ1,...,θM|L {fL,θ1,...,θM(x)}

+ EPX
Bias2(fL,θ1,...,θM(x))

+ EPX
VarPY|X

{y} . (4.19)

Let us compare the decomposition for a single random model
(Equations 4.15-4.18) to the decomposition for an ensemble of random
models (Equation 4.19). We are going to expand the bias-variance de-
composition using the ensemble prediction formula fθ1,...,θm(x) =
1
M

∑M
m=1 fθm(x) (the demonstration follows (Geurts, 2002)). As pre-

viously, the variance VarPY|X
(y) is irreducible as this term does not

depend on the supervised learning model.
The average ensemble model of an ensemble of randomized mod-

els is equal to the average model of a single model fL,θ of random
parameter vector θ:

EL,θ1,...,θM {fL,θ1,...,θM(x)} =
1

M

M∑
m=1

EL Eθm {fL,θm(x)} , (4.20)

= EL Eθ {fL,θ(x)} . (4.21)

The squared bias of the ensemble is thus unchanged compared to a
single randomized model.

Now, let us consider the two variance terms. The first one depends
on the variability of the learning set L. With an ensemble of random-
ized models, it becomes:

EPX
VarL

{
Eθ1,...,θM|L {fL,θ1,...,θM(x)}

}
= EPX

VarL

{
1

M

M∑
m=1

Eθm|L {fL,θm(x)}

}
, (4.22)

= EPX
VarL

{
Eθ|L {fL,θ(x)} .

}
. (4.23)

The variance of the ensemble of randomized model with respect to
the learning set L drawn from the input-output pair distribution PX,Y

is not affected by the averaging and is equal to the variance of a single
randomized model.
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Let us developed the second variance term of the decomposition
describing the variance with respect to the set of random parameter
vectors θ1, . . . , θM:

EPX
EL Varθ1,...,θm|L {fL,θ1,...,θM(x)}

= EPX
EL Varθ1,...,θM|L

{
1

M

M∑
m=1

fL,θm(x)

}
, (4.24)

=
1

M2
EPX

EL

{
M∑
m=1

Varθ1,...,θM|L {fL,θm(x)}

}
, (4.25)

=
1

M2
EPX

EL

{
M∑
m=1

Varθm|L {fL,θm(x)}

}
, (4.26)

=
1

M
EPX

EL Varθ|L {fL,θ(x)} , (4.27)

where we use the following properties: (i) Var{ax} = a2Var{x} where
a is a constant, (ii) at a fixed learning set L, the models fL,θm ∀m
are independent, (iii) the variance of a sum of independent random
variables is equal to the sum of the variance of each independent
random variables (Var {

∑n
i=1 xi} =

∑n
i=1Var{xi}).

Putting all together the bias-variance decomposition of Equa-
tion 4.19 becomes (Geurts, 2002):

EL,θ1,...,θm(Err) =EPX
VarL

{
Eθ|L {fL,θ(x)}

}
+
1

M
EPX

EL Varθ|L {fL,θ(x)}

+ EPX

(
EL Eθ {fL,θ(x)}− fBayes(x)

)2
+ EPX

VarPY|X
{y} . (4.28)

The bias variance decomposition of an ensemble of randomized
models fL,θ1,...,θM (see Equation 4.28) shows that averaging M mod-
els reduces the variance related to the randomization θ by a factor
1/M over a single randomized model fL,θ (see Equation 4.15) with-
out modifying the other terms. Note that we can not compare the
bias variance decomposition of an ensemble of randomized models
fL,θ1,...,θM to its non randomized counterparts fL(see Equation 4.5).
The bias and variance terms are indeed not comparable.

In practice, we first perturb the learning algorithm which increases
the variance of the models and then we combine them through av-
eraging. The variance reduction effect is expected to be higher than
the added variance at training time. The bias is either unaffected or
increased through the randomization induction. Perturbing the algo-
rithm is thus a tradeoff between the reduction in variance and the
increase in bias. An ensemble of randomized models fL,θ1,...,θM will
have better performance than its non perturbed counterparts fL if the
bias increase is compensated by the variance reduction. In (Louppe,
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2014), the authors have shown that the generalization error is reduced
if the randomization induction decorrelates the models of the ensem-
ble.

The previous decomposition does not apply to the 0 − 1 loss in
classification. However, the main conclusions remains valid (Breiman,
1996a; Domingos, 2000; Geurts, 2002).

4.2.2 Generic randomization induction methods

In this section, we first discuss generic randomization methods to
perturb a supervised learning algorithm without modifying the orig-
inal algorithm through (i) the learning sample set L = {(xi,yi) ∈
X× Y}ni=1 available at fitting time, (ii) the input space X or (iii) the
output space Y. Those three perturbation principles can be either ap-
plied separately or together.

We present in succession these three model agnostic randomization
principles (perturbing L, X or Y).

4.2.2.1 Sampling-based randomization

One of the earliest randomization method, called bagging (Breiman,
1996a), fits independent models on bootstrap copies of the learning
set. A bootstrap copy (Efron, 1979) is obtained by sampling with re-
placement |L| samples from the learning set L. The original motiva-
tion was a first theoretical development and empirical experiments
showing that bagging reduces the error of an unstable estimator such
as a decision tree. Bootstrap sampling totally ignores the class distri-
bution in the original sample set L and might lead to highly unbal-
anced bootstraps. A partial solution is to use stratified bootstraps or
to bootstrap (Chen et al., 2004) separately the minority and majority
classes. In the bagging approach only a fraction of the dataset is pro-
vided as training set to each estimator, the wagging approach (Bauer
and Kohavi, 1999) fits instead each estimator on the entire training
set with random weights. Instead of using bootstrap copies of train-
ing set, Büchlmann and Yu (2002) proposes to subsample the training
set, i.e. to sample without replacement the training set.

To take into account the input space structure, Kuncheva et al.
(2007) proposes to generate random input space partition with a ran-
dom hyperplane. An estimator is then build for each partition. To
get an ensemble, Kuncheva et al. (2007) repeats this process multiple
times.

4.2.2.2 Input-based randomization

Input-based randomization techniques are often based on dimension-
ality reduction techniques. The random subspace method (Ho, 1998)
builds each model on a random subset of the input space X obtained
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by sub-sampling inputs without replacement. It was later combined
with the bagging method in (Panov and Džeroski, 2007), by boot-
strapping the learning set L before learning an estimator, and with
sub-sampling techniques with/without replacement in (Louppe and
Geurts, 2012) generating random (sample-input) patches of the data.
Note that while we reduce the input space size, we can also over-
sample the learning set. For instance, Maree et al. (2005) apply a su-
pervised learning algorithm on random sub-windows extracted from
an image, which effectively (i) increases the sample size available to
train each model; (ii) reduces the input space size, (iii) and takes into
account spatial (pixel) correlation in the images.

Since decision tree made their split orthogonally to the input space,
authors have proposed to randomize such ensembles by randomly
projecting the input space. Rotation forest (Rodriguez et al., 2006) is
an ensemble method combining bagging with principal component
analysis. For each bootstrap copy, it first slices the p input variables
into q subsets, then projects each subset of inputs of size pq on its prin-
cipal components and finally grows q models (one on each subset).
Kuncheva and Rodríguez (2007) further compares three input dimen-
sionality reduction techniques (described in Section 2.6): (i) the PCA
approach of Rodriguez et al. (2006), (ii) Gaussian random projections
and (iii) sparse Gaussian random projections. On their benchmark,
they find that the PCA-based rotation matrices yield the best results
and also that sparse random projections are strictly better than dense
random projections. The idea of using dense Rademacher or Gaussian
random projections was again re-discovered by Schclar and Rokach
(2009). Similarly, Blaser and Fryzlewicz (2015) proposed to make en-
sembles through random rotation of the input space.

4.2.2.3 Output-based randomization

Output-based randomization methods directly perturb the output
space Y of each member of the ensemble.

In regression, we can induce randomization to an output variable
through the addition of an independent Gaussian noise (Breiman,
2000). We fit each model of the ensemble on the perturbed output
y ′ = y+ εm with εm ∼ N(0;σ).

In classification, we perturb the output of each model of the ensem-
ble by having a non zero probability to randomly switch the class as-
sociated to each sample (Breiman, 2000; Martínez-Muñoz and Suárez,
2005; Martínez-Muñoz et al., 2008).

For multi-label tasks and multi-output tasks, supervised learn-
ing algorithms, such as random k-label subset (see also Sec-
tion 2.2.5) (Tsoumakas and Vlahavas, 2007), randomizes the ensem-
ble by building each model of the ensemble on a subset of the output
space or the label sets present in the learning set.
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4.2.3 Randomized forest model

The decision tree algorithm has a high variance, due to the instability
of its structure. Large decision trees, such as fully developed trees, are
often very unstable, especially at the bottom of the tree. The selected
splitting rules depend on the samples reaching those nodes. Small
changes in the learning set might lead to very different tree structures.
Authors have proposed randomization schemes to perturb the search
and selection of the best splitting rule improving the generalization
error through averaging methods.

One of the first propositions to perturb the splitting rule search (Di-
etterich and Kong, 1995) was to select randomly at each node one
splitting rule among the top k splitting rules with the highest im-
purity reduction. The variance of the algorithm increases with the
number k of splitting rule candidates, leaving the bias unchanged.
Later in the context of digit recognition, Amit et al. (1997) randomized
the tree growth by restricting the splitting rule search at each node
to a random subset of k input variables out of the p available. The
original motivation was to drastically reduce the splitting rule search
space as the number of input variables is very high in digit recogni-
tion tasks. This randomization scheme increases more the variance
of the algorithm than the one of Dietterich and Kong, at the expense
of increasing the bias. Note the similarity with the random subspace
approach (Ho, 1998) which subsamples the input space prior fitting a
new estimator in an averaging ensemble.

Breiman got inspired by the work of Amit et al. and com-
bined its bagging method (Breiman, 1996a) with the input vari-
able sub-sampling leading to the well known1 “random forest” al-
gorithm (Breiman, 2001). The combination of both randomization
schemes has led to one of the best of the shelf estimator for many
supervised learning tasks (Caruana et al., 2008; Fernández-Delgado
et al., 2014).

Later on, Geurts et al. (2006a) randomized the cut point and input
variable selection of the splitting rules. At each test node, it draws one
random splitting rule for k randomly selected input variables (with-
out replacement) and then selects the best one. This randomized tree
ensemble is called extremely randomized trees or extra trees. For a
splitting rule s(x) = ′ xj 6 τ ′ associated to an ordered variable, the
algorithm draws uniformly at random the threshold τ between the
minimum and maximum of the possible cut point values. Similarly
for an unordered variable, the algorithm draws a non empty subset
B among the possible values to generate a splitting rule of the form
s(x) = ′ xj ∈ B ′. Empirically, it has been shown (Geurts, 2002) that
the variance of the decision tree algorithm is due to the variability of

1 The random forest method usually refers to the the algorithm of Breiman, however
any averaging ensemble of randomized trees is also a random forest.
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the cut point selection with respect to the learning set. We can view
the perturbation of the cut point selection as a way to transfer the
variance due to the learning set to the variance due to the random-
ization of the cut point selection. The hyper-parameter k controls the
trade-off between the bias and variance of the algorithm.

Besides perturbing the binary and axis wise splitting rules, they
have been some research to make splitting rule through random
hyper-planes. Breiman (2001) proposed to select the best splitting
rule obtained from random sparse linear input combinations with
non zero values drawn uniformly in [−1, 1]. Tomita et al. (2015) pro-
posed to use sparse random projection where non zero elements are
drawn uniformly in [−1, 1]. Those approaches increase the variance,
while also trying to reduce the bias by allowing random oblique splits.
However, Menze et al. (2011) have shown that those random sparse
hyper-planes are inferior to deterministic linear models such as ridge
regressors or a linear discriminant analysis (LDA) models.

For supervised learning tasks with many outputs, we can also per-
turb the output space of each decision tree by randomly projecting the
output space (Joly et al., 2014) onto a lower dimensional subspace or
through random output sub-sampling. The leaves are later re-labelled
on the original output space. This approach is developed in Chapter 5

of this thesis.

4.3 boosting ensembles

Boosting methods originate from the following question: “How can
we combine a set of weak models together, each one doing slightly
better than random guessing, so as to get one stronger model hav-
ing good generalization performance?”. A boosting model f answers
this question through a weighted combination of M weak models
{fm}Mm=1 leading to

f(x) =

M∑
m=1

αmfm(x) (4.29)

where the coefficients {αm ∈ R}Mm=1 highlight the contribution of
each model fm(x) to the ensemble.

For a boosting ensemble, we usually want to minimize a loss func-
tion ` : Y× Y → R+ over a learning set L = {(xi,yi) ∈ X× Y}ni=1:

min
{(αm,fm)∈R×H}Mm=1

∑
(x,y)∈L

`

(
y,

M∑
m=1

αmfm(x)

)
(4.30)

where we select each model fm over a hypothesis space H. Solving
this equation for many loss functions and models is either intractable
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Figure 4.3: Bias-variance decomposition of a boosting ensemble minimizing
the square loss with an increasing number of weak models on
the Friedman1 dataset. The hold out error, variance and squared
bias are averaged over 100 independent learning and testing sets
of respective size 300 and 20000 samples.

or numerically too intensive for practical purpose. However, we can
solve easily Equation 4.30 for a single model (M = 1).

So boosting methods develop iterative and tractable schemes to
solve Equation 4.30 by adding sequentially models to the ensemble.
A new model fm(x) builds over the work done by the previous m−

1 models to yield better predictions. It further minimizes the loss `
averaged over the training data:

min
αm,fm∈R×H

∑
(x,y)∈L

`

(
y,
m−1∑
l=1

αlfl(x) +αmfm(x)

)
. (4.31)

To improve the predictions made by them− 1models, the new model
fm with coefficient αm concentrates its efforts on the wrongly pre-
dicted samples.

From a bias-variance perspective, each newly added model aims to
reduce the bias while leaving the variance term unmodified if possi-
ble. We choose the base model so that it has a high bias and a small
variance such as a stump, i.e. a decision tree with only one testing
node, or such as a linear model with only one non-zero coefficient. In
Figure 4.3, we sequentially fit stumps to decrease the least square loss
`(y,y ′) = 1

2(y−y
′)2. With a few stumps, the squared bias component

of the generalization error dominates with a low variance. By adding
more stumps to the ensemble, we drastically decrease the generaliza-
tion error by diminishing the squared bias. The best performance is a
trade-off between the bias reduction and the increase in variance.

We present the adaptive boosting and its variants in Section 4.3.1,
which directly solve Equation 4.31, and the functional gradient boost-
ing approach in Section 4.3.2, which approximately solves Equa-
tion 4.31 through the loss gradient.
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4.3.1 Adaboost and variants

One of the most popular and influential boosting algorithms is the
“AdaBoost” algorithm (Freund and Schapire, 1997). This supervised
learning algorithm aims to solve binary classification tasks with Y =

{−1, 1}. The algorithm generates iteratively an ensemble of estimators
{fm}Mm=1 by minimizing the exponential loss function:

`exp(y,y ′) = exp(−yy ′)), (4.32)

assuming a binary response of the weak models fm(x) ∈ {−1, 1}∀m.
The prediction of an unseen sample f(x) by an AdaBoost ensemble

is a majority vote from its members:

f(x) = sign

(
M∑
m=1

αmfm(x)

)
, (4.33)

where the {αm}Mm=1 are constant weights indicating the contribution
of a model fm to solve the binary classification task. The sign operator
transforms the sum into an appropriate output value (Y = {−1, 1}).

Given a learning set L = ((xi,yi) ∈ X× {−1, 1})ni=1, we iteratively
fit a weak model fm over the learning set L by making the weak
learner focuses on each sample with a weight (wi)ni=1. The higher
the value of wi, the more the algorithm will concentrate to predict
correctly the i-th sample. To design this algorithm, we need to answer
to the following questions: (i) how to assess the contribution αm of
the m-th model fm to the ensemble and (ii) how to update the weight
wi to reduce iteratively the exponential loss.

We can write the resubtitution error of the exponential loss as

1

n

n∑
i=1

`exp

(
yi,

m−1∑
l=1

αlfl(x
i) +αmfm(xi)

)

=
1

n

n∑
i=1

exp

(
−yi

(
m−1∑
l=1

αlfl(x
i) +αmfm(xi)

))
(4.34)

=
1

n

n∑
i=1

exp

(
−yi

(
m−1∑
l=1

αlfl(x
i))

))
exp

(
−yiαmfm(xi)

)
(4.35)

=
1

n

n∑
i=1

`exp

(
y,
m−1∑
l=1

αlfl(x
i)

)
exp(−yiαmfm(xi)) (4.36)

=
∑
i=1

wi exp(−yiαmfm(xi)) (4.37)

with

wi =
1

n
`exp

(
y,
m−1∑
l=1

αlfl(x
i)

)
∀i. (4.38)
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Note that the weight computation is expressible as a recursive equa-
tion starting with wi = 1/n:

wi ← wi exp
(
αm1(y

i 6= fm(xi))
)

. (4.39)

The sample weight wi highlights how well the i-th sample is pre-
dicted by the m− 1 first estimators of the boosting ensemble. A zero
weight wi means that the i-th sample is perfectly predicted. The m-
th estimators should thus focus on the sample with high weight wi

to reduce the resubtitution error. Otherwise, it should minimize the
weighted resubstitution error.

Let us now separate the resubtitution error of the correctly classi-
fied points from the misclassified ones:

n∑
i=1

wi exp(−yiαmfm(xi))

=

n∑
i=1

wi exp(−αm)1(yi = fm(xi)) + exp(αm)1(yi 6= fm(xi))

(4.40)

By derivating the last equation with respect to αm and setting the
derivative to zero, the αm minimizing the resubtitution error of the
exponential loss is

αm = log
(
1− errm

errm

)
(4.41)

with

errm =
1

2

∑n
i=1w

i1(yi 6= fm(xi))∑n
i=1w

i
. (4.42)

The optimization of the constant αm means that the resubstitution
error is upper bounded and can not increase with the size of the
ensemble on the learning set.

Putting everything together, we obtain the AdaBoost algorithm (see
Algorithm 4.1). Many extensions and enhancements of this funda-
mental idea have been proposed. If the weak model is able to predict
a probability estimate, Friedman et al. (2000) have proposed an appro-
priate extension called “Real Adaboost” by contrast to Algorithm 4.1
which they call “Discrete Adaboost”.

A direct multi-class extension, called AdaBoost.M1, of the Ad-
aBoost algorithm is to use a multi-class weak learner instead of a bi-
nary one. The AdaBoost.M1 ensemble predicts a new sample through:

f(x) = arg max
k∈Y

M∑
m=1

αm1(fm(x) = k). (4.43)
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Algorithm 4.1 AdaBoost.M1 for binary classification Y = {−1, 1}.

1: function Adaboost(L = {xi,yi ∈ X× Y}ni=1)
2: Initialize the sample weights wi ← 1/n∀i ∈ {1, . . . ,n}.
3: for m = 1 to M do
4: Fit a model fm(x) to the learning set L and (wi)ni=1.
5: Compute the weighted error rate

errm ←
∑n
i=1w

i1(yi 6= fm(xi))∑n
i=1w

i
.

6: Compute αm ← 1
2 log

(
1−errm

errm

)
.

7: Update the weights

wi ← wi exp
(
αm1(y

i 6= fm(xi))
)

.

8: end for
9: return f̂(x) = sign

(∑M
m=1 αmfm(x)

)
10: end function

An improvement over this approach is to directly minimize the multi-
class exponential loss as in the SAMME algorithm (Zhu et al., 2009).
It replaces the line 6 of Algorithm 4.1 by

αm ←
1

2
log
(
1− errm

errm

)
+ log(|Y|− 1) (4.44)

We can minimize other losses than the exponential loss during the
ensemble growth, such as the logistic loss `logistic(y,y ′) = log(1+
exp(−2yy ′)) with the LogitBoost algorithm (Collins et al., 2002)
for binary classification tasks; the Hamming loss `Hamming(y,y ′) =∑n
j=1 1(yj 6= y ′j) leading to the AdaBoost.MH algorithm (Schapire

and Singer, 2000) and the pairwise ranking loss `ranking

`ranking(y,y ′) =
1

|yi|

1

d− |yi|

∣∣{(k, l) : y ′ik < y
′i
l ,yik = 1,yil = 0

}∣∣
leading to the AdaBoost.MR algorithm (Schapire and Singer, 2000)
for multi-label classification tasks and also a wide range of regression
losses as proposed in (Drucker, 1997) for regression tasks.

How to take into account sample weights in supervised learn-
ing algorithms?
For a set of learning samples

(
(xi,yi) ∈ (X× Y)

)n
i=1

and a set of
weights (wi ∈ R+)ni=1, the weighted resubtitution error is given by

Resubstitution error =
∑n
i=1w

i`(f(xi),yi)∑n
i=1w

i
. (4.45)
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Extending supervised learning algorithms to support sample
weights means that we have to modify the learning algorithm so as
to minimize the weighted resubtitution error:

• For linear models, we will minimize the weighted average of a
given loss ` : Y× Y → R+ over the learning set L = {(xi,yi) ∈
X× Y}ni=1

min
β0,β

n∑
i=1

wiL(yi,β0 +βTx), (4.46)

where the wi ∈ R+ are the weight associated to each sample.
There is an analytical solution in the case of a `2 norm regular-
ization penalty and algorithms for a `1 regularization penalty
can be easily extended to accommodate for the weights.

• For a decision tree, we will use a weighted impurity criterion
and a weight-aware leaf labelling rule assignment procedure. It
also allows new stopping rule based on sample-weight, such as
a minimal total weight to split a node.

• For a k-nearest neighbors, we will store the sample weight
during fit and we will predict an unseen sample through a
weighted aggregation of the nearest neighbors.

Conversely, to support unweighted supervised learning task with
a weight-aware implementation, we can set the sample weights to a
constant such as wi = 1/n∀i prior the model training.

4.3.2 Functional gradient boosting

The AdaBoost algorithm has an analytical and closed-form solution
to Equation 4.31 with the exponential loss. However, we would like
to build boosting ensembles when such closed-form solutions are not
available. Functional gradient boosting, a forward stagewise additive
approach, approximately solves Equation 4.31 for a given loss ` : Y×
Y → R+ by sequentially adding new basis function fm, a regression
model, with a weight αm without modifying the previous models.

If we want to add a new model fm to a boosting ensemble with
m− 1 models while minimizing the square loss, the loss for a sample
(x,y) is given by

`(y, f(x)) =
1

2
(y− f(x))2 (4.47)

=
1

2
(y−

m−1∑
l=1

αlfl(x) −αmfm(x))2 (4.48)
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=
1

2
(rm(x) −αmfm(x))2 (4.49)

where rm(x) = y −
∑m−1
l=1 αlfl(x) is the remaining residual of the

m− 1 models to predict a sample x. Thus for the square loss, we can
add a new models fm by fitting the new model on the residuals left
by the m− 1 previous models. This approach is called least square
regression boosting.

Solving Equation 4.31 is difficult for general loss functions. It re-
quires to be able to expand a new basis function fm while minimizing
the chosen loss function. For instance in the context of decision trees,
it would require a specific splitting criterion and a leaf labelling rule
minimizing the chosen loss.

Instead of solving Equation 4.31, Friedman (2001) proposed a fast
approximate solution for arbitrary differentiable losses inspired from
numerical optimization. We can re-write the loss function minimiza-
tion as

f̂ = arg min
f
`(f) = min

f

∑
(x,y)∈L

`(y, f(x)). (4.50)

with the constraint that f is a sum of supervised learning models.
Ignoring this constraint, the Equation 4.50 is an unconstrained mini-
mization problem with f ∈ Rn being a n-dimensional vector. Iterative
solvers solve such minimization problems by correcting an initial es-
timate through a recursive equation. The final solution is a sum of
vectors

f̂ =

M∑
m=0

hm, hm ∈ Rn, (4.51)

where h0 is the initial estimate. The construction of the sequence of
h0, . . . ,hm depends on the chosen optimization algorithm.

The gradient boosting algorithm (Friedman, 2001) uses the same
approach as the gradient descent method. The update rule of the
gradient descent algorithm hm is of the form

hm = −ρmgm (4.52)

where ρm is a scalar and gm ∈ Rn is the gradient of L(f) with respect
to f evaluated at the current approximate solution f̂ =

∑m−1
l=1 ρlhl:

gim =

[
∂

∂y ′
`(yi,y ′)

]
y ′=f̂

. (4.53)

The scalar ρm is the step length in the negative loss gradient direction
−gm chosen so as to minimize the objective function `(f):

ρm = arg min
ρ∈R

`(f̂− ρmgm). (4.54)
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Back to supervised learning, we can only compute the loss gradient
for the training samples. To generalize to unseen data, the idea is to
approximate the direction of the negative gradient using a regression
model gm selected within a hypothesis space H of weak base-learners
minimizing the square loss on the training data:

gm = arg min
g∈H

n∑
i=1

(−gim − g(xi))2. (4.55)

The gradient boosting approach can be summarized as follows:
start at an initial constant estimate ρ0 ∈ R, then iteratively follows
the negative gradient of the loss ` as estimated by a regression model
gm fitted over the training samples and make an optimal step length
ρm minimizing the loss `. The gradient boosting ensemble predicts
an unseen sample through

f(x) = ρ0 +

M∑
m=1

ρmgm(x). (4.56)

The whole procedure is given in Algorithm 4.2. The algorithm is
completely defined once we have (i) a starting model, usually the
constant minimizing the chosen loss (line 4) and (ii) the gradient of
the loss (line 2).

We compute the optimal step length (line 6 of Algorithm 4.2) ei-
ther analytically as for the square loss or numerically using, e.g.,
the Brent’s method (Brent, 2013), a robust root-finding method al-
lowing to minimize single unconstrained optimization problem, as
for the logistic loss. Friedman (2001) advises to use one step of
the Newton–Raphson method. However, the Newton–Raphson algo-
rithm might not converge if the first and second derivative of the loss
are small. These conditions occurs frequently in highly imbalanced
supervised learning tasks.

A learning rate µ ∈ (0, 1] is often added to shrink the size of the
gradient step ρm in the residual space in order to avoid overfitting
the the training samples. Another possible modification is to induce
randomization, e.g. by subsampling without replacement the sam-
ples available (from all learning samples) at each iteration (Friedman,
2002).

Table 4.1 gives an overview of regression and classification losses
with their gradients, while Table 4.2 gives the starting constant mod-
els minimizing losses. The square loss in regression and the expo-
nential loss in classification leads to nice gradient boosting algorithm
(respectively the least square regression boosting algorithm and the
exponential classification boosting algorithm (Zhu et al., 2009)). How-
ever, these losses are not robust to outlier. More robust losses can be
used such as the absolute loss in regression and the logistic loss or
the hinge loss in classification.
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Algorithm 4.2 Gradient boosting algorithm

1: function GradientBoosting(L = {(xi,yi) ∈ X× Y}ni=1; `;H;M)
2: f0(x) = ρ0 = arg minρ∈R

∑n
i=1 `(y

i, ρ).
3: for m = 1 to M do
4: Compute the loss gradient for the training set points

gim =

[
∂

∂y ′
`(yi,y ′)

]
y ′=fm−1(x)

∀i ∈ {1, . . . ,n} .

5: Find a correlated direction to the loss gradient

gm = arg min
g∈ H

n∑
i=1

(−gim − g(xi))2.

6: Find an optimal step length in the direction gm

ρm = arg min
ρ∈R

n∑
i=1

`
(
yi, fm−1(x

i) + ρgm(xi)
)

.

7: fm(x) = fm−1(x) + µρmgm(x).
8: end for
9: return fM(x)

10: end function

Table 4.1: Regression loss (Y = R) and binary classification loss (Y = {−1, 1})
their derivative with respect to a basis function f(x).

Regression `(y,y ′) −∂`(y,y ′)/∂y ′

Square 1
2(y− y

′)2 y− y ′

Absolute |y− y ′| sign(y− y ′)

Classification `(y,y ′) −∂`(y,y ′)/∂y ′

Exponential exp(−yy ′) −y exp(−yy ′)

Logistic log(1+ exp(−2yy ′)) 2y
1+exp(2yy ′)

Hinge max(0, 1− yy ′) −y1(yy ′ < 1)
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Table 4.2: Constant minimizers of regression losses (Y = R) and binary clas-
sification losses (Y = {−1, 1}) given a set of samples L = {(xi,yi) ∈
X× Y}ni=1.

Regression

Square f0(x) =
1
n

∑n
i=1 y

i

Absolute f0(x) = median({yi}ni=1)

Classification

Exponential f0(x) = log
( ∑n

i=1 1(y
i=1)∑n

i=1 1(y
i=−1)

)
Logistic f0(x) = log

( ∑n
i=1 1(y

i=1)∑n
i=1 1(y

i=−1)

)
Hinge f0(x) = sign

(
1
n

∑n
i=1 1(y

i = 1) − 1
2

)
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R A N D O M F O R E S T S W I T H R A N D O M P R O J E C T I O N S
O F T H E O U T P U T S PA C E F O R H I G H D I M E N S I O N A L
M U LT I - L A B E L C L A S S I F I C AT I O N

Outline

We adapt the idea of random projections applied to the output space,
so as to enhance tree-based ensemble methods in the context of multi-
label classification. We show how learning time complexity can be
reduced without affecting computational complexity and accuracy
of predictions. We also show that random output space projections
may be used in order to reach different bias-variance tradeoffs, over
a broad panel of benchmark problems, and that this may lead to im-
proved accuracy while reducing significantly the computational bur-
den of the learning stage.

This chapter is based on previous work published in

Arnaud Joly, Pierre Geurts, and Louis Wehenkel. Random
forests with random projections of the output space for
high dimensional multi-label classification. In Machine
Learning and Knowledge Discovery in Databases, pages
607–622. Springer Berlin Heidelberg, 2014.

Within supervised learning, the goal of multi-label classification is to
train models to annotate objects with a subset of labels taken from
a set of candidate labels. Typical applications include the determi-
nation of topics addressed in a text document, the identification of
object categories present within an image, or the prediction of biolog-
ical properties of a gene. In many applications, the number of candi-
date labels may be very large, ranging from hundreds to hundreds of
thousands (Agrawal et al., 2013) and often even exceeding the sample
size (Dekel and Shamir, 2010). The very large scale nature of the out-
put space in such problems poses both statistical and computational
challenges that need to be specifically addressed.

A simple approach to multi-label classification problems, called bi-
nary relevance, is to train independently a binary classifier for each
label. Several more complex schemes have however been proposed
to take into account the dependencies between the labels (see Sec-
tion 2.2.5). In the context of tree-based methods, one way is to train
multi-output trees (see Section 3.5), i.e. trees that can predict multiple
outputs at once. With respect to binary relevance, the multi-output
tree approach has the advantage of building a single model for all
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labels. It can thus potentially take into account label dependencies
and reduce memory requirements for the storage of the models. An
extensive experimental comparison (Madjarov et al., 2012) shows that
this approach compares favorably with other approaches, including
non tree-based methods, both in terms of accuracy and computing
times. In addition, multi-output trees inherit all intrinsic advantages
of tree-based methods, such as robustness to irrelevant features, inter-
pretability through feature importance scores, or fast computations
of predictions, that make them very attractive to address multi-label
problems. The computational complexity of learning multi-output
trees is however similar to that of the binary relevance method. Both
approaches are indeed O(pdn logn), where p is the number of input
features, d the number of candidate output labels, and n the sample
size; this is a limiting factor when dealing with large sets of candidate
labels.

One generic approach to reduce computational complexity is to ap-
ply some compression technique prior to the training stage to reduce
the number of outputs to a number q much smaller than the total
number d of labels. A model can then be trained to make predictions
in the compressed output space and a prediction in the original la-
bel space can be obtained by decoding the compressed prediction. As
multi-label vectors are typically very sparse, one can expect a dras-
tic dimensionality reduction by using appropriate compression tech-
niques. This idea has been explored for example in (Hsu et al., 2009)
using compressed sensing, and in (Cisse et al., 2013) using bloom fil-
ters, in both cases using regularized linear models as base learners.
The approach obviously reduces computing times for training the
model. Random projections are also exploited in (Tsoumakas et al.,
2014) for multi-target regression. In this latter work however, they are
not used to improve computing times by compression but instead to
improve predictive performance. Indeed, more (sparse) random pro-
jections are computed than there are outputs and they are used each
as an output to train some single target regressor. As in (Cisse et al.,
2013; Hsu et al., 2009), the predictions of the regressors need to be
decoded at prediction time to obtain a prediction in the original out-
put space. This is achieved in (Tsoumakas et al., 2014) by solving an
overdetermined linear system.

In this chapter, we explore the use of random output space projec-
tions for large-scale multi-label classification in the context of tree-
based ensemble methods. We first explore the idea proposed for
linear models in (Hsu et al., 2009) with random forests: a (single)
random projection of the multi-label vector to a q-dimensional ran-
dom subspace is computed and then a multi-output random forest is
grown based on score computations using the projected outputs. We
exploit however the fact that the approximation provided by a tree
ensemble is a weighted average of output vectors from the training
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sample to avoid the decoding stage: at training time all leaf labels are
directly computed in the original multi-label space. We show theoret-
ically and empirically that when q is large enough, ensembles grown
on such random output spaces are equivalent to ensembles grown on
the original output space. When d is large enough compared to n, this
idea hence may reduce computing times at the learning stage without
affecting accuracy and computational complexity of predictions.

Next, we propose to exploit the randomization inherent to the pro-
jection of the output space as a way to obtain randomized trees in
the context of ensemble methods: each tree in the ensemble is thus
grown from a different randomly projected subspace of dimension q.
As previously, labels at leaf nodes are directly computed in the orig-
inal output space to avoid the decoding step. We show, theoretically,
that this idea can lead to better accuracy than the first idea and, em-
pirically, that best results are obtained on many problems with very
low values of q, which leads to significant computing time reductions
at the learning stage. In addition, we study the interaction between in-
put randomization (à la Random Forests) and output randomization
(through random projections), showing that there is an interest, both
in terms of predictive performance and in terms of computing times,
to optimally combine these two ways of randomization. All in all,
the proposed approach constitutes a very attractive way to address
large-scale multi-label problems with tree-based ensemble methods.

The rest of the chapter is structured as follows: Section 5.1 presents
the proposed algorithms and their theoretical properties; Section 5.2
analyses the proposed algorithm from a bias-variance perspective;
Section 5.3 provides the empirical validations, whereas Section 5.4
discusses our work and provides further research directions.

5.1 methods

We first present how we propose to exploit random projections to re-
duce the computational burden of learning single multi-output trees
in very high-dimensional output spaces. Then we present and com-
pare two ways to exploit this idea with ensembles of trees.

5.1.1 Multi-output regression trees in randomly projected output spaces

The multi-output single tree algorithm described in Chapter 3 re-
quires the computation of the sum of impurity criterion, such as
the variance (or Gini), at each tree node and for each candidate
split. When Y is very high-dimensional, this computation constitutes
the main computational bottleneck of the algorithm. We thus pro-
pose to approximate variance computations by using random pro-
jections of the output space. The multi-output regression tree algo-
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rithm is modified as follows (denoting by L the learning sample
L = ((xi,yi) ∈ X× Y)ni=1):

• First, a projection matrix Φ of dimension q × d is randomly
generated.

• A new dataset Lm = ((xi,Φyi))ni=1 is constructed by projecting
each learning sample output using the projection matrix Φ.

• A tree (structure) Tm is grown using the projected learning sam-
ple Lm.

• Predictions ŷ at each leaf of T are computed using the corre-
sponding outputs in the original output space.

The resulting tree is exploited in the standard way to make predic-
tions: an input vector x is propagated through the tree until it reaches
a leaf from which a prediction ŷ in the original output space is di-
rectly retrieved.

If Φ satisfies the Jonhson-Lindenstrauss lemma (Equation 2.86), the
following theorem shows that variance computed in the projected
subspace is an ε-approximation of the variance computed over the
original space.

Theorem 1. Given ε > 0, a sample (yi)ni=1 of n points y ∈ Rd, and a
projection matrix Φ ∈ Rq×d such that for all i, j ∈ {1, . . . ,n} the condition
given by Equation 2.86 holds, we have also:

(1− ε)Var((yi)ni=1) 6 Var((Φyi)ni=1) 6 (1+ ε)Var((yi)ni=1). (5.1)

Proof. The sum of the variances of n observations drawn from a ran-
dom vector y ∈ Rd can be interpreted as a sum of squared euclidean
distances between the pairs of observations

Var((yi)ni=1) =
1

2n2

n∑
i=1

n∑
j=1

||yi − yj||2. (5.2)

Starting from the defition of the variance, we have

Var((yi)ni=1)

def
=
1

n

n∑
i=1

||yi −
1

n

n∑
j=1

yj||2 (5.3)

=
1

n

n∑
i=1

(yi −
1

n

n∑
j=1

yj)T (yi −
1

n

n∑
k=1

yk) (5.4)

=
1

n

n∑
i=1

yiTyi − 2

n

n∑
j=1

yi
T
yj +

1

n2

n∑
j=1

n∑
k=1

yj
T
yk

 (5.5)
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=
1

n

n∑
i=1

yi
T
yi −

2

n2

n∑
i=1

n∑
j=1

yi
T
yj +

1

n2

n∑
j=1

n∑
k=1

yj
T
yk (5.6)

=
1

n

n∑
i=1

yi
T
yi −

1

n2

n∑
i=1

n∑
j=1

yi
T
yj (5.7)

=
1

2n

n∑
i=1

yi
T
yi +

1

2n

n∑
j=1

yj
T
yj −

1

n2

n∑
i=1

n∑
j=1

yi
T
yj (5.8)

=
1

2n2

n∑
i=1

n∑
j=1

yi
T
yi+

1

2n2

n∑
i=1

n∑
j=1

yj
T
yj−

1

n2

n∑
i=1

n∑
j=1

yi
T
yj (5.9)

=
1

2n2

n∑
i=1

n∑
j=1

(
yi
T
yi + yj

T
yj − 2yi

T
yj
)

(5.10)

=
1

2n2

n∑
i=1

n∑
j=1

||yi − yj||2. (5.11)

From the Johnson-Lindenstrauss Lemma we have for any i, j

(1− ε)||yi − yj||2 6 ||Φyi −Φyj||2 6 (1+ ε)||yi − yj||2. (5.12)

By summing the three terms of Equation 5.12 over all pairs i, j and
dividing by 1/(2n2) and by then using Equation 5.2, we get Equa-
tion 5.1.

As a consequence, any split score approximated from the randomly
projected output space will be ε-close to the unprojected scores in any
subsample of the complete learning sample. Thus, if the condition
given by Equation 2.86) is satisfied for a sufficiently small ε then the
tree grown from the projected data will be identical to the tree grown
from the original data1.

For a given size q of the projection subspace, the complexity is
reduced from O(dn) to O(qn) for the computation of one split score
and thus from O(dpn logn) to O(qpn logn) for the construction of
one full (balanced) tree, where one can expect q to be much smaller
than d and at worst of O(ε−2 logn). The whole procedure requires to
generate the projection matrix and to project the training data. These
two steps are respectively O(dq) and O(ndq) but they can often be
significantly accelerated by exploiting the sparsity of the projection
matrix and/or of the original output data, and they are called only
once before growing the tree.

All in all, this means that when d is sufficiently large, the random
projection approach may allow us to significantly reduce tree build-
ing complexity from O(dpn logn) to O(qpn logn + ndq), without
impact on predictive accuracy (see Section 5.3, for empirical results).

1 Strictly speaking, this is only the case when the optimum scores of test splits as
computed over the original output space are isolated, i.e. when there is only one
single best split, no tie.
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5.1.2 Exploitation in the context of tree ensembles

The idea developed in the previous section can be directly exploited
in the context of ensembles of randomized multi-output regression
trees. Instead of building a single tree from the projected learning
sample, one can grow a randomized ensemble of them. This “shared
subspace” algorithm is described in pseudo-code in Algorithm 5.1.

Algorithm 5.1 Grow t decision trees on a single shared subspace Φ
using learning samples L = ((xi,yi) ∈ (Rp ×Rd))ni=1

1: function GrowForestSharedOutputSubspace(L,t)
2: Generate a sub-space Φ ∈ Rq×d;
3: for j = 1 to t do
4: Build a tree structure Tj using ((xi,Φyi))ni=1;
5: Label the leaves of Tj using ((xi,yi))ni=1;
6: Add the labelled tree Tj to the ensemble;
7: end for
8: end function

Another idea is to exploit the random projections used so as to
introduce a novel kind of diversity among the different trees of an en-
semble. Instead of building all the trees of the ensemble from a same
shared output-space projection, one could instead grow each tree in
the ensemble from a different output-space projection. Algorithm 5.2
implements this idea in pseudo-code. The randomization introduced
by the output space projection can of course be combined with any
existing randomization scheme to grow ensembles of trees. In this
chapter, we will consider the combination of random projections with
the randomizations already introduced in Random Forests and Extra
Trees. The interplay between these different randomizations will be
discussed theoretically in the next subsection by a bias/variance anal-
ysis and empirically in Section 5.3. Note that while when looking at
single trees or shared ensembles, the size q of the projected subspace
should not be too small so that condition (Equation 2.86) is satisfied,
the optimal value of q when projections are randomized at each tree
is likely to be smaller, as suggested by the bias/variance analysis in
the next section.

From the computational point of view, the main difference between
these two ways of transposing random-output projections to ensem-
bles of trees is that in the case of Algorithm 5.2, the generation of
the projection matrix Φ and the computation of projected outputs is
carried out t times, while it is done only once for the case of Algo-
rithm 5.1. These aspects will be empirically evaluated in Section 5.3.
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Algorithm 5.2 Grow t decision trees on individual random subspaces
(Φj)

t
j=1 using learning samples L = ((xi,yi) ∈ (Rp ×Rd))ni=1

1: function GrowForestOutputSubspace(L,t)
2: for j = 1 to t do
3: Generate a sub-space Φj ∈ Rq×d;
4: Build a tree structure Tj using ((xi,Φjyi))ni=1;
5: Label the leaves of Tj using ((xi,yi))ni=1;
6: Add the labelled tree Tj to the ensemble;
7: end for
8: end function

5.2 bias/variance analysis

In this section, we adapt the bias/variance analysis carried out in Sec-
tion 4.2.1 to take into account random output projections. The details
of the derivations are reported in Section 5.2.1 for a single tree and in
Section 5.2.2 for an ensemble of t randomized trees.

Let us denote by fL,φ,σ(.) : X → Rd a single multi-output tree
obtained from a projection matrix φ (below we use Φ to denote the
corresponding random variable), where σ is the value of a random
variable σ capturing the random perturbation scheme used to build
this tree (e.g., bootstrapping and/or random input space selection).
The square error of this model at some point x ∈ X is defined by:

Err(fL,φ,σ(x))
def
= EY|x{||Y − fL,φ,σ(x))||

2},

and its average can decomposed in its residual error, (squared) bias,
and variance terms denoted:

EL,Φ,σ{Err(fL,φ,σ(x))} = σ
2
R(x) +B

2(x) + V(x)

where the variance term V(x) can be further decomposed as the sum
of the following three terms:

VL(x) = VarL{EΦ,σ|L{fL,φ,σ(x)}}

VAlgo(x) = EL{EΦ|L{Varσ|L,Φ{fL,φ,σ(x)}}},

VProj(x) = EL{VarΦ|L{Eσ|L,Φ{fL,φ,σ(x)}}},

that measure errors due to the randomness of, respectively, the learn-
ing sample, the tree algorithm, and the output space projection (see
Section 5.2.1).

Approximations computed respectively by Algorithm 5.1 and Al-
gorithm 5.2 take the following forms:

• f1;L,σt,φ(x) =
1
t

∑t
i=1 fL,φ,σi(x)

• f2;L,σt,φt(x) =
1
t

∑t
i=1 fL,φi,σi(x),
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where σt = (ε1, . . . , εt) and φt = (φ1, . . . ,φt) are vectors of i.i.d.
values of the random variables σ and Φ respectively.

We are interested in comparing the average errors of these two al-
gorithms, where the average is taken over all random parameters (in-
cluding the learning sample). We show that these can be decomposed
as follows (see Section 5.2.2):

EL,Φ,σt{Err(f1;L,Φ,σt(x))}

= σ2R(x) +B
2(x) + VL(x) +

VAlgo(x)

t
+ VProj(x),

EL,Φt,σt{Err(f2;L,Φt,σt(x))}

= σ2R(x) +B
2(x) + VL(x) +

VAlgo(x) + VProj(x)

t
.

From this result, it is hence clear that Algorithm 5.2 can not be worse,
on the average, than Algorithm 5.1. If the additional computational
burden needed to generate a different random projection for each tree
is not problematic, then Algorithm 5.2 should always be preferred to
Algorithm 5.1.

For a fixed level of tree randomization (σ), whether the additional
randomization brought by random projections could be beneficial in
terms of predictive performance remains an open question that will
be addressed empirically in the next section. Nevertheless, with re-
spect to an ensemble grown from the original output space, one can
expect that the output-projections will always increase the bias term,
since they disturb the algorithm in its objective of reducing the errors
on the learning sample. For small values of q, the average error will
therefore decrease (with a sufficiently large number t of trees) only if
the increase in bias is compensated by a decrease of variance.

The value of q, the dimension of the projected subspace, that will
lead to the best tradeoff between bias and variance will hence depend
both on the level of tree randomization and on the learning problem.
The more (resp. less) tree randomization, the higher (resp. the lower)
could be the optimal value of q, since both randomizations affect bias
and variance in the same direction.

5.2.1 Single random trees.

Let us denote by fL,φ,σ : X→ Rd a single multi-output (random) tree
obtained from a projection matrix φ (below we use Φ to denote the
corresponding random variable), where σ is the value of a random
variable σ capturing the random perturbation scheme used to build
this tree (e.g., bootstrapping and/or random input space selection).
Denoting by Err(fL,φ,σ(x)) the square error of this model at some
point x ∈ X defined by:

EPY|X
{||y− fL,φ,σ(x)||

2}. (5.13)



5.2 bias/variance analysis 93

The average of this square error can decomposed as follows:

EL,Φ,σ{Err(fL,φ,σ(x))}

= σ2R(x) + ||fBayes(x) − f̄(x)||
2 + VarL,Φ,σ{fL,φ,σ(x)},

where

f̄(x)
def
= EL,Φ,σ{fL,φ,σ(x)}

fBayes(x) = EY|x{Y}

VarL,Φ,σ{fL,φ,σ(x)}
def
= EL,Φ,σ{||fL,φ,σ(x) − f̄(x)||

2}.

The three terms of this decomposition are respectively the residual
error, the bias, and the variance of this estimator (at x).

The variance term can be further decomposed as follows using the
law of total variance:

VarL,Φ,σ{fL,φ,σ(x)}

= VarL{EΦ,σ|L{fL,φ,σ(x)}}

+EL{VarΦ,σ|L{fL,φ,σ(x)}}. (5.14)

The first term is the variance due to the learning sample random-
ization and the second term is the average variance (over L) due to
both the random forest randomization and the random output pro-
jection. By using the law of total variance a second time, the second
term of Equation 5.14) can be further decomposed as follows:

EL{VarΦ,σ|L{fL,φ,σ(x)}}

= EL{VarΦ|L{Eσ|L,Φ{fL,φ,σ(x)}}}

+ EL{EΦ|L{Varσ|L,Φ{fL,φ,σ(x)}}}. (5.15)

The first term of this decomposition is the variance due to the ran-
dom choice of a projection and the second term is the average vari-
ance due to the random forest randomization. Note that all these
terms are non negative. In what follows, we will denote these three
terms respectively VL(x), VAlgo(x), and Vproj(x). We thus have:

VarL,Φ,σ{fL,φ,σ(x)} = VL(x) + VAlgo(x) + VProj(x),

with

VL(x) = VarL{EΦ,σ|L{fL,φ,σ(x)}}

VAlgo(x) = EL{EΦ|L{Varσ|L,Φ{fL,φ,σ(x)}}},

VProj(x) = EL{VarΦ|L{Eσ|L,Φ{fL,φ,σ(x)}}},
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5.2.2 Ensembles of t random trees.

When the random projection is fixed for all t trees in the ensemble
(Algorithm 5.1), the algorithm computes an approximation, denoted
f1(x;L,φ,σt), that takes the following form:

f1;L,φ,σt(x) =
1

t

t∑
i=1

fL,φ,σi(x),

where σt = (σ1, . . . ,σt) is a vector of i.i.d. values of the random
variable σ. When a different random projection is chosen for each tree
(Algorithm 5.2), the algorithm computes an approximation, denoted
by f2(x;L,φt,σt), of the following form:

f2;L,φt,σt(x) =
1

t

t∑
i=1

fL,φi,σi(x),

where φt = (φ1, . . . ,φt) is also a vector of i.i.d. random projection
matrices.

We would like to compare the average errors of these two algo-
rithms with the average errors of the original single tree method,
where the average is taken for all algorithms over their random pa-
rameters (that include the learning sample).

Given that all trees are grown independently of each other, one can
show that the average models corresponding to each algorithm are
equal:

f̄(x) = EL,Φ,σt{f1;L,Φ,σt(x)}

= EL,Φt,σt{f2;L,Φt,σt(x)}.

They thus all have the exact same bias (and residual error) and differ
only in their variance.

Using the same argument, the first term of the variance decompo-
sition in (5.14), ie. VL(x), is the same for all three algorithms since:

EΦ,σ|L{fL,φ,σ(x)}

= EΦ,σt|L{f1;L,Φ,σt(x)}

= EΦt,σt|L{f2;L,Φt,σt(x)}.

Their variance thus only differ in the second term of Equation 5.14.
Again, because of the conditional independence of the ensemble

terms given the learning set L and the projection matrix φ, Algo-
rithm 5.1, which keeps the output projection fixed for all trees, is
such that

Eσt|L,Φ{f1;L,Φ,σt(x)} = Eσ|L,Φ{fL,φ,σ(x)}

and

Varσt|L,Φ{f1;L,Φ,σt(x)} =
1

t
Varσ|L,Φ{fL,φ,σ(x)}.
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It thus divides the second term of Equation 5.15 by the number t
of ensemble terms. Algorithm 5.2, on the other hand, is such that:

VarΦt,σt|L{f2;L,Φ,σt(x)} =
1

t
VarΦ,σ|L{fL,φ,σ(x)},

and thus divides the second term of Equation 5.14 by t.
Putting all these results together one gets that:

EL,Φ,σ{Err(fL,Φ,σt(x))}

= σ2R(x) +B
2(x) + VL(x) + VAlgo(x) + VProj(x),

EL,Φ,σt{Err(f1;L,Φ,σt(x))}

= σ2R(x) +B
2(x) + VL(x) +

VAlgo(x)

t
+ VProj(x),

EL,Φt,σt{Err(f2;L,Φt,σt(x))}

= σ2R(x) +B
2(x) + VL(x) +

VAlgo(x) + VProj(x)

t
.

Given that all terms are positive, this result clearly shows that Al-
gorithm 5.2 can not be worse than Algorithm 5.1.

5.3 experiments

5.3.1 Effect of the size q of the Gaussian output space

To illustrate the behaviour of our algorithms, we first focus on the
“Delicious” dataset (Tsoumakas et al., 2008a), which has a large num-
ber of labels (d = 983), of input features (p = 500), and of training
(nLS = 12920) and testing (nTS = 3185) samples.

The top part of figure 5.1 shows, when Gaussian output-space pro-
jections are combined with the standard CART algorithm building
a single tree, how the precision converges (cf Theorem 1) when q

increases towards d. We observe that in this case, convergence is
reached around q = 200 at the expense of a slight decrease of accu-
racy, so that a compression factor of about 5 is possible with respect
to the original output dimension d = 983.

The bottom part of figure 5.1 shows, on the same dataset, how
the method behaves when combined with Random Forests. Let us
first notice that the Random Forests grown on the original output
space (green line) are significantly more accurate than the single trees,
their accuracy being almost twice as high. We also observe that Algo-
rithm 5.2 (orange curve) converges much more rapidly than Algo-
rithm 5.1 (blue curve) and slightly outperforms the Random Forest
grown on the original output space. It needs only about q = 25 com-
ponents to converge, while Algorithm 5.1 needs about q = 75 of them.
These results are in accordance with the analysis of Section 5.2, show-
ing that Algorithm 5.2 can’t be inferior to Algorithm 5.1. In the rest
of this chapter we will therefore focus on Algorithm 5.2.



96 random projections of the output space

q

q

Figure 5.1: Models built for the “Delicious” dataset (d = 983) for growing
numbers q of Gaussian projections. Top: single unpruned CART
trees (nmin = 1); Bottom: Random Forests (k =

√
p, t = 100,

nmin = 1). The curves represent average values (and standard
deviations) obtained from 10 applications of the randomized al-
gorithms over a same single LS/TS split.

5.3.2 Systematic analysis over 24 datasets

To assess our methods, we have collected 24 different multi-label clas-
sification datasets from the literature (see Section D of the supple-
mentary material, for more information and bibliographic references
to these datasets) covering a broad spectrum of application domains
and ranges of the output dimension (d ∈ [6; 3993], see Table 5.1). For
21 of the datasets, we made experiments where the dataset is split ran-
domly into a learning set of size nLS, and a test set of size nTS, and
are repeated 10 times (to get average precisions and standard devia-
tions), and for 3 of them we used a ten-fold cross-validation scheme
(see Table 5.1).

Table 5.1 shows our results on the 24 multi-label datasets, by com-
paring Random Forests learnt on the original output space with those
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learnt by Algorithm 5.2 combined with Gaussian subspaces of size
q ∈ {1,d, lnd}2. In these experiments, the three parameters of Ran-
dom Forests are set respectively to k =

√
p, nmin = 1 (default values,

see (Geurts et al., 2006a)) and t = 100 (reasonable computing budget).
Each model is learnt ten times on a different shuffled train/testing
split, except for the 3 EUR-lex datasets where we kept the original 10

folds of cross-validation.
We observe that for all datasets (except maybe SCOP-GO), taking

q = d leads to a similar average precision to the standard Random
Forests, i.e. no difference superior to one standard deviation of the er-
ror. On 11 datasets, we see that q = 1 already yields a similar average
precision (values not underlined in column q = 1). For the 13 remain-
ing datasets, increasing q to lnd significantly decreases the gap with
the Random Forest baseline and 3 more datasets reach this baseline.
We also observe that on several datasets such as “Drug-interaction”
and “SCOP-GO”, better performance on the Gaussian subspace is at-
tained with high output randomization (q = {1, lnd}) than with q = d.
We thus conclude that the optimal level of output randomization (i.e.
the optimal value of the ratio q/d) which maximizes accuracy perfor-
mances, is dataset dependent.

While our method is intended for tasks with very high dimensional
output spaces, we however notice that even with relatively small num-
bers of labels, its accuracy remains comparable to the baseline, with
suitable q.

To complete the analysis, let’s carry out the same experiments
with a different base-learner combining Gaussian random projections
(with q ∈ {1, lnd,d}) with the Extra Trees method of (Geurts et al.,
2006a). Results on 23 datasets are compiled in Table 5.2.

Like for Random Forests, we observe that for all 23 datasets taking
q = d leads to a similar average precision to the standard Random
Forests, ie. no difference superior to one standard deviation of the
error. This is already the case with q = 1 for 12 datasets and with
q = lnd for 4 more datasets. Interestingly, on 3 datasets with q = 1

and 3 datasets with q = lnd, the increased randomization brought
by the projections actually improves average precision with respect
to standard Random Forests (bold values in Table 5.2).

2 lnd is rounded to the nearest integer value; in Table 5.1 the values of lnd vary
between 2 for d = 6 and 8 for d = 3993.
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Table 5.1: High output space compression ratio is possible, with no or neg-
ligible average precision reduction (t = 100, nmin = 1, k =

√
p).

Each dataset has nLS training samples, nTS testing samples, p in-
put features and d labels. Label ranking average precisions are dis-
played in terms of their mean values and standard deviations over
10 random LS/TS splits, or over the 10 folds of cross-validation.
Mean scores in the last three columns are underlined if they show
a difference with respect to the standard Random Forests of more
than one standard deviation.

Datasets Random Random Forests on Gaussian sub-space

Name Forests q = 1 q=b0.5+lndc q = d

emotions 0.800 ±0.014 0.800 ±0.010 0.810 ±0.014 0.810 ±0.016
scene 0.870 ±0.003 0.875 ±0.007 0.872 ±0.004 0.872 ±0.004
yeast 0.759 ±0.008 . . . . . .0.748 ±0.006 0.755 ±0.004 0.758 ±0.005
tmc2017 0.756 ±0.003 . . . . . .0.741 ±0.003 . . . . . .0.748 ±0.003 0.757 ±0.003
genbase 0.992 ±0.004 0.994 ±0.002 0.994 ±0.004 0.993 ±0.004
reuters 0.865 ±0.004 0.864 ±0.003 0.863 ±0.004 0.862 ±0.004
medical 0.848 ±0.009 . . . . . .0.836 ±0.011 0.842 ±0.014 0.841 ±0.009
enron 0.683 ±0.009 0.680 ±0.006 0.685 ±0.009 0.686 ±0.008
mediamill 0.779 ±0.001 . . . . . .0.772 ±0.001 0.777 ±0.002 0.779 ±0.002
Yeast-GO 0.420 ±0.010 . . . . . .0.353 ±0.008 . . . . . .0.381 ±0.005 0.420 ±0.010
bibtex 0.566 ±0.004 . . . . . .0.513 ±0.006 . . . . . .0.548 ±0.007 0.564 ±0.008
CAL500 0.504 ±0.011 0.504 ±0.004 0.506 ±0.007 0.502 ±0.010
WIPO 0.490 ±0.010 . . . . . .0.430 ±0.010 . . . . . .0.460 ±0.010 0.480 ±0.010
EUR-Lex (subj.) 0.840 ±0.005 . . . . . .0.814 ±0.004 . . . . . .0.828 ±0.005 0.840 ±0.004
bookmarks 0.453 ±0.001 . . . . . .0.436 ±0.002 . . . . . .0.445 ±0.002 0.453 ±0.002
diatoms 0.700 ±0.010 . . . . . .0.650 ±0.010 . . . . . .0.670 ±0.010 0.710 ±0.020
corel5k 0.303 ±0.012 0.309 ±0.011 0.307 ±0.011 0.299 ±0.013
EUR-Lex (dir.) 0.814 ±0.006 . . . . . .0.782 ±0.008 . . . . . .0.796 ±0.009 0.813 ±0.007
SCOP-GO 0.811 ±0.004 0.808 ±0.005 0.811 ±0.004 . . . . . .0.806 ±0.004
delicious 0.384 ±0.004 0.381 ±0.003 0.382 ±0.002 0.383 ±0.004
drug-interaction 0.379 ±0.014 0.384 ±0.009 0.378 ±0.013 0.367 ±0.016
protein-interaction 0.330 ±0.015 0.337 ±0.016 0.337 ±0.017 0.335 ±0.014
Expression-GO 0.235 ±0.005 . . . . . .0.211 ±0.005 . . . . . .0.219 ±0.005 0.232 ±0.005
EUR-Lex (desc.) 0.523 ±0.008 . . . . . .0.485 ±0.008 . . . . . .0.497 ±0.009 0.523 ±0.007
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Table 5.2: Experiments with Gaussian projections and Extra Trees ((t = 100,
nmin = 1, k =

√
p). Mean scores in the last three columns are

underlined if they show a negative difference with respect to the
standard Random Forests of more than one standard deviation.
Bold values highlight improvement over standard RF of more than
one standard deviation.

Datasets Extra trees Extra trees on Gaussian sub-space

q = 1 q=b0.5+lndc q = d

emotions 0.81 ±0.01 0.81 ±0.014 0.80 ±0.013 0.81 ±0.014
scene 0.873 ±0.004 0.876 ±0.003 0.877 ±0.007 0.878 ±0.006
yeast 0.757 ±0.008 . . . . . .0.746 ±0.004 0.752 ±0.009 0.757 ±0.01
tmc2017 0.782 ±0.003 . . . . . .0.759 ±0.004 . . . .0.77 ±0.002 0.779 ±0.002
genbase 0.987 ±0.005 0.991 ±0.004 0.992 ±0.001 0.992 ±0.005
reuters 0.88 ±0.003 0.88 ±0.003 0.878 ±0.004 0.88 ±0.004
medical 0.855 ±0.008 0.867 ±0.009 0.872 ±0.006 0.862 ±0.008
enron 0.66 ±0.01 0.65 ±0.01 0.663 ±0.008 0.66 ±0.01
mediamill 0.786 ±0.002 . . . . . .0.778 ±0.002 . . . . . .0.781 ±0.002 0.784 ±0.001
Yeast-GO 0.49 ±0.009 . . . .0.47 ±0.01 0.482 ±0.008 0.48 ±0.01
bibtex 0.584 ±0.005 . . . . . .0.538 ±0.005 . . . . . .0.564 ±0.004 0.583 ±0.004
CAL500 0.5 ±0.007 0.502 ±0.008 0.499 ±0.007 0.503 ±0.009
WIPO 0.52 ±0.01 . . . . . .0.474 ±0.007 . . . .0.49 ±0.01 0.515 ±0.006
EUR-Lex (subj.) 0.845 ±0.006 . . . . . .0.834 ±0.004 . . . . . .0.838 ±0.003 0.845 ±0.005
bookmarks 0.453 ±0.002 . . . . . .0.436 ±0.002 . . . . . .0.444 ±0.003 0.452 ±0.002
diatoms 0.73 ±0.01 . . . .0.69 ±0.01 . . . .0.71 ±0.01 0.73 ±0.01
corel5k 0.285 ±0.009 0.313 ±0.011 0.309 ±0.009 0.285 ±0.011
EUR-Lex (dir.) 0.815 ±0.007 . . . . . .0.805 ±0.006 . . . . . .0.807 ±0.009 0.815 ±0.007
SCOP-GO 0.778 ±0.005 0.782 ±0.004 0.782 ±0.006 0.778 ±0.005
delicious 0.354 ±0.003 0.36 ±0.004 0.358 ±0.004 0.355 ±0.003
drug-interaction 0.353 ±0.011 0.375 ±0.017 0.364 ±0.014 0.355 ±0.016
protein-interaction 0.299 ±0.013 0.307 ±0.009 0.305 ±0.012 0.306 ±0.017
Expression-GO 0.231 ±0.007 . . . . . .0.218 ±0.005 0.228 ±0.005 0.235 ±0.005
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5.3.3 Input vs output space randomization

We study in this section the interaction of the additional randomiza-
tion of the output space with that concerning the input space already
built in the Random Forest method.

To this end, we consider the “Drug-interaction” dataset (p = 660

input features and d = 1554 output labels (Yamanishi et al., 2011)),
and we study the effect of parameter k controlling the input space
randomization of the Random Forest method with the randomiza-
tion of the output space by Gaussian projections controlled by the
parameter q. To this end, Figure 5.2 shows the evolution of the ac-
curacy for growing values of k (i.e. decreasing strength of the input
space randomization), for three different quite low values of q (in
this case q ∈ {1, lnd, 2 lnd}). We observe that Random Forests learned
on a very low-dimensional Gaussian subspace (red, blue and pink
curves) yield essentially better performances than Random Forests on
the original output space, and also that their behaviour with respect
to the parameter k is quite different. On this dataset, the output-space
randomisation makes the method completely immune to the ‘over-
fitting’ phenomenon observed for high values of k with the baseline
method (green curve).

q

q
q

Figure 5.2: Output randomization with Gaussian projections yield better av-
erage precision than the original output space on the “Drug-
Interaction” dataset (nmin = 1 , t = 100).

We carry out the same experiment, but on the “Delicious” dataset.
Figure 5.3 shows the evolution of the accuracy for growing values of k
(i.e. decreasing strength of the input space randomization), for three
different values of q (in this case q ∈ {1, lnd, 2 lnd}) on a Gaussian
output space.

Like on “Drug-interaction” (see Figure 5.2), using low-dimensional
output spaces makes the method more robust with respect to over-
fitting as k increases. However, unlike on “Drug-interaction”, it is not
really possible to improve over baseline Random Forests by tuning



5.3 experiments 101

jointly input and output randomization. This shows that the interac-
tion between q and k may be different from one dataset to another.

Text

q

q
q

Figure 5.3: “Delicious” dataset: nmin = 1; t = 100.

It is thus advisable to jointly optimize the value of q and k, so as
to maximise the tradeoff between accuracy and computing times in a
problem and algorithm specific way.

5.3.4 Alternative output dimension reduction techniques

In this section, we study Algorithm 5.2 when it is combined with
alternative output-space dimensionality reduction techniques. We fo-
cus again on the “Delicious” dataset, but similar trends could be ob-
served on other datasets.

Figure 5.4a first compares Gaussian random projections with two
other dense projections: Rademacher matrices with s = 1 (cf. Sec-
tion 2.2) and compression matrices obtained by sub-sampling (with-
out replacement) Hadamard matrices (Candes and Plan, 2011). We
observe that Rademacher and subsample-Hadamard sub-spaces be-
have very similarly to Gaussian random projections.

In a second step, we compare Gaussian random projections with
two (very) sparse projections: first, sparse Rademacher sub-spaces
obtained by setting the sparsity parameter s to 3 and

√
d, selecting

respectively about 33% and 2% of the original outputs to compute
each component, and second, sub-sampled identity subspaces, simi-
lar to (Tsoumakas and Vlahavas, 2007), where each of the q selected
components corresponds to a randomly chosen original label and
also preserve sparsity. Sparse projections are very interesting from
a computational point of view as they require much less operations
to compute the projections but the number of components required
for condition (2.86) to be satisfied is typically higher than for dense
projections (Candes and Plan, 2011; Li et al., 2006). Figure 5.4b com-
pares these three projection methods with standard Random Forests
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on the “delicious” dataset. All three projection methods converge to
plain Random Forests as the number of components q increases but
their behaviour at low q values are very different. Rademacher pro-
jections converge faster with s = 3 than with s = 1 and interestingly,
the sparsest variant (s =

√
d) has its optimum at q = 1 and improves

in this case over the Random Forests baseline. Random output sub-
spaces converge slower but they lead to a notable improvement of
the score over baseline Random Forests. This suggests that although
their theoretical guarantees are less good, sparse projections actually
provide on this problem a better bias/variance tradeoff than dense
ones when used in the context of Algorithm 5.2.

Another popular dimension reduction technique is the principal
component analysis (PCA). In Figure 5.4c, we repeat the same exper-
iment to compare PCA with Gaussian random projections. Concern-
ing PCA, the curve is generated in decreasing order of eigenvalues,
according to their contribution to the explanation of the output-space
variance. We observe that this way of doing is far less effective than
the random projection techniques studied previously.
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q

(a) Computing the impurity criterion on a dense Rademacher or
on a subsample-Hadamard output sub-space is another effi-
cient way to learn tree ensembles.

q

(b) Sparse random projections output sub-space yield better av-
erage precision than on the original output space.

q

(c) PCA compared with Gaussian subspaces.

Figure 5.4: “Delicious” dataset, t = 100, k =
√
p, nmin = 1.
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5.3.5 Learning stage computing times

Our implementation of the learning algorithms is based on the scikit-
learn Python package version 0.14-dev (Buitinck et al., 2013; Pe-
dregosa et al., 2011). To fix ideas about computing times, we report
these obtained on a Mac Pro 4.1 with a dual Quad-Core Intel Xeon
processor at 2.26 GHz, on the “Delicious” dataset. Matrix operation,
such as random projections, are performed with the BLAS and the
LAPACK from the Mac OS X Accelerate framework. Reported times
are obtained by summing the user and sys time of the UNIX time
utility.

The reported timings correspond to the following operation: (i)
load the dataset in memory, (ii) execute the algorithm. All methods
use the same code to build trees. In these conditions, learning a ran-
dom forest on the original output space (t = 100, nmin = 1, k =

√
d)

takes 3348 s; learning the same model on a Gaussian output space of
size q = 25 requires 311 s, while q = 1 and q = 250 take respectively
236 s and 1088 s. Generating a Gaussian sub-space of size q = 25 and
projecting the output data of the training samples is done in less than
0.25 s, while q = 1 and q = 250 takes around 0.07 s and 1 s respec-
tively. The time needed to compute the projections is thus negligible
with respect to the time needed for the tree construction.

We see that a speed-up of an order of magnitude could be ob-
tained, while at the same time preserving accuracy with respect to
the baseline Random Forests method. Equivalently, for a fixed com-
puting time budget, randomly projecting the output space allows to
build more trees and thus to improve predictive performances with
respect to standard Random Forests.

5.4 conclusions

This chapter explores the use of random output space projections
combined with tree-based ensemble methods to address large-scale
multi-label classification problems. We study two algorithmic vari-
ants that either build a tree-based ensemble model on a single shared
random subspace or build each tree in the ensemble on a newly
drawn random subspace. The second approach is shown theoretically
and empirically to always outperform the first in terms of accuracy.
Experiments on 24 datasets show that on most problems, using gaus-
sian projections allows to reduce very drastically the size of the out-
put space, and therefore computing times, without affecting accuracy.
Remarkably, we also show that by adjusting jointly the level of in-
put and output randomizations and choosing appropriately the pro-
jection method, one could also improve predictive performance over
the standard Random Forests, while still improving very significantly
computing times. As future work, it would be very interesting to pro-
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pose efficient techniques to automatically adjust these parameters, so
as to reach the best tradeoff between accuracy and computing times
on a given problem.

To the best of our knowledge, our work is the first to study random
output projections in the context of multi-output tree-based ensem-
ble methods. The possibility with these methods to relabel tree leaves
with predictions in the original output space makes this combina-
tion very attractive. Indeed, unlike similar works with linear mod-
els (Cisse et al., 2013; Hsu et al., 2009), our approach only relies on
Johnson-Lindenstrauss lemma, and not on any output sparsity as-
sumption, and also does not require to use any output reconstruc-
tion method. Besides multi-label classification, we would like to test
our method on other, not necessarily sparse, multi-output prediction
problems.
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G R A D I E N T B O O S T I N G W I T H R A N D O M O U T P U T
P R O J E C T I O N S F O R M U LT I - L A B E L A N D
M U LT I - O U T P U T S R E G R E S S I O N TA S K S

Outline

We first formally adapt the gradient boosting ensemble method for
multi-output supervised learning tasks such as multi-output regres-
sion and multi-label classification. We then propose to combine sin-
gle random projections of the output space with gradient boosting
on such tasks to adapt automatically to the output correlation struc-
ture. The idea of this method is to train each weak model on a single
random projection of the output space and then to exploit the predic-
tions of the resulting model to approximate the gradients of all other
outputs. Through weak model sharing and random projection of the
output space, we implicitly take into account the output correlations.
We perform extensive experiments with these methods both on arti-
ficial and real problems using tree-based weak learners. Randomly
projecting the output space shows to provide a better adaptation to
different output correlation patterns and is therefore competitive with
the best of the other methods in most settings. Thanks to the model
sharing, the convergence speed is also faster, reducing the computing
times to reach a specific accuracy.

This contribution is a joint work with Pierre Geurts and Louis Wehenkel
from the University of Liège.

6.1 introduction

Multi-output supervised learning aims to model the input-output re-
lationship of a system from observations of input-output pairs when-
ever the output space is a vector of random variables. Multi-output
classification and regression tasks have numerous applications in do-
mains ranging from biology to multimedia.

The most straightforward way to address multi-output tasks is
to apply standard single output methods separately and indepen-
dently on each output. Although simple, this method, called binary
relevance (Tsoumakas et al., 2009) in multi-label classification or sin-
gle target (Spyromitros-Xioufis et al., 2016) in multi-output regres-
sion, is often suboptimal as it does not exploit potential correlations
that might exist between the outputs. For this reason, several ap-
proaches have been proposed in the literature that improve over bi-
nary relevance by exploiting output correlations. These approaches

106
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include for example the explicit construction of the output depen-
dency graph (Dembczynski et al., 2010; Gasse et al., 2015; Zhang and
Zhang, 2010) or the sharing of models learnt for one output to the
other outputs (Huang et al., 2012; Read et al., 2011; Yan et al., 2007).
Our contribution falls into the latter category.

Classification and regression trees (Breiman et al., 1984) are pop-
ular supervised learning methods that provide state-of-the-art accu-
racy when exploited in the context of ensemble methods, namely Ran-
dom forests (Breiman, 2001) and gradient boosting (Friedman, 2001).
Classification and regression trees have been extended by several au-
thors to the joint prediction of multiple outputs (see, e.g., Blockeel
et al., 2000; Segal, 1992)). These extensions build a single tree to pre-
dict all outputs at once. They adapt the score measure used to assess
splits during the tree growth to take into account all outputs and la-
bel each tree leaf with a vector of values, one for each output (see
Section 3.5 for more information). Like standard classification or re-
gression trees, multiple output trees can be exploited in the context of
random forests (Barutcuoglu et al., 2006; Joly et al., 2014; Kocev et al.,
2007, 2013; Segal and Xiao, 2011) or boosting (Geurts et al., 2007) en-
sembles, which often offer very significant accuracy improvements
with respect to single trees. Multiple output trees have been shown to
be competitive with other multiple output methods (Madjarov et al.,
2012), but, to the best of our knowledge, it has not been studied as
extensively in the context of gradient boosting.

Binary relevance / single target of single output tree models and
multiple output tree models represent two extremes in terms of tree
structure learning: the former builds a separate tree ensemble struc-
ture for each output, while the latter builds a single tree ensemble
structure for all outputs. Building separate ensembles for each out-
put may be rather inefficient when the outputs are strongly correlated.
Correlations between the outputs could indeed be exploited either to
reduce model complexity (by sharing the tree structures between sev-
eral outputs) or to improve accuracy by regularization. Trying to fit
a single tree structure for all outputs seems however counterproduc-
tive when the outputs are independent. Indeed, in the case of inde-
pendent outputs, simultaneously fitting all outputs with a single tree
structure may require a much more complex tree structure than the
sum of the individual tree complexities required to fit the individual
outputs. Since training a more complex tree requires a larger learn-
ing sample, multiple output trees are expected to be outperformed by
binary relevance / single target in this situation.

In this chapter, we first formally adapt gradient boosting to mul-
tiple output tasks. We then propose a new method that aims at cir-
cumventing the limitations of both binary relevance / single target
and multiple output methods, in the specific context of tree-based
base-learners. Our method is an extension of gradient tree boosting
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that can adapt itself to the presence or absence of correlations be-
tween the outputs. At each boosting iteration, a single regression tree
structure is grown to fit a single random projection of the outputs, or
more precisely, of their residuals with respect to the previously built
models. Then, the predictions of this tree are fitted linearly to the
current residuals of all the outputs (independently). New residuals
are then computed taking into account the resulting predictions and
the process repeats itself to fit these new residuals. Because of the
linear fit, only the outputs that are correlated with the random projec-
tion at each iteration will benefit from a reduction of their residuals,
while outputs that are independent of the random projection will re-
main mostly unaffected. As a consequence, tree structures will only
be shared between correlated outputs as one would expect. Another
variant that we explore consists in replacing the linear global fit by a
relabelling of all tree leaves for each output in turn.

The chapter is structured as follows. We show how to extend the
gradient boosting algorithms to multi-output tasks in Section 6.2. We
provide for these algorithms a convergence proof on the training data
and discuss the effect of the random projection of the output space.
We study empirically the proposed approach in Section 6.3. Our first
experiments compare the proposed approaches to binary relevance
/ single target on artificial datasets where the output correlation is
known. We also highlight the effect of the choice and size of the ran-
dom projection space. We finally carry out an empirical evaluation
of these methods on 21 real-world multi-label and 8 multi-output re-
gression tasks. We draw our conclusions in Section 6.4.

6.2 gradient boosting with multiple outputs

Starting from a multi-output loss, we show in Section 6.2.1 how to ex-
tend the standard gradient boosting algorithm to solve multi-output
tasks, such as multi-output regression and multi-label classification,
by exploiting existing weak model learners suited for multi-output
prediction. In Section 6.2.2, we then propose to combine single ran-
dom projections of the output space with gradient boosting to au-
tomatically adapt to the output correlation structure on these tasks.
We discuss and compare the effect of the random projection of the
output space in Section 6.2.3. We give a convergence proof on the
training data for the proposed algorithms in Section 6.2.4.

6.2.1 Standard extension of gradient boosting to multi-output tasks

A loss function `(y,y ′) ∈ R+ computes the difference between a
ground truth y and a model prediction y ′. It compares scalars with
single output tasks and vectors with multi-output tasks. The two
most common regression losses are the square loss `square(y,y ′) =
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1
2(y−y

′)2 and the absolute loss `absolute(y,y) = |y−y ′|. Their multi-
output extensions are the `2-norm and `1-norm losses:

`2(y,y ′) =
1

2
||y− y ′||2`2 , (6.1)

`1(y,y ′) = ||y− y ′||`1 . (6.2)

In classification, the most commonly used loss to compare a ground
truth y to the model prediction f(x) is the 0 − 1 loss `0−1(y,y ′) =

1(y 6= y ′), where 1 is the indicator function. It has two standard
multiple output extensions (i) the Hamming loss `Hamming and (ii)
the subset 0− 1 loss `subset 0−1:

`Hamming(y,y ′) =
d∑
j=1

1(yj 6= y ′j), (6.3)

`subset 0−1(y,y ′) = 1(y 6= y ′). (6.4)

Since these losses are discrete, they are non-differentiable and dif-
ficult to optimize. Instead, we propose to extend the logistic loss
`logistic(y,y ′) = log(1+ exp(−2yy ′)) used for binary classification
tasks to the multi-label case, as follows:

`logistic(y,y ′) =
d∑
j=1

log(1+ exp(−2yjy ′j)), (6.5)

where we suppose that the d components yj of the target output
vector belong to {−1, 1}, while the d components y ′j of the predictions
may belong to R.

Given a training set L =
(
(xi,yi) ∈ X× Y

)n
i=1

and one of these
multi-output losses `, we want to learn a model fM expressed in the
following form

fM(x) = ρ0 +

M∑
m=1

ρm � gm(x), (6.6)

where the terms gm are selected within a hypothesis space H of
weak multi-output base-learners, the coefficients {ρm ∈ Rd}Mm=0 are
d-dimensional vectors highlighting the contributions of each term gm
to the ensemble, and where the symbol � denotes the Hadamard
product. Note that the prediction fM(x) ∈ Rd targets the minimiza-
tion of the chosen loss `, but a transformation might be needed to
have a prediction in Y, e.g. we would apply the logit function to each
output for the multi-output logistic loss to get a probability estimate
of the positive classes.

The gradient boosting method builds such a model in an iterative
fashion, as described in Algorithm 6.1, and discussed below.
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Algorithm 6.1 Gradient boosting with multi-output regressor weak
models.

1: function GB-mo(L =
(
(xi,yi)

)n
i=1

; `;H;M)
2: f0(x) = ρ0 = arg minρ∈Rd

∑n
i=1 `(y

i, ρ)
3: for m = 1 to M do
4: Compute the loss gradient for the learning set samples

gim ∈ Rd =
[
∇y ′`(yi,y ′)

]
y ′=fm−1(xi)

∀i ∈ {1, . . . ,n} .

5: Fit the negative loss gradient

gm = arg min
g∈H

n∑
i=1

∣∣∣∣−gim − g(xi)
∣∣∣∣2
`2

.

6: Find an optimal step length in the direction of gm

ρm = arg min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρ� gm(xi)
)

.

7: fm(x) = fm−1(x) + ρm � gm(x)

8: end for
9: return fM(x)

10: end function

To build the ensemble model, we first initialize it with the constant
model defined by the vector ρ0 ∈ Rd minimizing the multi-output
loss ` (line 2):

ρ0 = arg min
ρ∈Rd

n∑
i=1

`(yi, ρ). (6.7)

At each subsequent iterationm, the multi-output gradient boosting
approach adds a new multi-output weak model gm(x) with a weight
ρm to the current ensemble model by approximating the minimiza-
tion of the multi-output loss `:

(ρm,gm) = arg min
(ρ,g)∈Rd×H

n∑
i=1

`
(
yi, fm−1(x

i) + ρ� g(xi)
)

. (6.8)

To approximate Equation 6.8, it first fits a multi-output weak model
gm to model the negative gradient gim of the multi-output loss `

gim ∈ Rd =
[
∇y ′`(yi,y ′)

]
y ′=fm−1(xi)

(6.9)

associated to each sample i ∈ L of the training set, by minimizing the
`2-loss:

gm = arg min
g∈H

n∑
i=1

∣∣∣∣−gim − g(xi)
∣∣∣∣2
`2

. (6.10)
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It then computes an optimal step length vector ρm ∈ Rd in the
direction of the weak model gm to minimize the multi-output loss `:

ρm = arg min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρ� gm(xi)
)

. (6.11)

6.2.2 Adapting to the correlation structure in the output-space

Binary relevance / single target of gradient boosting models and
gradient boosting of multi-output models (Algorithm 6.1) implicitly
target two extreme correlation structures. On the one hand, binary
relevance / single target predicts all outputs independently, thus as-
suming that outputs are not correlated. On the other hand, gradient
boosting of multi-output models handles them all together, thus as-
suming that they are all correlated. Both approaches thus exploit the
available dataset in a rather biased way. To remove this bias, we pro-
pose a more flexible approach that can adapt itself automatically to
the correlation structure among output variables.

Our idea is that a weak learner used at some step of the gradi-
ent boosting algorithm could be fitted on a single random projection
of the output space, rather than always targeting simultaneously all
outputs or always targeting a single a priori fixed output.

We thus propose to first generate at each iteration of the boosting
algorithm one random projection vector of size φm ∈ R1×d. The
weak learner is then fitted on the projection of the current residuals
according to φm reducing dimensionality from d outputs to a single
output. A weight vector ρm ∈ Rd is then selected to minimize the
multi-output loss `. The whole approach is described in Algorithm 6.2.
If the loss is decomposable, non zero components of the weight vector
ρm highlight the contribution of the currentm-th model to the overall
loss decrease. Note that sign flips due to the projection are taken into
account by the additive weights ρm. A single output regressor can
now handle multi-output tasks through a sequence of single random
projections.

The prediction of an unseen sample x by the model produced by
Algorithm 6.2 is now given by

f(x) = ρ0 +

M∑
m=1

ρmgm(x), (6.12)

where ρ0 ∈ Rd is a constant prediction, and the coefficients {ρm ∈
Rd}Mm=1 highlight the contribution of each model gm to the ensemble.
Note that it is different from Equation 6.6 (no Hadamard product),
since here the weak models gm produce single output predictions.

Whenever we use decision trees as models, we can grow the tree
structure on any output space and then (re)label it in another one
as in Chapter 5 Section 5.1.1 by (re)propagating the training samples
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Algorithm 6.2 Gradient boosting on randomly projected residual
spaces.

1: function GB-rpo(L =
(
(xi,yi)

)n
i=1

; `;H;M)
2: f0(x) = ρ0 = arg minρ∈Rd

∑n
i=1 `(y

i, ρ)
3: for m = 1 to M do
4: Compute the loss gradient for the learning set samples

gim ∈ Rd =
[
∇y ′`(yi,y ′)

]
y ′=fm−1(xi)

∀i ∈ {1, . . . ,n} .

5: Generate a random projection φm ∈ R1×d.
6: Fit the projected loss gradient

gm = arg min
g∈H

n∑
i=1

(
−φmg

i
m − g(xi)

)2
.

7: Find an optimal step length in the direction of gm.

ρm = arg min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρgm(xi)
)

,

8: fm(x) = fm−1(x) + ρmgm(x)

9: end for
10: return fM(x)

11: end function
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in the tree structure. This idea of leaf relabelling could be readily
applied to Algorithm 6.2 leading to Algorithm 6.3. After fitting the
decision tree on the random projection(s) and before optimizing the
additive weights ρm, we relabel the tree structure in the original resid-
ual space (line 7). More precisely, each leaf is labelled by the average
unprojected residual vector of all training examples falling into that
leaf. The predition of an unseen sample is then obtained with Equa-
tion 6.6 as for Algorithm 6.1. We will investigate whether it is better or
not to relabel the decision tree structure in the experimental section.
Note that Algorithm 6.3 can be straightforwardly used in a multiple
random projection context (q > 1) using a random projection matrix
φm ∈ Rq×d. The resulting algorithm with arbitrary q corresponds to
the application to gradient boosting of the idea explored in Chapter 5

in the context of random forests. We will study in Section 6.2.3.3 and
Section 6.3.3.2 the effect of the size of the projected space q.

Algorithm 6.3 Gradient boosting on randomly projected residual
spaces with relabelled decision trees as weak models.

1: function GB-relabel-rpo(L =
(
(xi,yi)

)n
i=1

; `;H;M;q)
2: f0(x) = ρ0 = arg minρ∈Rd

∑n
i=1 `(y

i, ρ)
3: for m = 1 to M do
4: Compute the loss gradient for the learning set samples

gim ∈ Rd =
[
∇y ′`(yi,y ′)

]
y ′=fm−1(xi)

∀i ∈ {1, . . . ,n} .

5: Generate a random projection φm ∈ Rq×d.
6: Fit a single-output tree gm on the projected negative loss

gradients

gm = arg min
g∈H

n∑
i=1

∣∣∣∣−φmgim − g(xi)
∣∣∣∣2
`2

.

7: Relabel each leaf of the tree gm in the original (unpro-
jected) residual space, by averaging at each leaf the gim
vectors of all examples falling into that leaf.

8: Find an optimal step length in the direction of g ′m.

ρm = arg min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρ� g ′m(xi)
)

.

9: fm(x) = fm−1(x) + ρm � g ′m(x)

10: end for
11: return fM(x)

12: end function
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To the three presented algorithms, we also add a constant learn-
ing rate µ ∈ (0, 1] to shrink the size of the gradient step ρm in the
residual space. Indeed, for a given weak model space H and a loss
`, optimizing both the learning rate µ and the number of steps M
typically improves generalization performance.

6.2.3 Effect of random projections

Randomly projecting the output space in the context of the gradient
boosting approach has two direct consequences: (i) it strongly reduces
the size of the output space, and (ii) it randomly combines several out-
puts. We will consider here the following random projection matrices
φ ∈ Rq×d ordered from the sparsest to the densest ones:

• Random output subsampling matrices is obtained by sampling
random lines from the identity matrix.

• (Sparse) Rademacher matrices is obtained by drawing its
elements in

{
−
√
s
q , 0,

√
s
q

}
with probability

{
1
2s , 1− 1

s , 12s
}

,

where 1/s ∈ (0, 1] controls the sparsity of φ. With s = 1, we have
(dense) Rademacher random projections. If s = 3, we will call
them Achlioptas random projections (Achlioptas, 2003). When
s =
√
d, we will say that we have sparse random projections as

in (Li et al., 2006).

• Gaussian matrices are obtained by drawing their elements i.i.d.
in N(0, 1/q).

We discuss in more details the random sub-sampling projection in
Section 6.2.3.1 and the impact of the density of random projection
matrices in Section 6.2.3.2. We study the benefit to use more than a
single random projection of the output space (q > 1) in Section 6.2.3.3.
We highlight the difference in model representations between tree
ensemble techniques, i.e. the gradient tree boosting approaches and
the random forest approaches, in Section 6.2.3.4.

6.2.3.1 `2-norm loss and random output sub-sampling

The gradient boosting method has an analytical solution when the
loss is the square loss or its extension the `2-norm loss `2(y,y ′) =
1
2 ||y− y

′||2:

• The constant model f0 minimizing this loss is the average out-
put value of the training set given by

f0(x) = ρ0 = arg min
ρ∈Rd

n∑
i=1

1

2
||yi − ρ||2`2 =

1

n

n∑
i=1

yi. (6.13)
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• The gradient of the `2-norm loss for the i-th sample is the dif-
ference between the ground truth yi and the prediction of the
ensemble f at the current step m (∀i ∈ {1, . . . ,n}):

gim =
[
∇y ′`(yi,y ′)

]
y ′=fm−1(xi)

= yi − fm−1(x
i). (6.14)

• Once a new weak estimator gm has been fitted on the loss gra-
dient gim or the projected gradient φmgim with or without re-
labelling, we have to optimize the multiplicative weight vector
ρm of the new weak model in the ensemble. For Algorithm 6.1
and Algorithm 6.3 that exploit multi-output weak learners, this
amounts to

ρm = arg min
ρ∈Rd

n∑
i=1

1

2

∣∣∣∣yi − fm(xi) − ρ� gm(xi)
∣∣∣∣2 (6.15)

= arg min
ρ∈Rd

n∑
i=1

1

2

∣∣∣∣gim − ρ� gm(xi)
∣∣∣∣2 (6.16)

which has the following solution:

ρm,j =

∑n
i=1 g

i
m,jgm(xi)j∑n

i=1 gm(xi)j
∀j ∈ {1, . . . ,d}. (6.17)

For Algorithm 6.2, we have to solve

ρm = arg min
ρ∈Rd

n∑
i=1

1

2

∣∣∣∣yi − fm(xi) − ρgm(xi)
∣∣∣∣2 (6.18)

= arg min
ρ∈Rd

n∑
i=1

1

2

∣∣∣∣gim − ρgm(xi)
∣∣∣∣2 (6.19)

which has the following solution

ρm,j =

∑n
i=1 g

i
m,jgm(xi)∑n

i=1 gm(xi)
∀j ∈ {1, . . . ,d}. (6.20)

From Equation 6.17 and Equation 6.20, we have that the weight
ρm,j is proportional to the correlation between the loss gradient of the
output j and the weak estimator gm. If the model gm is independent
of the output j, the weight ρm,j will be close to zero and gm will thus
not contribute to the prediction of this output. On the opposite, a high
magnitude of |ρm,j| means that the model gm is useful to predict the
output j.

If we subsample the output space at each boosting iteration (Al-
gorithm 6.2 with random output sub-sampling), the weight ρm,j is
then proportional to the correlation between the model fitted on the
sub-sampled output and the output j. If correlations exist between
the outputs, the optimization of the constant ρm allows to share the
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trained model at the m-th iteration on the sub-sampled output to all
the other outputs. In the extreme case where all outputs are indepen-
dent given the inputs, the weight ρm is expected to be nearly zero
for all outputs except for the sub-sampled output, and Algorithm 6.2
would be equivalent to the binary relevance / single target approach.
If all outputs are strictly identical, the elements of the constant vector
ρm would have the same value, and Algorithm 6.2 would be equiva-
lent to the multi-output gradient boosting approach (Algorithm 6.1).
Algorithm 6.2 would also produce in this case the exact same model
as binary relevance / single target approach asymptotically but it
would require d times less trees to reach similar performance, as each
tree would be shared by all d outputs.

Algorithm 6.3 with random output sub-sampling is a gradient
boosting approach fitting one decision tree at each iteration on a
random output space and relabelling the tree in the original output
space. The leaf relabelling procedure minimizes the `2-norm loss over
the training samples by averaging the output values of the samples
reaching the corresponding leaves. In this case, the optimization of
the weight ρm is unnecessary, as it would lead to an all ones vector.
For similar reasons if the multi-output gradient boosting method (Al-
gorithm 6.1) uses decision trees as weak estimators, the weight ρm
is also an all ones vector as the leaf predictions already minimize
the `2-norm loss. The difference between these two algorithms is that
Algorithm 6.3 grows trees using a random output at each iteration
instead of all of them with Algorithm 6.1.

6.2.3.2 Density of the random projections

In Chapter 5, we have combined the random forest method with a
wide variety of random projection schemes. While the algorithms pre-
sented in this chapter were originally devised with random output
sub-sampling in mind (see Section 6.2.3.1), it seems natural to also
combine the proposed approaches with random projection schemes
such as Gaussian random projections or (sparse) Rademacher ran-
dom projections.

With random output sub-sampling, the projection matrix φm ∈
R1×d is extremely sparse as only one element is non zero. With
denser random projections, the weak estimators of Algorithm 6.2 and
Algorithm 6.3 are fitted on the projected gradient loss {(xi,φmgim}ni=1.
It means that a weak estimator gm is trying to model the direction of
a weighted combination of the gradient loss.

Otherwise said, the weak model fitted at the m-th step approxi-
mates a projection φm of the gradient losses given the input vector.
We can interpret the weight ρm,j when minimizing the `2-norm loss
as the correlation between the output j and a weighted approxima-
tion of the output variables φm. With an extremely sparse projection
having only one non zero element, we have the situation described in
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the previous section. If we have two non zero elements, we have the
following extreme cases: (i) both combined outputs are identical and
(ii) both combined outputs are independent given the inputs. In the
first situation, the effect is identical to the case where we sub-sample
only one output. In the second situation, the weak model makes a
compromise between the independent outputs given by φm. Between
those two extremes, the loss gradient direction φm approximated by
the weak model is useful to predict both outputs. The random projec-
tion of the output space will indeed prevent over-fitting by inducing
some variance in the learning process. The previous reasoning can be
extended to more than two output variables.

Dense random projection schemes, such as Gaussian random pro-
jection, consider a higher number of outputs together and is hoped to
speed up convergence by increasing the correlation between the fitted
tree in the projected space and the residual space. Conversely, sparse
random projections, such as random output sub-sampling, make the
weak model focus on few outputs.

6.2.3.3 Gradient tree boosting and multiple random projections

The gradient boosting multi-output strategy combining random pro-
jections and tree relabelling (Algorithm 6.3) can use random projec-
tion matrices φm ∈ Rq×d with more than one line (q > 1).

The weak estimators are multi-output regression trees using the
variance as impurity criterion to grow their tree structures. With an
increasing number of projections q, we have the theoretical guaran-
tee (see Chapter 5) that the variance computed in the projected space
is an approximation of the variance in the original output space.

When the projected space is of infinite size q → ∞, the decision
trees grown on the original space or on the projected space are identi-
cal as the approximation of the variance is exact. We thus have that Al-
gorithm 6.3 is equivalent to the gradient boosting with multi-output
regression tree method (Algorithm 6.1).

Whenever the projected space is of finite size (q < ∞), Algo-
rithm 6.3 is thus an approximation of Algorithm 6.1. We study em-
pirically the effect of the number of projections q in Algorithm 6.3 in
Section 6.3.3.2.

6.2.3.4 Representation bias of decision tree ensembles

Random forests and gradient tree boosting build an ensemble of trees
either independently or sequentially, and thus offer different bias/-
variance tradeoffs. The predictions of all these ensembles can be ex-
pressed as a weighted combination of the ground truth outputs of the
training set samples. In the present section, we discuss the differences
between single tree models, random forest models and gradient tree
boosting models in terms of the representation biases of the obtained
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models. We also highlight the differences between single target mod-
els and multi-output tree models.

single tree models . The prediction of a regression tree learner
can be written as a weighted linear combination of the training sam-
ples L = {(xi,yi) ∈ X× Y}ni=1. We associate to each training sample
(xi,yi) a weight function wi : X→ R which gives the contribution of
a ground truth yi to predict an unseen sample x. The prediction of a
single output tree f is given by

f(x) =

n∑
i=1

wi(x)yi. (6.21)

The weight function wi(x) is non zero if both the samples (xi,yi) and
the unseen sample x reach the same leaf of the tree. If both (xi,yi) and
x end up in the same leaf of the tree, wi(x) is equal to the inverse of
the number of training samples reaching that leaf. The weight wi(x)
can thus be rewritten as k(xi, x) and the function k(·, ·) is actually a
positive semi-definite kernel (Geurts et al., 2006a).

We can also express multi-output models as a weighted sum of
the training samples. With a single target regression tree, we have an
independent weight function wij for each sample of the training set
and each output as we fit one model per output. The prediction of
this model for output j is given by:

f(x)j =

n∑
i=1

wij(x)y
i
j. (6.22)

With a multi-output regression tree, the decision tree structure is
shared between all outputs so we have a single weight function wi

for each training sample:

f(x)j =

n∑
i=1

wi(x)yij. (6.23)

random forest models . If we have a single target random forest
model, the prediction of the j-th output combines the predictions of
the M models of the ensemble in the following way:

f(x)j =
1

M

M∑
m=1

n∑
i=1

wim,j(x)y
i
j, (6.24)

with one weight function wim,j per tree, sample and output. We note
that we can combine the weights of the individual trees into a single
one per sample and per output

wij(x) =
1

M

M∑
m=1

wim,j(x). (6.25)
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The prediction of the j-th output for an ensemble of independent
models has the same form as a single target regression tree model:

f(x)j =
1

M

M∑
m=1

n∑
i=1

wim,j(x)y
i
j =

n∑
i=1

wij(x)y
i
j. (6.26)

We can repeat the previous development with a multi-output random
forest model. The prediction for the j-th output of an unseen sample x
combines the predictions of the M trees:

f(x)j =
1

M

M∑
m=1

n∑
i=1

wim(x)yij =

n∑
i=1

wi(x)yij (6.27)

with

wi(x) =
1

M

M∑
m=1

wim(x). (6.28)

With this framework, the prediction of an ensemble model has the
same form as the prediction of a single constituting tree.

gradient tree boosting models . The prediction of a single
output gradient boosting tree ensemble is given by

f(x) = ρ0 +

M∑
m=1

µρmgm(x), (6.29)

but also as

f(x) =

M∑
m=1

n∑
i=1

wim(x)yi =

n∑
i=1

wi(x)yi, (6.30)

where the weightwi(x) takes into account the learning rate µ, the pre-
diction of all tree models gm and the associated ρm. Given the simi-
larity between gradient boosting prediction and random forest model,
we deduce that the single target gradient boosting tree ensemble has the
form of Equation 6.22 and that multi-output gradient tree boosting (Al-
gorithm 6.1) and gradient boosting tree with projection of the output space
and relabelling (Algorithm 6.3) has the form of Equation 6.23.

However, we note that the prediction model of the gradient tree boost-
ing with random projection of the output space (Algorithm 6.2) is not
given by Equation 6.22 and Equation 6.23 as the prediction of a single
output j can combine the prediction of all d outputs. More formally,
the prediction of the j-th output is given by:

f(x)j =

M∑
m=1

n∑
i=1

d∑
k=1

wim,j,k(x)y
i
k, (6.31)
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where the weight function wim,j,k takes into account the contribution
of the m-th model fitted on a random projection φm of the output
space to predict the j-th output using the k-th outputs and the i-th
sample. The triple summation can be simplified by using a single
weight to summarize the contribution of all M models:

f(x)j =

M∑
m=1

n∑
i=1

d∑
k=1

wim,j,k(x)y
i
k =

n∑
i=1

d∑
k=1

wij,k(x)y
i
k. (6.32)

Between the studied methods, we can distinguish three groups of
multi-output tree models. The first one considers that all outputs
are independent as with binary relevance / single target trees, ran-
dom forests or gradient tree boosting models. The second group with
multi-output random forests, gradient boosting of multi-output tree
and gradient boosting with random projection of the output space
and relabelling share the tree structures between all outputs, but the
leaf predictions are different for each output. The last and most flexi-
ble group is the gradient tree boosting with random projection of the
output space sharing both the tree structures and the leaf predictions.
We will highlight in the experiments the impact of these differences
in representation biases.

6.2.4 Convergence when M→∞
Similarly to (Geurts et al., 2007), we can prove the convergence of the
training-set loss of the gradient boosting with multi-output models
(Algorithm 6.1), and gradient boosting on randomly projected spaces
with (Algorithm 6.2) or without relabelling (Algorithm 6.3).

Since the loss function is lower-bounded by 0, we merely need to
show that the loss ` is non-increasing on the training set at each step
m of the gradient boosting algorithm.

For Algorithm 6.1 and Algorithm 6.3, we note that

n∑
i=1

`(yi, fm(xi)) = min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρ� gm(xi)
)

6
n∑
i=1

`
(
yi, fm−1(x

i)
)

. (6.33)

and the learning-set loss is hence non increasing with M if we use
a learning rate µ = 1. If the loss `(y,y ′) is convex in its second ar-
gument y ′ (which is the case for those loss-functions that we use in
practice), then this convergence property actually holds for any value
µ ∈ (0; 1] of the learning rate. Indeed, we have

n∑
i=1

`
(
yi, fm−1(x

i)
)
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> (1− µ)

n∑
i=1

`
(
yi, fm−1(x

i)
)
+ µ

n∑
i=1

`
(
yi, fm−1(x

i) + ρm � gm(xi)
)

>
n∑
i=1

`
(
yi, fm−1(x

i) + µρm � gm(xi)
)

.

given Equation 6.33 and the convexity property.
For Algorithm 6.2, we have a weak estimator gm fitted on a sin-

gle random projection of the output space φm with a multiplying
constant vector ρm ∈ Rd, and we have:

n∑
i=1

`(yi, fm(xi)) = min
ρ∈Rd

n∑
i=1

`
(
yi, fm−1(x

i) + ρgm(xi)
)

6
n∑
i=1

`
(
yi, fm−1(x

i)
)

. (6.34)

and the error is also non increasing for Algorithm 6.2, under the same
conditions as above.

The previous development shows that Algorithm 6.1, Algorithm 6.2
and Algorithm 6.3 are converging on the training set for a given loss
`. The binary relevance / single target of gradient boosting regres-
sion trees admits a similar convergence proof. We expect however the
convergence speed of the binary relevance / single target to be lower
assuming that it fits one weak estimator for each output in a round
robin fashion.

6.3 experiments

We describe the experimental protocol in Section 6.3.1. Our first ex-
periments in Section 6.3.2 illustrate the multi-output gradient boost-
ing methods on synthetic datasets where the output correlation struc-
ture is known. The effect of the choice and / or the number of ran-
dom projections of the output space is later studied for Algorithm 6.2
and Algorithm 6.3 in Section 6.3.3. We compare multi-output gradi-
ent boosting approaches and multi-output random forest approaches
in Section 6.3.4 over 29 real multi-label and multi-output datasets.

6.3.1 Experimental protocol

We describe the metrics used to assess the performance of the su-
pervised learning algorithms in Section 6.3.1.1. The protocol used to
optimize hyper-parameters is given in Section 6.3.1.2.

Note that the datasets used in the following experiments are de-
scribed in Appendix A. Whenever the number of testing samples is
not given, we use half of the data as training set and half of the data
as testing set.
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6.3.1.1 Accuracy assessment protocol

We assess the accuracy of the predictors on a test set using the “La-
bel Ranking Average Precision (LRAP)” (defined in Section 2.4.3) for
multi-label classification tasks and the “macro-r2 score” (defined in
Section 2.4.4) for multi-output regression tasks.

6.3.1.2 Hyper-parameter optimization protocol

The hyper-parameters of the supervised learning algorithms are op-
timized as follows: we define an hyper-parameter grid and the best
hyper-parameter set is selected using 20% of the training samples as a
validation set. The results shown are averaged over five random split
of the dataset while preserving the training-testing set size ratio.

For the boosting ensembles, we optimize the learning rate µ

among {1., 0.5, 0.2, 0.1, 0.05, 0.02, 0.01} and use decision trees as weak
models whose hyper-parameters are also optimized: the number
of features drawn at each node k during the tree growth is se-
lected among k ∈ {

√
p, 0.1p, 0.2p, 0.5p,p}, the maximum number of

tree leaves nmax _leaves grown in best-first fashion is chosen among
nmax _leaves ∈ {2, . . . , 8}. Note that a decision tree with nmax _leaves =

2 and k = p is called a stump. We add new weak models to the en-
semble by minimizing either the square loss or the absolute loss (or
their multi-output extensions) in regression and either the square loss
or the logistic loss (or their multi-output extensions) in classification,
the choice of the loss being an additional hyper-parameter tuned on
the validation set.

We also optimize the number of boosting steps niter of each gradi-
ent boosting algorithm over the validation set. However note that the
number of steps has a different meaning depending on the algorithm.
For binary relevance / single target gradient boosting, the number
of boosting steps niter gives the number of weak models fitted per
output. The implemented algorithm here fits weak models in a round
robin fashion over all outputs. For all other (multi-output) methods,
the number of boosting steps niter is the total number of weak mod-
els for all outputs as only one model is needed to fit all outputs. The
computing time of one boosting iteration is thus different between the
approaches. We will set the budget, the maximal number of boosting
steps niter, for each algorithm to niter = 10000 on synthetic experi-
ments (see Section 6.3.2) so that the performance of the estimator is
not limited by the computational power. On the real datasets however,
this setting would have been too costly. We decided instead to limit
the computing time allocated to each gradient boosting algorithm on
each classification (resp. regression) problem to 100×T (resp. 500×T ),
where T is the time needed on this specific problem for one iteration
of multi-output gradient boosting (Algorithm 6.1) with stumps and
the `2-norm loss. The maximum number of iterations, niter, is thus
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set independently for each problem and each hyper-parameter set-
ting such that this time constraint is satisfied. As a consequence, all
approaches thus receive approximately the same global time budget
for model training and hyper-parameter optimization.

For the random forest algorithms, we use the default hyper-
parameter setting suggested in (Hastie et al., 2009), which corre-
sponds in classification to 100 totally developed trees with k =

√
p

and in regression to 100 trees with k = p/3 and a minimum of 5

samples to split a node (nmin = 5).
The base learner implementations are based on the random-output-

trees1 (Joly et al., 2014) version 0.1 and on the scikit-learn (Buitinck
et al., 2013; Pedregosa et al., 2011) of version 0.16 Python package.
The algorithms presented in this chapter will be provided in random-
output-trees version 0.2.

6.3.2 Experiments on synthetic datasets with known output correlation
structures

We study here the proposed boosting approaches on synthetic
datasets whose output correlation structures are known. The datasets
are first presented in Section 6.3.2.1. We then compare on these
datasets multi-output gradient boosting approaches in terms of their
convergence speed in Section 6.3.2.2 and in terms of their best perfor-
mance whenever hyper-parameters are optimized in Section 6.3.2.3.

6.3.2.1 Synthetic datasets

To illustrate multi-output boosting strategies, we use three synthetic
datasets with a specific output structure: (i) chained outputs, (ii) to-
tally correlated outputs and (iii) fully independent outputs. Those
tasks are derived from the friedman1 regression dataset which con-
sists in solving the following single target regression task (Friedman,
1991)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5y = f(x) + ε

(6.35)

with x ∈ R5 ∼ N(0; I5) and ε ∼ N(0; 1) where I5 is an identity matrix
of size 5× 5.

The friedman1-chain problem consists in d regression tasks form-
ing a chain obtained by cumulatively adding independent standard
Normal noise. We draw samples from the following distribution

y1 = f(x) + ε1, (6.36)

yj = yj−1 + εj ∀j ∈ {2, . . . ,d} (6.37)

1 https://github.com/arjoly/random-output-trees

https://github.com/arjoly/random-output-trees
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with x ∼ N(0; I5) and ε ∼ N(0; Id). Given the chain structure, the
output with the least amount of noise is the first one of the chain and
averaging a subset of the outputs would not lead to any reduction
of the output noise with respect to the first output, since total noise
variance accumulates more than linearly with the number of outputs.
The optimal multi-output strategy is thus to build a model using only
the first output and then to replicate the prediction of this model for
all other outputs.

The friedman1-group problem consists in solving d regression
tasks simultaneously obtained from one friedman1 problem with-
out noise where an independent normal noise is added. Given x ∼

N(0; I5) and ε ∼ N(0; Id), we have to solve the following task:

yj =f(x) + εj ∀j ∈ {1, . . . ,d}. (6.38)

If the output-output structure is known, the additive noises εj,∀j ∈
{1, . . . ,d}, can be filtered out by averaging all outputs. The optimal
strategy to address this problem is thus to train a single output re-
gression model to fit the average output. Predictions on unseen data
would be later done by replicating the output of this model for all
outputs.

The friedman1-ind problem consists in d independent friedman1

tasks. Drawing samples from x ∼ N(0; I5d) and ε ∼ N(0; Id), we have

yj =f(x5j+1:5j+5) + εj ∀j ∈ {1, . . . ,d}. (6.39)

where x5j+1:5j+5 is a slice of feature vector from feature 5j+ 1 to 5j+
5. Since all outputs are independent, the best multi-output strategy is
single target: one independent model fits each output

For each multi-output friedman problem, we consider 300 training
samples, 4000 testing samples and d = 16 outputs.

6.3.2.2 Convergence with known output correlation structure

We first study the macro-r2 score convergence as a function of time
(see Figure 6.1) for three multi-output gradient boosting strategies: (i)
single target of gradient tree boosting (st-gbrt), (ii) gradient boosting
with multi-output regression tree (gbmort, Algorithm 6.1) and (iii)
gradient boosting with output subsampling of the output space (gbrt-
rpo-subsample, Algorithm 6.2). We train each boosting algorithm on
the three friedman1 artificial datasets with the same set of hyper-
parameters: a learning rate of µ = 0.1 and stumps as weak estimators
(a decision tree with k = p, nmax _leaves = 2) while minimizing the
square loss.

On the friedman1-chain (see Figure 6.1a) and friedman1-group (see
Figure 6.1b), gbmort and gbrt-rpo-subsampled converge more than
100 times faster (note the logarithmic scale of the abscissa) than sin-
gle target. Furthermore, the optimal macro-r2 is slightly better for
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(a) Friedman1-chain

(b) Friedman1-group

(c) Friedman1-ind

Figure 6.1: The convergence speed and the optimum reached are affected
by the output correlation structure. The gbmort and gbrt-rpo-
subsampled algorithms both exploit output correlations, which
yields faster convergence and slightly better performance than
st-gbrt on friedman1-chain and friedman1-group. However, st-
gbrt converges to a better optimum than gbmort and gbrt-rpo-
subsample when there is no output correlation as in friedman1-
ind. (Model parameters: k = p, nmax _leaves = 2, µ = 0.1)
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gbmort and gbrt-rpo-subsampled than st-gbrt. Since all outputs are
correlated on both datasets, gbmort and gbrt-rpo-susbsampled are ex-
ploiting the output structure to have faster convergence. The gbmort
method exploits the output structure by filtering the output noise as
the stump fitted at each iteration is the one that maximizes the reduc-
tion of the average output variance. By contrast, gbrt-rpo-subsample
detects output correlations by optimizing the ρm constant and then
shares the information obtained by the current weak model with all
other outputs.

On the friedman1-ind dataset (see Figure 6.1c), all three methods
converge at the same rate. However, the single target strategy con-
verges to a better optimum than gbmort and gbrt-rpo-subsample.
Since all outputs are independent, single target enforces the proper
correlation structure (see Figure 6.1c). The gbmort method has the
worst performance as it assumes the wrong set of hypotheses. The
gbrt-rpo-subsampled method pays the price of its flexibility by over-
fitting the additive weight associated to each output, but less than
gbmort.

This experiment confirms that enforcing the right correlation struc-
ture yields faster convergence and the best accuracy. Nevertheless, the
output structure is unknown in practice. We need flexible approaches
such as gbrt-rpo-subsampled that automatically detects and exploits
the correlation structure.

6.3.2.3 Performance and output modeling assumption

The presence or absence of structures among the outputs have shown
to affect the convergence speed of multi-output gradient boosting
methods. As discussed in (Cheng et al., 2010), we talk about con-
ditionally independent outputs when:

P(y1, . . . ,yq|x) = P(y1|x) · · ·P(yq|x)

and about unconditionally independent outputs when:

P(y1, . . . ,yq) = P(y1) · · ·P(yq).

When the outputs are not conditionally independent and the loss
function can not be decomposed over the outputs (eg., the subset
0 − 1 loss), one might need to model the joint output distribution
P(y1, . . . ,yq|x) to obtain a Bayes optimal prediction. If the outputs
are conditionally independent however or if the loss function can be
decomposed over the outputs, then a Bayes optimal prediction can
be obtained by modeling separately the marginal conditional output
distributions P(yj|x) for all j. This suggests that in this case, binary
relevance / single target is not really penalized asymptotically with
respect to multiple output methods for not considering the outputs
jointly. In the case of an infinite sample size, it is thus expected to
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Table 6.1: All methods compared on the 3 artificial datasets. Exploiting the
output correlation structure (if it exists) allows beating single tar-
get in a finite sample size, decomposable metric and conditionally
independent output.

Dataset friedman1-chain friedman1-group friedman1-ind

artificial-gbrt 0.654±0.015(1) 0.889±0.009(1) 0.831±0.004(1)

st-gbrt 0.626±0.016(5) 0.873±0.008(5) 0.830±0.003(2)

gbmort 0.640±0.008(4) 0.874±0.012(4) 0.644±0.010(5)

gbrt-relabel-rpo-subsampled 0.648±0.015(2) 0.880±0.009(2) 0.706±0.009(4)

gbrt-rpo-subsampled 0.645±0.013(3) 0.876±0.007(3) 0.789±0.003(3)

provide as good models as all the multiple output methods. Since in
practice we have to deal with finite sample sizes, multiple output methods
may provide better results by better controlling the bias/variance trade-off.

Let us study this question on the three synthetic datasets:
friedman1-chain, friedman1-group or friedman1-ind. We optimize
the hyper-parameters with a computational budget of 10000 weak
models per hyper-parameter set. Five strategies are compared (i) the
artificial-gbrt method, which assumes that the output structure is
known and implements the optimal strategy on each problem as
explained in Section 6.3.2.1, (ii) single target of gradient boosting
regression trees (st-gbrt), (iii) gradient boosting with multi-output
regression tree (gbmort, Algorithm 6.1) and gradient boosting with
randomly sub-sampled outputs (iv) without relabelling (gbrt-rpo-
subsampled, Algorithm 6.2) and (v) with relabelling (gbrt-relabel-rpo-
subsampled, Algorithm 6.3). All boosting algorithms minimize the
square loss, the absolute loss or their multi-outputs extension the `2-
norm loss.

We give the performance on the three tasks for each estimator in
Table 6.1 and the p-value of Student’s paired t-test comparing the
performance of two estimators on the same dataset in Table 6.2.

As expected, we obtain the best performance if the output correla-
tion structure is known with the custom strategies implemented with
artifical-gbrt. Excluding this artificial method, the best boosting meth-
ods on the two problems with output correlations, friedman1-chain
and friedman1-group, are the two gradient boosting approaches
with output subsampling (gbrt-relabel-rpo-subsampled and gbrt-rpo-
subsampled).

In friedman1-chain, the output correlation structure forms a chain
as each new output is the previous one in the chain with a noisy
output. Predicting outputs at the end of the chain, without using the
previous ones, is a difficult task. The single target approach is thus
expected to be sub-optimal. And indeed, on this problem, artificial-
gbrt, gbrt-relabel-rpo-subsampled and gbrt-rpo-subsampled are sig-



128 random output space projections for gradient boosting

Table 6.2: P-values given by Student’s paired t-test on the synthetic datasets.
We highlight p-values inferior to α = 0.05 in bold. Note that the
sign < (resp. >) indicates that the estimator in the row has better
(resp.lower) score than the column estimator.
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Dataset friedman1-chain

artificial-gbrt 0.003(>) 0.16 0.34 0.24

st-gbrt 0.003(<) 0.11 0.04(<) 0.03(<)

gbmort 0.16 0.11 0.38 0.46

gbrt-relabel-rpo-subsampled 0.34 0.04(>) 0.38 0.57

gbrt-rpo-subsampled 0.24 0.03(>) 0.46 0.57

Dataset friedman1-group

artificial-gbrt 0.005(>) 0.009(>) 0.047(>) 0.006(>)

st-gbrt 0.005(<) 0.56 0.046(<) 0.17

gbmort 0.009(<) 0.56 0.15 0.63

gbrt-relabel-rpo-subsampled 0.047(<) 0.046(>) 0.15 0.04(>)

gbrt-rpo-subsampled 0.006(<) 0.17 0.63 0.04(<)

Dataset friedman1-ind

artificial-gbrt 0.17 2e-06(>) 2e-06(>) 1e-05(>)

st-gbrt 0.17 2e-06(>) 4e-06(>) 4e-06(>)

gbmort 2e-06(<) 2e-06(<) 9e-05(<) 6e-06(<)

gbrt-relabel-rpo-subsampled 2e-06(<) 4e-06(<) 9e-05(>) 3e-05(<)

gbrt-rpo-subsampled 1e-05(<) 4e-06(<) 6e-06(>) 3e-05(>)
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nificantly better than st-gbrt (with α = 0.05). All the multi-output
methods, including gbmort, are indistinguishable from a statistical
point of view, but we note that gbmort is however not significantly
better than st-gbrt.

In friedman1-group, among the ten pairs of algorithms, four are
not significantly different, showing a p-value greater than 0.05 (see
Table 6.2). We first note that gbmort is not better than st-gbrt while
exploiting the correlation. Secondly, the boosting methods with ran-
dom output sub-sampling are the best methods. They are however
not significantly better than gbmort and significantly worse than
artificial-gbrt, which assumes the output structure is known. Note
that gbrt-relabel-rpo-subsampled is significantly better than gbrt-rpo-
subsampled.

In friedman1-ind, where there is no correlation between the out-
puts, the best strategy is single target which makes independent
models for each output. From a conceptual and statistical point of
view, there is no difference between artificial-gbrt and st-gbrt. The
gbmort algorithm, which is optimal when all outputs are correlated,
is here significantly worse than all other methods. The two boosting
methods with output subsampling (gbrt-rpo-subsampled and gbrt-
relabel-rpo-subsampled method), which can adapt themselves to the
absence of correlation between the outputs, perform better than gb-
mort, but they are significantly worse than st-gbrt. For these two algo-
rithms, we note that not relabelling the leaves (gbrt-rpo-subsampled)
leads to superior performance than relabelling them (gbrt-relabel-rpo-
subsampled). Since in friedman1-ind the outputs have disjoint feature
support, the test nodes of a decision tree fitted on one output will par-
tition the samples using these features. Thus, it is not suprising that
relabeling the trees leaves actually deteriorates performance.

In the previous experiment, all the outputs were dependent of the
inputs. However in multi-output tasks with very high number of out-
puts, it is likely that some of them have few or no links with the
inputs, i.e., are pure noise. Let us repeat the previous experiments
with the main difference that we add to the original 16 outputs 16

purely noisy outputs obtained through random permutations of the
original outputs. We show the results of optimizing each algorithm
in Table 6.3 and the associated p-values in Table 6.4. We report the
macro-r2 score computed either on all outputs (macro-r2) including
the noisy outputs or only on the 16 original outputs (half-macro-r2).
P-value were computed between each pair of algorithms using Stu-
dent’s t-test on the macro r2 score computed on all outputs.

We observe that the gbrt-rpo-subsampled algorithm has the best
performance on friedman1-chain and friedman1-group and is the
second best on the friedman1-ind, below st-gbrt. Interestingly on
friedman1-chain and friedman1-group, this algorithm is significantly
better than all the others, including gbmort. Since this latter method
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Table 6.3: Friedman datasets with noisy outputs.

friedman1-chain half-macro-r2 macro-r2

st-gbrt 0.611 (4) 0.265± 0.006 (4)

gbmort 0.617 (3) 0.291± 0.012 (3)

gbrt-relabel-rpo-subsampled 0.628 (2) 0.292± 0.006 (2)

gbrt-rpo-subsampled 0.629 (1) 0.303± 0.007 (1)

Friedman1-group half-macro-r2 macro-r2

st-gbrt 0.840 (3) 0.364± 0.007 (4)

gbmort 0.833 (4) 0.394± 0.004 (3)

gbrt-relabel-rpo-subsampled 0.855 (2) 0.395± 0.005 (2)

gbrt-rpo-subsampled 0.862 (1) 0.414± 0.006 (1)

Friedman1-ind half-macro-r2 macro-r2

st-gbrt 0.806 (1) 0.3536± 0.0015 (1)

gbmort 0.486 (4) 0.1850± 0.0081 (4)

gbrt-relabel-rpo-subsampled 0.570 (3) 0.2049± 0.0033 (3)

gbrt-rpo-subsampled 0.739 (2) 0.3033± 0.0021 (2)

tries to fit all outputs simultaneously, it is the most disadvantaged by
the introduction of the noisy outputs.

6.3.3 Effect of random projection

With the gradient boosting and random projection of the output space
approaches (Algorithms 6.2 and 6.3), we have considered until now
only sub-sampling a single output at each iteration as random projec-
tion scheme. In Section 6.3.3.1, we show empirically the effect of other
random projection schemes such as Gaussian random projection. In
Section 6.3.3.2, we study the effect of increasing the number of pro-
jections in the gradient boosting algorithm with random projection of
the output space and relabelling (parameter q of Algorithm 6.3). We
also show empirically the link between Algorithm 6.3 and gradient
boosting with multi-output regression tree (Algorithm 6.1).

6.3.3.1 Choice of the random projection scheme

Beside random output sub-sampling, we can combine the multi-
output gradient boosting strategies (Algorithms 6.2 and 6.3) with
other random projection schemes. A key difference between random
output sub-sampling and random projections such as Gaussian and
(sparse) Rademacher projections is that the latter combines together
several outputs.
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Table 6.4: P-values given by Student’s paired t-test on the synthetic datasets.
We highlight p-values inferior to α = 0.05 in bold. Note that the
sign < (resp. >) indicates that the estimator in the row has better
(resp.lower) score than the column estimator.
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Dataset friedman1-chain

st-gbrt 0.0009(<) 0.0002(<) 0.0002(<)

gbmort 0.0009(>) 0.86 0.04(<)

gbrt-relabel-rpo-subsampled 0.0002(>) 0.86 0.03(<)

gbrt-rpo-subsampled 0.0002(>) 0.04(>) 0.03(>)

Dataset friedman1-group

st-gbrt 0.0002(<) 0.0006(<) 0.0003(<)

gbmort 0.0002(>) 0.74 0.008(<)

gbrt-relabel-rpo-subsampled 0.0006(>) 0.74 0.002(<)

gbrt-rpo-subsampled 0.0003(>) 0.008(>) 0.002(>)

Dataset friedman1-ind

st-gbrt 1e-06(>) 1e-07(>) 1e-06(>)

gbmort 1e-06(<) 0.02(<) 6e-06(<)

gbrt-relabel-rpo-subsampled 1e-07(<) 0.02(>) 2e-06(<)

gbrt-rpo-subsampled 1e-06(<) 6e-06(>) 2e-06(>)
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Figure 6.2: On the mediamill dataset, Gaussian, Achlioptas and sparse ran-
dom projections with gbrt-rpo (Algorithm 6.2) show 10 times
faster convergence in terms of LRAP score, than sub-sampling
one output variable at each iteration. (k = p, stumps, µ = 0.1,
logistic loss)

We show in Figures 6.2, 6.3 and 6.4 the LRAP or macro-r2 score con-
vergence of gradient boosting with randomly projected outputs (gbrt-
rpo, Algorithm 6.2) respectively on the mediamill, delicious, and
Friedman1-ind datasets with different random projection schemes.

The impact of the random projection scheme on convergence speed
of gbrt-rpo (Algorithm 6.2) is very problem dependent. On the me-
diamill dataset, Gaussian, Achlioptas, or sparse random projections
all improve convergence speed by a factor of 10 (see Figure 6.2)
compared to subsampling randomly only one output. On the deli-
cious (Figure 6.3) and friedman1-ind (Figure 6.4), this is the opposite:
subsampling leads to faster convergence than all other projections
schemes. Note that we have the same behavior if one relabels the
tree structure grown at each iteration as in Algorithm 6.3 (results not
shown).

Dense random projections, such as Gaussian random projections,
force the weak model to consider several outputs jointly and it should
thus only improve when outputs are somewhat correlated (which
seems to be the case on mediamill). When all of the outputs are in-
dependent or the correlation is less strong, as in friedman1-ind or
delicious, this has a detrimental effect. In this situation, sub-sampling
only one output at each iteration leads to the best performance.

6.3.3.2 Effect of the size of the projected space

The multi-output gradient boosting strategy combining random pro-
jections and tree relabelling (Algorithm 6.3) can use more than one
random projection (q > 1) by using multi-output trees as base learn-
ers. In this section, we study the effect of the size of the projected
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Figure 6.3: On the delicious dataset, Gaussian, Achlioptas and sparse ran-
dom projections with gbrt-rpo (Algorithm 6.2) show 10 times
faster convergence in terms of LRAP score, than sub-sampling
one output variable at each iteration. (k = p, stumps, µ = 0.1,
logistic loss)
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Figure 6.4: On the friedman1-ind dataset where there is no output corre-
lation, gbrt-rpo (Algorithm 6.2) with one random subsampled
output leads to a higher macro-r2 score than using Gaussian,
Achlioptas or sparse random projections. (k = p, stumps, µ = 0.1,
square loss)
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Figure 6.5: On the delicious dataset, LRAP score as a function of the boost-
ing ensemble fitting time for gbrt-rpo-gaussian-relabel and gbrt-
rpo-subsampled-relabel with different number of projections q.
(k = p, stumps, µ = 0.1, logistic loss)

space q in Algorithm 6.3. This approach corresponds to the one de-
veloped in Chapter 5 for random forest.

Figure 6.5 shows the LRAP score as a function of the fitting time for
gbmort (Algorithm 6.1) and gbrt-relabel-rpo (Algorithm 6.3) with ei-
ther Gaussian random projection (see Figure 6.5a) or output subsam-
pling (see Figure 6.5b) for a number of projections q ∈ {1, 98, 196, 491}
on the delicious dataset. In Figure 6.5a and Figure 6.5b, one Gaussian
random projection or one sub-sampled output has faster convergence
than their counterparts with a higher number of projections q and gb-
mort at fixed computational budget. Note that when the number of
projections q increases, gradient boosting with random projection of
the output space and relabeling becomes similar to gbmort.
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Figure 6.6: On delicious, increasing the number of random projections q al-
lows to reach the same LRAP score as gbmort at a significantly
reduced computational cost. (k = p, stumps, µ = 0.1, M = 100,
logistic loss)

Instead of fixing the computational budget as a function of the
training time, we now set the computational budget to 100 boost-
ing steps. On the delicious dataset, gbrt-relabel-rpo (Algorithm 6.3)
with Gaussian random projection yields approximately the same per-
formance as gbmort with q > 20 random projections as shown in
Figure 6.6a and reduces computing times by a factor 7 at q = 20 pro-
jections (see Figure 6.6b).

These experiments show that gradient boosting with random pro-
jection and relabelling (gbrt-relabel-rpo, Algorithm 6.3) is indeed an
approximation of gradient boosting with multi-output trees (gbmort,
Algorithm 6.1). The number of random projections q influences si-
multaneously the bias-variance tradeoff and the convergence speed
of Algorithm 6.3.
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6.3.4 Systematic analysis over real world datasets

We perform a systematic analysis over real world multi-label clas-
sification and multi-output regression datasets. For this study, we
evaluate the proposed algorithms: gradient boosting of multi-output
regression trees (gbmort, Algorithm 6.1), gradient boosting with ran-
dom projection of the output space (gbrt-rpo, Algorithm 6.2), and
gradient boosting with random projection of the output space and
relabelling (gbrt-relabel-rpo, Algorithm 6.3). For the two latter algo-
rithms, we consider two random projection schemes: (i) Gaussian ran-
dom projection, a dense random projection, and (ii) random output
sub-sampling, a sparse random projection. They will be compared
to three common and well established tree-based multi-output algo-
rithms: (i) binary relevance / single target of gradient boosting re-
gression tree (br-gbrt / st-gbrt), (ii) multi-output random forest (mo-
rf) and (iii) binary relevance / single target of random forest models
(br-rf / st-rf).

We will compare all methods on multi-label tasks in Section 6.3.4.1
and on multi-output regression tasks in Section 6.3.4.2. Following the
recommendations of (Demšar, 2006), we use the Friedman test and
its associated Nemenyi post-hoc test. Pairwise comparisons are also
carried out using the Wilcoxon signed ranked test.

6.3.4.1 Multi-label datasets

Table 6.5 and Table 6.6 show the performance of the random forest
models and the boosting algorithms over the 21 multi-label datasets.
The critical distance diagram of Figure 6.7 gives the ranks of the algo-
rithms and has an associated Friedman test p-value of 1.36× 10−10
with a critical distance of 2.29 given by the Nemenyi post-hoc test
(α = 0.05). Thus, we can reject the null hypothesis that all methods
are equivalent. Table 6.7 gives the outcome of the pairwise Wilcoxon
signed ranked tests.

The best average performer is gbrt-relabel-rpo-gaussian which is
significantly better according to the Nemenyi post-hoc test than all
methods except gbrt-rpo-gaussian and gbmort.

Gradient boosting with the Gaussian random projection has a sig-
nificantly better average rank than the random output sub-sampling
projection. Relabelling tree leaves allows to have better performance
on the 21 multi-label dataset. Indeed, both gbrt-relabel-rpo-gaussian
and gbrt-relabel-rpo-subsampled are better ranked and significantly
better than their counterparts without relabelling (gbrt-rpo-gaussian
and gbrt-rpo-subsampled). These results somewhat contrast with the
results obtained on the artificial datasets, where relabelling was al-
ways counterproductive.

Among all compared methods, br-gbrt has the worst rank and
it is significantly less good than all gbrt variants according to the
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Figure 6.7: Critical difference diagram between algorithms on the multi-
label datasets.
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Wilcoxon signed rank test. This might be actually a consequence of
the constant budget in time that was allocated to all methods (see
Section 6.3.1). All methods were given the same budget in time but,
given the very slow convergence rate of br-gbrt, this budget may not
allow to grow enough trees per output with this method to reach
competitive performance.

We notice also that both random forests based methods (mo-rf and
br-rf) are less good than all gbrt variants, most of the time signifi-
cantly, except for br-gbrt. It has to be noted however that no hyper-
parameter was tuned for the random forests. Such tuning could
slightly change our conclusions, although random forests often work
well with default setting.

6.3.4.2 Multi-output regression datasets

Table 6.8 shows the performance of the random forest models and the
boosting algorithms over the 8 multi-output regression datasets. The
critical distance diagram of Figure 6.8 gives the rank of each estimator.
The associated Friedman test has a p-value of 0.3. Given the outcome
of the test, we can therefore not reject the null hypothesis that the
estimator performances can not be distinguished. Table 6.9 gives the
outcomes of the pairwise Wilcoxon signed ranked tests. They confirm
the fact that all methods are very close to each other as only two com-
parisons show a p-value lower than 0.05 (st-rf is better than st-gbrt
and gbrt-rpo-subsampled). This lack of statistical power is probably
partly due here to the smaller number of datasets included in the
comparison (8 problems versus 21 problems in classification).

If we ignore statistical tests, as with multi-label tasks, gbrt-relabel-
rpo-gaussian has the best average rank and st-gbrt the worst average
rank. This time however, gbrt-relabel-rpo-gaussian is followed by the
random forest based algorithms (st-rf and mo-rf) and gbmort. Given
the lack of statistical significance, this ranking should however be
intrepreted cautiously.
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Table 6.5: LRAP scores over 21 multi-label datasets (part 1).

CAL500 bibtex birds

br-gbrt 0.505± 0.002 (3.5) 0.587± 0.007 (6) 0.787± 0.009 (6)

br-rf 0.484± 0.002 (8) 0.542± 0.005 (8) 0.802± 0.013 (1)

gbmort 0.501± 0.005 (6) 0.595± 0.005 (4.5) 0.772± 0.007 (8)

gbrt-relabel-rpo-gaussian 0.507± 0.009 (1) 0.607± 0.005 (1) 0.800± 0.017 (2)

gbrt-relabel-rpo-subsampled 0.499± 0.008 (7) 0.596± 0.005 (3) 0.790± 0.016 (4)

gbrt-rpo-gaussian 0.505± 0.006 (3.5) 0.600± 0.003 (2) 0.793± 0.017 (3)

gbrt-rpo-subsampled 0.506± 0.006 (2) 0.595± 0.007 (4.5) 0.779± 0.018 (7)

mo-rf 0.502± 0.003 (5) 0.553± 0.005 (7) 0.789± 0.012 (5)

bookmarks corel5k delicious

br-gbrt 0.4463± 0.0038 (7) 0.291± 0.006 (7) 0.347± 0.002 (8)

br-rf 0.4472± 0.0019 (6) 0.273± 0.012 (8) 0.373± 0.004 (6.5)

gbmort 0.4855± 0.0016 (2) 0.312± 0.009 (3.5) 0.384± 0.003 (3.5)

gbrt-relabel-rpo-gaussian 0.4893± 0.0003 (1) 0.315± 0.007 (1.5) 0.389± 0.003 (1)

gbrt-relabel-rpo-subsampled 0.4718± 0.0034 (4) 0.310± 0.007 (5) 0.384± 0.003 (3.5)

gbrt-rpo-gaussian 0.4753± 0.0022 (3) 0.315± 0.010 (1.5) 0.386± 0.004 (2)

gbrt-rpo-subsampled 0.4621± 0.0026 (5) 0.312± 0.006 (3.5) 0.377± 0.003 (5)

mo-rf 0.4312± 0.0023 (8) 0.294± 0.010 (6) 0.373± 0.004 (6.5)

diatoms drug-interaction emotions

br-gbrt 0.623± 0.007 (7.5) 0.271± 0.018 (8) 0.800± 0.022 (7)

br-rf 0.623± 0.011 (7.5) 0.310± 0.009 (5) 0.816± 0.009 (1)

gbmort 0.656± 0.012 (4) 0.304± 0.005 (7) 0.794± 0.014 (8)

gbrt-relabel-rpo-gaussian 0.725± 0.010 (1) 0.326± 0.008 (1) 0.802± 0.017 (5.5)

gbrt-relabel-rpo-subsampled 0.685± 0.012 (3) 0.322± 0.009 (3) 0.808± 0.021 (3)

gbrt-rpo-gaussian 0.702± 0.014 (2) 0.323± 0.011 (2) 0.804± 0.009 (4)

gbrt-rpo-subsampled 0.653± 0.013 (5.5) 0.312± 0.013 (4) 0.802± 0.007 (5.5)

mo-rf 0.653± 0.010 (5.5) 0.308± 0.007 (6) 0.810± 0.010 (2)

enron genbase mediamill

br-gbrt 0.685± 0.006 (6) 0.989± 0.009 (8) 0.7449± 0.0020 (8)

br-rf 0.683± 0.005 (7) 0.994± 0.005 (2) 0.7819± 0.0009 (1)

gbmort 0.705± 0.004 (2.5) 0.990± 0.004 (6) 0.7504± 0.0013 (7)

gbrt-relabel-rpo-gaussian 0.705± 0.003 (2.5) 0.993± 0.006 (3) 0.7660± 0.0021 (3)

gbrt-relabel-rpo-subsampled 0.697± 0.004 (5) 0.990± 0.010 (6) 0.7588± 0.0013 (5)

gbrt-rpo-gaussian 0.706± 0.004 (1) 0.992± 0.007 (4) 0.7608± 0.0008 (4)

gbrt-rpo-subsampled 0.699± 0.005 (4) 0.990± 0.005 (6) 0.7519± 0.0006 (6)

mo-rf 0.676± 0.004 (8) 0.995± 0.004 (1) 0.7793± 0.0015 (2)
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Table 6.6: LRAP scores over 21 multi-label datasets (part 2).

medical protein-interaction reuters

br-gbrt 0.864± 0.006 (3) 0.294± 0.007 (6) 0.939± 0.0033 (7)

br-rf 0.821± 0.007 (8) 0.293± 0.006 (7) 0.9406± 0.0016 (6)

gbmort 0.867± 0.011 (1.5) 0.310± 0.007 (2.5) 0.9483± 0.0014 (3)

gbrt-relabel-rpo-gaussian 0.867± 0.019 (1.5) 0.310± 0.009 (2.5) 0.9508± 0.0009 (1)

gbrt-relabel-rpo-subsampled 0.856± 0.012 (5) 0.303± 0.003 (4.5) 0.9441± 0.0016 (4)

gbrt-rpo-gaussian 0.859± 0.017 (4) 0.311± 0.007 (1) 0.9486± 0.0021 (2)

gbrt-rpo-subsampled 0.851± 0.009 (6) 0.303± 0.003 (4.5) 0.9430± 0.0031 (5)

mo-rf 0.827± 0.006 (7) 0.288± 0.009 (8) 0.9337± 0.0021 (8)

scene scop-go sequence-funcat

br-gbrt 0.880± 0.003 (4) 0.716± 0.047 (8) 0.678± 0.008 (6)

br-rf 0.876± 0.003 (6) 0.798± 0.004 (2) 0.658± 0.008 (7)

gbmort 0.886± 0.004 (1) 0.796± 0.007 (3) 0.699± 0.005 (3)

gbrt-relabel-rpo-gaussian 0.884± 0.006 (2.5) 0.788± 0.006 (4) 0.703± 0.007 (2)

gbrt-relabel-rpo-subsampled 0.879± 0.008 (5) 0.770± 0.010 (6) 0.685± 0.008 (5)

gbrt-rpo-gaussian 0.884± 0.005 (2.5) 0.775± 0.018 (5) 0.706± 0.007 (1)

gbrt-rpo-subsampled 0.875± 0.006 (7) 0.723± 0.016 (7) 0.691± 0.006 (4)

mo-rf 0.865± 0.003 (8) 0.800± 0.006 (1) 0.643± 0.003 (8)

wipo yeast yeast-go

br-gbrt 0.706± 0.009 (6) 0.756± 0.009 (8) 0.499± 0.009 (4.5)

br-rf 0.633± 0.013 (7) 0.760± 0.008 (3.5) 0.463± 0.010 (7)

gbmort 0.762± 0.011 (3) 0.760± 0.007 (3.5) 0.504± 0.015 (3)

gbrt-relabel-rpo-gaussian 0.776± 0.012 (1) 0.762± 0.007 (2) 0.524± 0.012 (1)

gbrt-relabel-rpo-subsampled 0.751± 0.017 (4) 0.758± 0.005 (5.5) 0.496± 0.013 (6)

gbrt-rpo-gaussian 0.763± 0.010 (2) 0.763± 0.005 (1) 0.522± 0.012 (2)

gbrt-rpo-subsampled 0.724± 0.011 (5) 0.758± 0.008 (5.5) 0.499± 0.011 (4.5)

mo-rf 0.624± 0.018 (8) 0.757± 0.008 (7) 0.415± 0.014 (8)

Figure 6.8: Critical difference diagram between algorithm on the multi-
output regression datasets.
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Table 6.7: P-values given by the Wilcoxon signed rank test on the multi-label
datasets. We bold p-values below α = 0.05. Note that the sign
> (resp. <) indicates that the row estimator has superior (resp.
inferior) LRAP score than the column estimator.
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br-gbrt 0.79 0.001(<) 6e-05(<) 0.001(<) 0.0001(<) 0.003(<) 0.54

br-rf 0.79 0.01(<) 0.002(<) 0.02(<) 0.005(<) 0.07 0.29

gbmort 0.001(>) 0.01(>) 0.001(<) 0.36 0.04(<) 0.03(>) 0.02(>)

gbrt-relabel-rpo-gaussian 6e-05(>) 0.002(>) 0.001(>) 0.0002(>) 0.005(>) 7e-05(>) 0.0007(>)

gbrt-relabel-rpo-subsampled 0.001(>) 0.02(>) 0.36 0.0002(<) 0.0002(<) 0.02(>) 0.008(>)

gbrt-rpo-gaussian 0.0001(>) 0.005(>) 0.04(>) 0.005(<) 0.0002(>) 7e-05(>) 0.002(>)

gbrt-rpo-subsampled 0.003(>) 0.07 0.03(<) 7e-05(<) 0.02(<) 7e-05(<) 0.04(>)

mo-rf 0.54 0.29 0.02(<) 0.0007(<) 0.008(<) 0.002(<) 0.04(<)
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Table 6.8: Performance over 8 multi-output regression dataset

atp1d atp7d edm

gbmort 0.80± 0.03(5.5) 0.63± 0.03(2) 0.39± 0.16(3)

gbrt-relabel-rpo-gaussian 0.81± 0.03(3.5) 0.66± 0.04(1) 0.25± 0.28(8)

gbrt-relabel-rpo-subsampled 0.79± 0.04(7) 0.54± 0.13(7) 0.35± 0.10(5)

gbrt-rpo-gaussian 0.80± 0.04(5.5) 0.54± 0.20(7) 0.36± 0.04(4)

gbrt-rpo-subsampled 0.81± 0.04(3.5) 0.54± 0.16(7) 0.31± 0.27(7)

mo-rf 0.82± 0.03(2) 0.6± 0.06(4) 0.51± 0.02(1)

st-gbrt 0.78± 0.05(8) 0.59± 0.08(5) 0.34± 0.14(6)

st-rf 0.83± 0.02(1) 0.61± 0.07(3) 0.47± 0.04(2)

oes10 oes97 scm1d

gbmort 0.77± 0.05(3.5) 0.67± 0.07(8) 0.908± 0.003(4.5)

gbrt-relabel-rpo-gaussian 0.75± 0.04(7.5) 0.71± 0.07(2.5) 0.910± 0.004(2.5)

gbrt-relabel-rpo-subsampled 0.75± 0.06(7.5) 0.68± 0.07(6) 0.912± 0.003(1)

gbrt-rpo-gaussian 0.77± 0.03(3.5) 0.68± 0.08(6) 0.910± 0.004(2.5)

gbrt-rpo-subsampled 0.76± 0.02(5.5) 0.71± 0.08(2.5) 0.908± 0.004(4.5)

mo-rf 0.76± 0.04(5.5) 0.69± 0.05(4) 0.898± 0.004(8)

st-gbrt 0.79± 0.03(1.5) 0.68± 0.07(6) 0.905± 0.003(7)

st-rf 0.79± 0.03(1.5) 0.72± 0.05(1) 0.907± 0.004(6)

scm20d water-quality

gbmort 0.856± 0.006(2) 0.14± 0.01(4.5)

gbrt-relabel-rpo-gaussian 0.862± 0.006(1) 0.15± 0.01(2)

gbrt-relabel-rpo-subsampled 0.854± 0.007(3) 0.14± 0.02(4.5)

gbrt-rpo-gaussian 0.852± 0.006(4) 0.14± 0.01(4.5)

gbrt-rpo-subsampled 0.850± 0.007(5) 0.13± 0.02(7.5)

mo-rf 0.849± 0.007(6.5) 0.16± 0.01(1)

st-gbrt 0.836± 0.006(8) 0.13± 0.02(7.5)

st-rf 0.849± 0.006(6.5) 0.14± 0.01(4.5)
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Table 6.9: P-value given by the Wilcoxon signed rank test on multi-output
regression datasets. We bold p-values below α = 0.05. Note that
the sign > (resp. <) indicates that the row estimator has superior
(resp. inferior) macro-r2 score than the column estimator.
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st-gbrt 0.02(<) 0.26 0.58 0.78 0.67 0.89 0.16

st-rf 0.02(>) 0.33 0.67 0.09 0.09 0.04(>) 0.58

gbmort 0.26 0.33 0.4 0.16 0.67 0.4 0.48

gbrt-relabel-rpo-gaussian 0.58 0.67 0.4 0.16 0.4 0.48 0.58

gbrt-relabel-rpo-subsampled 0.78 0.09 0.16 0.16 0.16 1 0.07

gbrt-rpo-gaussian 0.67 0.09 0.67 0.4 0.16 0.48 0.26

gbrt-rpo-subsampled 0.89 0.04(<) 0.4 0.48 1 0.48 0.4

mo-rf 0.16 0.58 0.48 0.58 0.07 0.26 0.4
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6.4 conclusions

In this chapter, we have first formally extended the gradient boosting
algorithm to multi-output tasks leading to the “multi-output gradi-
ent boosting algorithm” (gbmort). It sequentially minimizes a multi-
output loss using multi-output weak models considering that all out-
puts are correlated. By contrast, binary relevance / single target of
gradient boosting models fit one gradient boosting model per out-
put considering that all outputs are independent. However in prac-
tice, we do not expect to have either all outputs independent or all
outputs dependent. So, we propose a more flexible approach which
adapts automatically to the output correlation structure called “gra-
dient boosting with random projection of the output space” (gbrt-
rpo). At each boosting step, it fits a single weak model on a random
projection of the output space and optimize a multiplicative weight
separately for each output. We have also proposed a variant of this
algorithm (gbrt-relabel-rpo) only valid with decision trees as weak
models: it fits a decision tree on the randomly projected space and
then it relabels tree leaves with predictions in the original (residual)
output space. The combination of the gradient boosting algorithm
and the random projection of the output space yields faster conver-
gence by exploiting existing correlations between the outputs and by
reducing the dimensionality of the output space. It also provides new
bias-variance-convergence trade-off potentially allowing to improve
performance.

We have evaluated in depth these new algorithms on several artifi-
cial and real datasets. Experiments on artificial problems highlighted
that gb-rpo with output subsampling offers an interesting tradeoff
between single target and multi-output gradient boosting. Because of
its capacity to automatically adapt to the output space structure, it
outperforms both methods in terms of convergence speed and accu-
racy when outputs are dependent and it is superior to gbmort (but
not st-rt) when outputs are fully independent. On the 29 real datasets,
gbrt-relabel-rpo with the denser Gaussian projections turns out to be
the best overall approach on both multi-label classification and multi-
output regression problems, although all methods are statistically
undistinguisable on the regression tasks. Our experiments also show
that gradient boosting based methods are competitive with random
forests based methods. Given that multi-output random forests were
shown to be competitive with several other multi-label approaches
in (Madjarov et al., 2012), we are confident that our solutions will be
globally competitive as well, although a broader empirical compari-
son should be conducted as future work. One drawback of gradient
boosting with respect to random forests however is that its perfor-
mance is more sensitive to its hyper-parameters that thus require
careful tuning. Although not discussed in this chapter, besides pre-
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dictive performance, gbrt-rpo (without relabeling) has also the ad-
vantage of reducing model size with respect to mo-rf (multi-output
random forests) and gbmort, in particular in the presence of many
outputs. Indeed, in mo-rf and gbmort, one needs to store a vector
of the size of the number of outputs per leaf node. In gbrt-rpo, one
needs to store only one real number (a prediction for the projection)
per leaf node and a vector of the size of the number of outputs per
tree (ρm). At fixed number of trees and fixed tree complexity, this
could lead to a strong reduction of the model memory requirement
when the number of labels is large. Note that the approach proposed
in Chapter 5 does not solve this issue because of leaf node relabeling.
This could be addressed by desactivating leaf relabeling and inverting
the projection at prediction time to obtain a prediction in the original
output space, as done for example in (Hsu et al., 2009; Kapoor et al.,
2012; Tsoumakas et al., 2014). However, this would be at the expense
of computing times at prediction time and of accuracy because of the
potential introduction of errors at the decoding stage. Finally, while
we restricted our experiments here to tree-based weak learners, Al-
gorithms 6.1 and 6.2 are generic and could exploit respectively any
multiple output and any single output regression method. As future
work, we believe that it would interesting to evaluate them with other
weak learners.
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` 1 - B A S E D C O M P R E S S I O N O F R A N D O M F O R E S T
M O D E L S

Outline

Random forests are effective supervised learning methods applicable
to large-scale datasets. However, the space complexity of tree ensem-
bles, in terms of their total number of nodes, is often prohibitive,
specially in the context of problems with large sample sizes and very
high-dimensional input spaces. We propose to study their compress-
ibility by applying a ` 1 -based regularization to the set of indicator
functions defined by all their nodes. We show experimentally that
preserving or even improving the model accuracy while significantly
reducing its space complexity is indeed possible.

This chapter extends on previous work published in

Arnaud Joly, François Schnitzler, Pierre Geurts, and Louis
Wehenkel. L1-based compression of random forest mod-
els. In European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning,
2012.

High-dimensional supervised learning problems, e.g. in image ex-
ploitation and bioinformatics, are more frequent than ever. Tree-based
ensemble methods, such as random forests (Breiman, 2001) and ex-
tremely randomized trees (Geurts et al., 2006a), are effective variance
reduction techniques offering in this context a good trade-off between
accuracy, computational complexity, and interpretability. The number
of nodes of a tree ensemble grows as nM (n being the size of the
learning sample and M the number of trees in the ensemble). Empir-
ical observations show that the variance of individual trees increases
with the dimension p of the original feature space used to repre-
sent the inputs of the learning problem. Hence, the number M (p )

of ensemble terms yielding near-optimal accuracy, which is propor-
tional to this variance, also increases with p . The net result is that the
space complexity of these tree-based ensemble methods will grow as
nM (p ) , which may jeopardize their practicality in large scale prob-
lems, or when memory is limited.

While pruning of single tree models is a standard approach, less
work has been devoted to pruning ensembles of trees. On the
one hand, Geurts (2000) proposes to transpose the classical cost-
complexity pruning of individual trees to ensembles. On the other

146
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hand, Friedman and Popescu (2008); Meinshausen (2010); Mein-
shausen et al. (2009) propose to improve model interpretability by se-
lecting optimal rule subsets from tree-ensembles. Another approach
to reduce complexity and/or improve accuracy of ensembles of trees
is to merely select an optimal subset of trees from a very large ensem-
ble generated in a random fashion at the first hand (see, e.g. (Bernard
et al., 2009; Martinez-Muoz et al., 2009)).

To further investigate the feasibility of reducing the space complex-
ity of tree-based ensemble models, we consider in this chapter the
following method (Joly et al., 2012): (i) build an ensemble of trees;
(ii) apply to this ensemble a ‘compression step’ by reformulating the
tree-ensemble based model as a linear model in terms of node indi-
cator functions and by using an `1-norm regularization approach - à
la Lasso (Tibshirani, 1996b) - to select a minimal subset of these in-
dicator functions while maintaining predictive accuracy. We propose
an algorithmic framework and an empirical investigation of this idea,
based on three complementary datasets, and we show that indeed
it is possible to so compress significantly tree-based ensemble mod-
els, both in regression and in classification problems. We also observe
that the compression rate and the accuracy of the compressed models
further increase with the ensemble size M, even beyond the number
M(p) of terms required to ensure convergence of the variance reduc-
tion effect.

The rest of this chapter is organized as follows: Section 7.1 intro-
duces the `1q-norm based compression algorithm of random forests;
Section 7.2 provides our empirical study and Section 7.3 concludes
and describes further perspectives.

7.1 compressing tree ensembles by `1 -norm regulariza-
tion

From an ensemble of M decision trees, one can extract a set of node
indicator functions as follows: each indicator function 1m ,l(x) is a
binary variable equal to 1 if the input vector x reaches the lth node in
the mth tree, 0 otherwise. Using these indicator functions, the output
predicted by the model may be rewritten as (Geurts et al., 2006a; Vens
and Costa, 2011):

f̂(x) =
1

M

M∑
m=1

Nm∑
l=1

wm ,l 1m ,l(x) , (7.1)

where Nm is the number of nodes in the mth tree and wm ,l is equal
to the leaf-label if node (m , l) is a leaf and to zero if it is an internal
node.
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Figure 7.1: From a random forest model, one can lift the original input space
representation of a sample xs toward the node indicator space Z.

We can therefore interpret a tree building algorithm as the (ran-
dom) inference of a new representation which lifts the original input
space X towards the space Z of dimension q =

∑M
m=1 Nm by

z(x) = (11 ,1(x) , . . . , 11 ,N1 (x) , . . . , 1M ,1(x) , . . . , 1M ,NM (x)) .

As an illustration, Figure 7.1 shows a set of three decision trees
with respective sizes 7, 7 and 5 nodes. The propagation of a sample
xs through the forest makes it pass trough nodes 1.1, 1.2, 1.5 in the
left tree, nodes 2.1, 2.2, 2.5 in the middle tree and nodes 3.1, 3.3 and
3.4 in the left tree (highlighted in orange).

We propose to compress the tree ensemble by applying a vari-
able selection method to its induced feature space Z. Namely, by
`1-regularization we can search for a linear model by solving the fol-
lowing optimization problem:

(
β∗j (t)

)q
j=0

= arg min
β

n∑
i=1

yi −β0 − q∑
j=1

βj zj(x
i)

2

s.t.
q∑
j=1

|βj| 6 t. (7.2)

This optimization problem, also called Lasso (Tibshirani, 1996b)
(see Section 2.2.1), has received much attention in the past decade
and is particularly successful in high dimension. The `1-norm con-
straint leads to a sparse solution: only a few weights βj will be non
zero, and their number tends to zero with t→ 0; the optimal value t∗

of t is problem specific and is typically adjusted by cross-validation.
In order to solve Equation 7.2 for growing values of t, we use the

‘incremental forward stagewise regression’ algorithm (Hastie et al.,
2007) solving the monotone Lasso which imposes that each β∗j (t) in-
creases monotonically with t. This version deals indeed better with
many correlated variables, which is relevant in our setting, since each
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node indicator function is highly correlated with those of its neighbor
nodes in the tree from which it originates. The final weights β∗j (t

∗)

may be exploited to prune the randomized tree ensemble: a test node
can be deleted if all its descendants correspond to β∗j (t

∗) = 0.
Starting from a forest model f̂, a value of parameter t, and a sam-

ple S, the tree ensemble compression procedure is described in Algo-
rithm 7.1.

Algorithm 7.1 `1-based compression of tree ensemble model f̂ using
a sample S = {xi,yi ∈ X× Y}ni=1

1: function ForestCompression(S, f̂, t)
2: Lift the sample S to the random forest space Z

Sz = {(z(xi),yi) ∈ Z× Y}(x,y)∈S

with the induced feature space by the forest model f̂

z(x) = (11,1(x), . . . , 11,N1(x), . . . , 1M,1(x), . . . , 1M,NM(x)) .

3: Select weight vector β∗(t) over Z through `1 minimization

(
β∗j (t)

)q
j=0

= arg min
β

n∑
i=1

yi −β0 − q∑
j=1

βj zj(x
i)

2

s.t.
q∑
j=1

|βj| 6 t.

4: Compress the random forest model f̂ using vector β∗(t)
5: return The compressed model.
6: end function

Note that in practice both the forest construction and the genera-
tion of its sequence of compressed versions for growing values of t
may use the same sample (the learning set). A separate validation set
is however required to select the optimal value of parameter t. This
is similar to what is done with the pruning of a single decision tree
(see Section 3.3).

7.2 empirical analysis

In the following experiments, datasets are pre-whitened: input/out-
put data are translated to zero mean and rescaled to unit variance. All
results shown are averaged over 50 runs in order to avoid randomiza-
tion artifacts.

Each one of these runs consisted of first generating a training set,
and a testing set, and then working as follows. When using the mono-
tone Lasso, we apply the incremental forward stagewise algorithm
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with a step size ε = 0.01. The optimal number of steps n∗step or the
optimal point t∗ = n∗stepε was chosen by ten-fold cross-validation
t∗cv over the training set (to this end, we used a quadratic loss in re-
gression and a 0− 1 loss in classification). More precisely, the training
set is first divided ten times through cross-validation into a learning
set, used both to fit a forest model and to run the incremental for-
ward stagewise algorithm on it, and into a validation set, to estimate
the losses of the resulting sequence of compressed forests. For each
fold, we assess the model fitted over the training set using the valida-
tion set with increasing values of t by steps of ε. For each value of
t, the ten model losses are averaged. The optimal value of t∗ and the
corresponding model compression level are those leading to the best
average loss over the ten folds. The model is then refitted using the
entire training set with t = t∗.

Below, we will apply our approach while using the extremely ran-
domized trees method (Geurts et al., 2006a) to grow the forests (ab-
breviated by “ET”) and we denote their `1-regularization-based com-
pressed version “rET”.

We present an overall performance analysis in Section 7.2.1. Later
on, we enhance our comprehension of the pruning algorithm by
studying the effect of the regularization parameter t in Section 7.2.2
and of the complexity of the initial forest model by varying the pre-
pruning rule values nmin, the minimum number of samples to split,
and M, the number of trees, in Section 7.2.3. While in these last two
sections, we focus our analysis on models obtained on the Friedman1

problem, we notice that similar conclusions can also be drawn for
Two-norm and SEFTi datasets.

7.2.1 Overall performances

We have evaluated our approach on two regression datasets Fried-
man1 and SEFTi and one classification dataset Two-norm (see Ap-
pendix A for their description).

We have used a set of representative meta-parameter values (K,
nmin and M) of the Extra-Trees algorithm (see Table 7.1). Accuracies
are measured on the test sample and complexity is measured by the
number of test nodes of the ET and rET models (the compression
factor being the ratio of the former to the latter). We observe a com-
pression factor between 9 and 34, a slightly lower error for the rET
model than for the ET model on the two regression problems (Fried-
man1 and SEFTi) and the opposite on Two-norm. To compare, we
show the results obtained with the linear Lasso based on the original
features (its complexity is measured by the number of kept features):
it is much less accurate than both ET and rET on the (non-linear) re-
gression problems (Friedman1 and SEFTi), but superior on the (linear)
classification problem (Two-norm).
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Table 7.1: Overall assessment (parameters of the Extra-Tree method: M =

100; K = p; nmin = 1 on Friedman1 and Two-norm, nmin = 10 on
SEFTi).

Datasets Error Complexity

ET rET Lasso ET rET ET/rET Lasso

Friedman1 0.19587 0.18593 0.282441 29900 885 34 4

Two-norm 0.04177 0.06707 0.033500 4878 540 9 20

SEFTi 0.86159 0.84131 0.988031 39436 2055 19 14

Side experiments (results not provided) show that changing the
value of parameter K does not influence significantly the final accu-
racy and complexity on the Two-norm and Friedman1 datasets, while
for SEFTi, accuracy increases strongly with K (presumably due to a
large number of noisy and/or irrelevant features) with however little
impact on the final complexity.

7.2.2 Effect of the regularization parameter t.

The complexity of the regularized ET model is shrunk with the `1-
norm constraint of Equation 7.2 in a way depending on the value of t.
As shown in Figure 7.2(a), an increase of t decreases the error of rET
until t = 3, leading to a complexity (Figure 7.2(b)) of about 900 test
nodes. Notice that in general the rET model eventually overfits when
t becomes large, although this is not visible on the range of values
displayed in Figure 7.2(a) as the algorithm stops before.

(a) Estimated risk (b) Complexity

Figure 7.2: An increase of t decreases the error of rET until t = 3 with drastic
pruning (Friedman1, M = 100, K = p = 10 and nmin = 1).
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7.2.3 Influence of the Extra-Tree meta parameters nmin and M.

The complexity of an ET model grows (linearly) with the size of the
ensemble M and is inversely proportional to its pre-pruning parame-
ter nmin.

Figure 7.3 shows the effect of nmin on both ET and rET. Interestingly,
the accuracy and the complexity of the rET model are both more
robust with respect to the choice of the precise value of nmin than
those of the ET model, specially for the smaller values of nmin (nmin 6
10, in Figures 7.3).

(a) Estimated risk (b) Complexity

Figure 7.3: The accuracy and complexity of an rET model does not depend
on nmin, for nmin small enough (Friedman1,M = 100, K = p = 10

and t = t∗cv).

Figure 7.4 shows the effect of M on both ET and rET models. We
observe that increasing the value of M beyond the value M(p) where
variance reduction has stabilized (M(p) ' 100 in Figure 7.4) allows
to further improve the accuracy of the rET model without increasing
its complexity.

(a) Estimated risk (b) Complexity

Figure 7.4: After variance reduction has stabilized (M ' 100), further in-
creasing M keeps enhancing the accuracy of the rET model with-
out increasing complexity (Friedman1, nmin = 10, K = p = 10

and t = t∗cv).
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7.3 conclusion

Compression of randomized tree ensembles with `1-norm regulariza-
tion leads to a drastic reduction of space complexity while preserving
accuracy. The complexity of the pruned model does not seem to be
directly related to the complexity of the original forest, i.e. the num-
ber and complexity of each randomized tree, as long as this forest has
explored a large enough space of variable interactions.

The strong compressibility of large randomized tree ensemble mod-
els suggests that it could be possible to design novel algorithms based
on tree-based randomization which would scale in a better way to
very high-dimensional input spaces than the existing methods. To
achieve this, one open question is how to get the compressed tree
ensemble directly, i.e. without generating a huge randomized tree en-
semble and then pruning it.

Tree-based ensemble models may be interpreted as lifting the orig-
inal input space towards a (randomly generated) high-dimensional
discrete and sparse representation, where each induced feature corre-
sponds to the indicator function of a particular tree node, and takes
the value 1 for a given observation if this observation reaches this
node, and 0 otherwise. The dimension of this representation is on the
order of nM(p), but the number s of non-zero components for a given
observation is only on the order of M(p) logn. Compressed sens-
ing theory (Candès and Wakin, 2008) tells us that high-dimensional
sparsely representable observations may be compressed by project-
ing them on a random subspace of dimension proportional to s logp,
where p is the original dimension of the observations and s� p is the
number of non-zero terms in their sparse representation basis. This
suggests that one could reduce the space complexity of tree-based
method by applying compressed sensing to their original input fea-
ture space if its dimension is high, and/or to their induced feature
space if nM(p) is too large.

Since the publication of our work on this subject, several authors
have proposed similar ideas to post-prune a fully grown random for-
est model: Ren et al. (2015) propose to iteratively remove or re-weight
the leaves of the random forest model, while Duroux and Scornet
(2016) study the impact of pre-pruning on random forest models.
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Outline

Many supervised learning tasks, such as text annotation, are charac-
terized by high dimensional and sparse input spaces where the input
vectors of each sample has only a few non zero values. We show how
to exploit algorithmically the input space sparsity within decision tree
methods. It leads to significant speed up both on synthetics and real
datasets, while leading to exactly the same model. We also reduce the
required memory to grow such models by exploiting sparse memory
storage instead of dense memory storage for the input matrix.

This contribution is a joint work with Fares Hedayati and Panagiotis
Papadimitriou, working at www.upwork.com. The outcome of this research
has been proposed and merged in the scikit-learn (Buitinck et al., 2013;
Pedregosa et al., 2011) open source package.

Many machine learning tasks such as text annotation usually require
training over very big datasets with millions of web documents. Such
tasks require defining a mapping between the raw input space and
the output space. For example in text classification, a text document
(raw input space) is usually mapped to a vector whose dimensions
correspond to all of the possible words in a dictionary and the values
of the vector elements are determined by the frequency of the words
in the document. Although such vectors have many dimensions, they
are often sparsely representable. For instance, the number of unique
words associated to a text document is actually small compared to
the number of words of a given language. We describe those samples
with sparse input vectors as having a few non zero values.

Exploiting the low density, i.e. the fraction of non zero elements,
and the high sparsity, i.e. the fraction of zero elements, is key to ad-
dress such high dimensional supervised learning tasks. Many models
directly formulate their entire algorithm to exploit the input sparsity.
Linear models such as logistic regression or support vector machine
harness the sparsity by expressing most of their operations as a set of
linear algebra operations such as dot products who directly exploit
the sparsity to speed up computations.

Unfortunately, decision tree methods are not expressible only
through linear algebra operations. Decision tree methods are recur-
sively partitioning the input space by searching for the best possible
splitting rules. As a consequence, most machine learning packages ei-
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ther do not support sparse input vectors for tree-based methods, only
support stumps (decision tree with only one internal node) or have
a sub-optimal implementation through the simulation of a random
access memory as in the dense case. The only solution is often to den-
sify the input space which leads first to severe memory constraints
and then to slow training time.

In Section 8.1, we present efficient algorithms to grow vanilla deci-
sion trees, boosting and random forest methods on sparse input data.
In Section 8.2, we describe how to adapt the prediction algorithm of
these models to sparse input data. In Section 8.3, we show empiri-
cally the speed up obtained by fitting decision trees with this input
sparsity aware implementation.

8.1 tree growing

During the decision tree fitting, the tree growing algorithm (see Algo-
rithm 3.2) interacts with the input space at two key points:

1. during the search of a splitting rule st using a sample set Lt at
the expansion of node t (see line 10 of Algorithm 3.2);

2. during the data partitioning of the sample Lt into a left and
a right partition following the splitting rule st at node t (see
line 11 of Algorithm 3.2).

In this section, we show how to adapt decision tree at these three
key points to handle sparsely expressed data. While at the same time,
we will show how to harness the sparsity to speed up the original al-
gorithm. We first explain how node splitting is implemented in stan-
dard decision trees in Section 8.1.1 and then explain our efficient im-
plementation for sparse input data in Section 8.1.2. In Section 8.1.3,
we further describe how to propagate samples with sparse input dur-
ing the decision tree growing.

8.1.1 Standard node splitting algorithm

During the decision tree growth, the crux of the tree growing algo-
rithm in high dimensional input space is the search of the best possi-
ble local splitting rule st (as described in Section 3.2.1). Given a learn-
ing set Lt reaching a node t, we search for the splitting rule st among
all the possible binary and axis-wise splitting rules Ω(Lt). We strive
to maximize the impurity reduction ∆I obtained by dividing the sam-
ple set Lt into two partitions (Lt,r,Lt,l). The splitting rule selection
problem (line 10 of the tree growing Algorithm 3.2) is written as

st = arg max
s∈Ω(Lt)

∆I(Lt,Lt,l,Lt,r) (8.1)
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with

Ω(Lt) =

{
s : s ∈

⋃
j∈{1,...,p}

Q(xj),

Lt,l = {(x,y) ∈ Lt : s(x) = 1},

Lt,r = {(x,y) ∈ Lt : s(x) = 0},

Lt,l 6= ∅,Lt,r 6= ∅

}
(8.2)

where Q(xj) is the set of all splitting rules associated to an input
variable xj.

Decision tree libraries carefully optimize this part of the algorithm
to have the proper computational complexity with a low constant. A
careful design of the algorithm for instance does not move around
samples according to the partitions, but instead move an identifi-
cation number linked to each sample. The learning set L is imple-
mented as an array of row indices L linked to the rows of the input
matrix X and the output matrix Y. The sample set Lt reaching a node
t is implemented as a slice of the array L[startt : endt[ where the
elements from the startt to the ‘endt − 1‘ indices gives the indices of
the samples reaching node t.

Let us take a small example with a set of 10 training samples L =

[0, 1 , · · · , 9] illustrating the management of the array L. During the
tree growth (see Algorithm 3.2) when we partition the sample set
Lt = {1, . . . , 10} into two sample sets Lt,l = {9, 1, 5, 3} and Lt,r =

{2, 7, 6, 4, 8, 0}. In practice, we modify the array L such that from 0 to
|L1,l| = 4 (resp. from |L1,l| = 4 to |L1| = 10) are located the samples
of the left child (resp. right child). It leads to

L = [9, 1, 5, 3, 2, 7, 6, 4, 8, 0].

We represent each sample set Lt as a slice [start : end[, a chunk, of
the array L. The sample set L1,l is the slice [0 : 4[ of L, while the
sample set L1,r is the slice [4 : 10[ of L. Now if the right node L1,r

is further split into a left node with samples {6, 0} and a right node
with samples {2, 7, 4, 8} (in orange), then L[4 : 10[ is further modified
to reflect the split:

L = [9, 1, 5, 3, 2, 7, 4, 8, 6, 0].

To further speed up the best splitting rule search with ordered vari-
ables, we sort the possible thresholds associated to an ordered input
variable xj (programmatically sort(Xj[L[startt : endt[[)). By sorting
the possible thresholds sets, we can evaluate the impurity measure
I and the impurity reduction ∆I in an online fashion. For instance,
the Gini index and entropy criteria can be computed by updating
the class frequency in the left and right split when moving from one
splitting threshold to the next.
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8.1.2 Splitting rules search on sparse data

To handle sparse input data with decision trees, we need efficient
procedures to select the best splitting rules st among all the possible
splitting rules knowing that we have a high proportion of zeros in
the input matrix X. In this section, we propose an efficient method
to exploit the sparsity of the input space with decision tree models.
Our method takes advantage of the input sparsity by avoiding sort-
ing sample sets of a node along a feature unless there are non zero
elements at this feature. This approach speeds up training substan-
tially as extracting the possible threshold values and sorting them is
a costly but essential and ubiquitous component of tree-based mod-
els.

The splitting rule search algorithm for an ordered variable xj at
a node t is divided in two parts (see Algorithm 8.1): (i) to extract
efficiently the non zero values associated to xj in the sample partition
Lt (line 3) and (ii) to search separately among the splitting rules with
the positive, negative or zero threshold (line 4).

Algorithm 8.1 Search for the best splitting rule s∗t given a sparse input
matrix X and a set of samples Lt

1: function FindBestSparseSplit(X, Lt)
2: for j = 1 to p do
3: Extract strictly positive Xj,pos and strictly negatives Xj,neg

values from Xj given Lt.
4: Search for the best splitting rule of the form s∗j (x) = xj 6

τ with τ ∈ Xj,pos ∪ {0} ∪ Xj,neg maximizing the impurity
reduction ∆I over the sample set Lt.

5: Update s∗ if the splitting rule s∗j leads to higher impurity
reduction.

6: end for
7: return s∗

8: end function

To extract the non zero values of a sparse input matrix X ∈ Rn×p

with sparsity s in the context of the decision tree growth, we need to
perform efficiently two operations on matrices: (i) the column index-
ing for a given input variable j and (ii) the extraction of the non zero
row values associated to the set of samples Lt reaching the node t in
this column j. The overall cost of extracting |Lt| samples at a column
j from the input matrix X should be proportional to the number of
non zero elements and not to |Lt|.1

Among the different sparse matrix representations (Barrett et al.,
1994; Hwu and Kirk, 2009; Pissanetzky, 1984), the sparse csc matrix
format is the most appropriate for tree growing as it allows efficient

1 We assume here that the matrix X is uniformly sparse.
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column indexing, as required during node splitting. Let us show how
to perform an efficient extraction of the non zero values given the
sample set Lt using this matrix format. Note that using a compressed
row storage sparse format2 would not be appropriate during the tree
growth as we need to be able to efficiently subsample input variables
at each expansion of a new testing node.

Compressed Sparse Column (CSC) matrix format

The sparse csc matrix with nnz non zero elements is a data structure
composed of three arrays:

indices ∈ Znnz containing the row indices of the non zero ele-
ments.

data ∈ Rnnz containing the values of the non zero elements.

indptr ∈ Zp containing the slice of the non zero elements. For a
column j ∈ {1 , . . . , p}, the row index and the values of the
non zero elements of columns j are stored from indptr[j] to
indptr[j + 1] in the indices and data arrays.

The non zero values associated to an input variable j are located
from indptr[j] to indptr[j + 1] − 1 in the indices and the data
arrays (when indptr[j] = indptr[j + 1], the column thus contains
only zeros). Extracting them requires to perform a set intersection
between the sample set Lt reaching node t and the non zero values
indices[indptr[j] : indptr[j + 1][ of the column j.

For instance, the following matrix A has only 3 non zero elements,
but we would use an array of 20 elements:

A ∈ R4×5 =


a 0 0 b 0

0 0 0 c 0

0 0 0 0 0

0 0 0 0 0

 . (8.3)

The csc representation of this matrix A is given by

data =
[
a b c

]
,

indices =
[
0 0 1

]
,

inptr =
[
0 1 1 1 3 3

]
.

2 The compressed row storage (csr) sparse array format is made of three arrays indptr,
indices and value. The non zero elements of the i-th row of the sparse csc matrix
are stored from indptr[i] to indptr[i+ 1] in the indices arrays, giving the column
indices, and value arrays, giving the stored values. It is the transposed version of
the csc sparse format.
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Let nnz ,j = (indptr[j + 1] − indptr[j]) ∀j be the number of
samples with non zero values for input variable j and let us assume
that the indices of the input csc matrix array are sorted column-
wise, i.e. for the j-th row, the elements of indices from indptr[j] to
indptr[j + 1] − 1 are sorted. Standard intersection algorithms have
the following time complexity:

1. in O(|Lt| lognnz,j) by performing |Lt| binary search on the
sorted nnz,j nonzero elements;

2. in O(|Lt| log |Lt|+ nnz,j) by sorting the sample set Lt and re-
trieving the intersection by iterating over both arrays;

3. in O(nnz,j) by maintaining a data structure such as a hash
table of Lt allowing to efficiently check if the elements of
indices[indptr[j]:indptr[j+ 1][ are contained in the sample par-
tition Lt.

The optimal intersection algorithm depends on the number of non
zero elements for input variable j and the number of samples |Lt|

reaching node t. During the decision tree growth, we have two oppo-
site situations: either the size of the sample partition |Lt| is high with
respect to the number of non zero elements (|Lt| ≈ O(n) ≫ nnz,j)
or, typically at the bottom of the tree, the partition size is small with
respect to the number of non zero elements (nnz,j ≫ |Lt|). In the
first case (i.e., at the top of the tree), the most efficient approach is
thus approach (3), while in the second case (i.e., at the bottom of the
tree), approach (1) should be faster. We first describe how to imple-
ment approach (3), then approach (1), and finally how to combine
both approaches.

A straightforward implementation of approach (3) is, at each node,
to allocate a hash table containing all training examples in that node
(in O(|Lt|)) and then to compute the intersection by checking if the
non zero elements of the csc matrix belong to the hash table (in
O(nnz,j)). We can however avoid the overhead required for the al-
location, creation, and deallocation of the hash table by maintaining
and exploiting a mapping between the csc matrix and the sample set
Lt. Since the array L is constantly modified during the tree growth,
we propose to use an array, denoted mapping, to keep track of the
position of a sample i in the array L as illustrated in Figure 8.1. Dur-
ing the tree growing, we keep the following invariant:

mapping[L[i]] = i. (8.4)

In the above example, the array L was [0, 1, . . . 9] with mapping =

[0, 1, . . . 9]. After a few splits, the array L has become

L = [9, 1, 5, 3, 2, 7, 4, 8, 6, 0]
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indices

0

∑p
j=1 nnz,jindptr[j] indptr[j+ 1]

mapping

0

L

0 nstart end

Lp

n

Figure 8.1: The arraymapping allows to efficiently compute the intersection
between the indices array of the csc matrix and a sample set Lt.

and the associated mapping array is

mapping = [9, 1, 4, 3, 6, 2, 8, 5, 7, 0].

Thanks to the mapping array, we can now check in constant time
O(1) whether a sample i belongs to the sample set Lt. Indeed, given
that Lt is represented by a slice from an index start to an index
end− 1 in L, sample i belongs to Lt if the following condition holds:

start 6 mapping[i] < end. (8.5)

To extract the non zero values of the csc matrix associated to the j-th
input variable in the sample set Lt, we check the previous condition
for all samples from indptr[j] to indptr[j+ 1] − 1 in the indices array.
Thus, we perform the intersection between Lt and the nnz,j non zero
values in O(nnz,j). The whole method is described in Algorithm 8.2.
Note that to swap samples in the array L, we use a modified swap
function (see Algorithm 8.3) which preserves the mapping invariant .

In practice, the number of non zero elements nnz,j of feature j could
be much greater than the size of a sample set Lt. This is likely to hap-
pen near the leaf nodes. Whenever the tree is fully developed, there
are only a few samples reaching these nodes. The approach (1) shown
in Algorithm 8.4 exploits the relatively small size of the sample set
and performs repeated binary search on the nnz,j non zero elements
associated to the feature j.
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Algorithm 8.2 Return the nneg strictly negative and npos positive
values (Xj,neg,Xj,pos) associated to the j-th variable from the sample
set L[start : end[ through a givenmapping satisfyingmapping[L[i]] =
i. The array L is modified so that L[start : start+nneg[ contains the
samples with negatives values, L[start+nneg : end−npos[ contains
the zero values and L[end− npos : end[ the samples with positives
values.

1: function extract_nnz_mapping(X, j, L, start, end, mapping)
2: Xj,pos = []

3: Xj,neg = []

4: startp = end
5: endn = start
6: for k ∈ [X.indptr[j]:X.indptr[j+ 1][ do
7: index = indices[k]

8: value = data[k]

9: if start 6 mapping[index] < end then
10: i = mapping[index]
11: if value > 0 then
12: Xj,pos.append(value)
13: startp− = 1

14: Swap(L, i, startp, mapping)
15: else
16: Xj,neg.append(value)
17: Swap(L, i, endn, mapping)
18: endn+ = 1

19: end if
20: end if
21: end for
22: return Xj,pos,Xj,neg, endn − start, end− startp
23: end function

Algorithm 8.3 Swap two elements at positions p1 and p2 in the array
L in place while maintaining the invariant of the mapping array.

1: function Swap(L, p1, p2, mapping)
2: L[p1], L[p2] = L[p2], L[p1]
3: mapping[L[p1]] = p1
4: mapping[L[p2]] = p2
5: end function
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Algorithm 8.4 Return the nneg strictly negative and npos positive val-
ues (Xj,neg,Xj,pos) associated to the j-th variable from the sample set
L[start : end[ through repeated binary search. The array L is modified
so that L[start : start + nneg[ contains the samples with negatives
values, L[start + nneg : end − npos[ contains the zero values and
L[end−npos : end[ the samples with positives values.

1: function extract_nnz_bsearch(X, j, L, start, end, mapping)
2: Xj,pos = []

3: Xj,neg = []

4: startp = end
5: endn = start
6: indicesj = X.indices[X.indptr[j] : X.indptr[j+ 1][
7: dataj = X.data[X.indptr[j] : X.indptr[j+ 1][
8: L = sort(L, start, end)
9: for i ∈ [start : end[ do

10: // Get the position of L[i] in indicesj, and -1 if it is not
found: p = BinarySearch(L[i], indicesj)

11: if p 6= −1 then
12: if dataj[p] > 0 then
13: startp− = 1

14: Xj,pos.append(dataj[p])
15: Swap(L, i, startp, mapping)
16: else
17: Xj,neg.append(dataj[p])
18: Swap(L, i, endn, mapping)
19: endn+ = 1

20: end if
21: end if
22: end for
23: return Xj,pos,Xj,neg, endn − start, end− startp
24: end function
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The optimal extraction of non zero values is a hybrid approach
combining the mapping-based algorithm (Algorithm 8.2) and the bi-
nary search algorithm (Algorithm 8.4). Empirical experiments have
shown that it is advantageous to use the mapping-based algorithm
whenever

|Lt|× log(nnz,j) < 0.1×nnz,j. (8.6)

and the binary search otherwise (see Algorithm 8.5). The formula is
based on the computational complexity of both algorithms. We have
determined the constant of 0.1 empirically.

Algorithm 8.5 Return the nneg strictly negative and npos positive
values (Xj,neg,Xj,pos) associated to the j-th variable from the sample
set L[start : end[. The array L is modified so that L[start : start+

nneg[ contains the samples with negatives values, L[start + nneg :

end − npos[ contains the zero values and L[end − npos : end[ the
samples with positives values.

function extract_nnz(X, j, L, start, end, mapping)
Let nnz,j be the number of non zero values in column j of X.

if (end− start)× log(nnz,j) < 0.1×nnz,j then
return extract_nnz_mapping(X, j, L, start, end, mapping)

else
return extract_nnz_bsearch(X, j, L, start, end, mapping)

end if
end function

Note that after extracting the non zero values, we need to sort the
thresholds of the splitting rules to search efficiently for the best one.
Thanks to Algorithm 8.5, Algorithm 8.2 and Algorithm 8.4, we have
already made a three way partition pivot as in the quicksort on the
value 0. This speeds up the overall splitting algorithm (the line 4 of
Algorithm 8.1). Instead of sorting the thresholds in the sample set Lt
in O(|Lt log(Lt)|), we can perform the sort in O(dLt log(dLt)) given
an input space density d.

As a further refinement, let us note that we can sometimes signif-
icantly speed up the decision tree growth by avoiding to search for
splitting rules on constant input variables. To do so, we can cache the
input variables that were found constant during the expansion of the
parents of the node of t. If an input variable is found constant, caching
this information avoids the overhead of searching for a splitting rule
when no valid one exists.

8.1.3 Partitioning sparse data

During the tree growth, we need to partition a sample set Lt =

{(x,y) ∈ X× Y}ni=1) at a testing node t according to a splitting rule



164 exploiting input sparsity with decision tree

st(x). The splitting rule st associated to an ordered input variable is
of the form st(x) = 1(xFt 6 τt), where τt is a threshold constant on
the Ft-th input variable.

During the tree growth, we have the constraint that the input data
matrix is in the csc sparse format. We can not convert the current
sparse format to another one as it would require to store both the
new and old representations into memory. An efficient way to split
the sample set Lt into its left Lt,l and right Lt,r subset is to use the
Algorithm 8.5. It will extract the non zero values of a given input
variable, but also partition the array L representing the sample set
Lt into three parts: (i) L[start : start+nneg[ contains the nneg sam-
ples with negatives values, (ii) L[start+ nneg : end− npos[ contains
the elements with zero values and (iii) L[end− npos : end[ the npos
samples with positives values. Once the non zero values have been ex-
tracted, we have to partition the samples either with negative values
(L[start : start+nneg[) or with positive values (L[end−npos : end[)
according to the sign of the threshold τt.

The complexity to partition once the data is
O(min

(
nnz,j, |Lt|× log(nnz,j)

)
) for a batch of Lt samples instead of

the usual O(|Lt|) with dense input data.

8.2 tree prediction

The prediction of an unseen sample x by a decision tree (see Algo-
rithm 3.1) is done by traversing the tree from the top to the bottom.
At each test node, a splitting rule of the form tests whether or not
the sample x should go in the left or the right branch. The split-
ting rule st associated to an ordered input variable is of the form
st(x) = 1(xFt 6 τt), where τt is a threshold constant on the Ft-th
input variable.

We need to have an efficient row and column indexing of the input
data matrix. We discuss here two options: (i) using the dictionary
of key (dok) sparse matrix format and (ii) using a csr sparse matrix
format3.

The dictionary of key (dok) sparse matrix format store the non
zero values in a hash table whose keys are the pairs formed from
the row and the column index. It is straightforward to apply Algo-
rithm 3.1 with the dok format. The computational complexity is thus
unchanged.

To predict one or several unseen samples using a csr array, we
need a procedure to efficiently access to both the row and the col-
umn index without densifying the csr matrix. We allocate two ar-

3 The compressed row storage (csr) sparse array format (Barrett et al., 1994; Hwu and
Kirk, 2009; Pissanetzky, 1984) is made of three arrays indptr, indices and value. The
non zero elements of the i-th row of the sparse csc matrix are stored from indptr[i]

to indptr[i+ 1] in the indices arrays, giving the column indices, and value arrays,
giving the stored values. It is the transposed version of the csc sparse format.
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rays nz_mask ∈ Zp with all elements having the value “−1” and
nz_value ∈ Rp of size p. To predict the i-th sample from a test
set, we set in the array nz_mask the value i to the non zero val-
ues indices[indptr[i] : indptr[i+ 1][ associated to this sample. The
array nz_value is modified to contain the non zero values of the i-th
sample, i.e. values[indptr[i] : indptr[i+ 1][. During the tree traver-
sal (see Algorithm 3.1), we get the j-th input value by first checking
if it is zero with nz_mask[j] 6= i, otherwise the value is stored at
nz_value[j]. Assuming a proportion of zero elements s for a batch
of n test samples with p input variables, the extra cost of using this
approach is O(p+ (1− s)np). Note that using the nz_mask and the
nz_value arrays is more efficient than densifying each sample as it
would add an extra cost of O(np).

The csr sparse format leads to a worse computational complexity
than the dok format, which has no extra computing cost. However,
the csr approach was chosen in the scikit-learn machine learning
python library. The standard implementation of the dok format in
scipy is indeed currently implemented using the python dict object.
While with the csr format, we can work only with low level c arrays
and we can also easily release the global interpreter lock (GIL). Note
that here the csr format is also better suited than the csc format as
the complexity is independent of the number of samples to predict at
once.

8.3 experiments

In this section, we compare the training time and prediction time of
decision tree growing and prediction algorithms using either dense
data representation or sparse data representation. More specifically,
we compare three input matrix layouts using scikit-learn version 0.17:
(i) the dense c array layout, a row major order layout whose consec-
utive and contiguous elements are row values, (ii) the dense fortran
array layout, a column major order layout whose consecutive and con-
tiguous elements are column values, and (iii) the sparse array layout,
the csc sparse format during tree growing and the csr sparse format
during tree prediction (as proposed respectively in Sections 8.1.2 and
8.1.3). The comparison will be made with stumps, a decision tree
with a single test node, and fully grown decision trees. These results
will be indicative of what could be gained in the context of boosting
methods using decision tree of low complexity such as stumps and
random forest methods using deep decision trees. Note that all split-
ting algorithms lead exactly to the same decision tree structure and
have the same generalization performance.

We assess the effect of the input space density on synthetic datasets
in Section 8.3.1. Then, we compare training times using each of the
three input matrix layouts on real datasets in Section 8.3.2.
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8.3.1 Effect of the input space density on synthetic datasets

As a synthetic experiment, we compare the decision tree growing al-
gorithm and tree prediction algorithm on synthetic regression tasks
with n = 105 samples and p = 103 features. The input matrices
are sparse random matrices whose non zero elements are drawn uni-
formly in N(0; 1). The output vector is drawn uniformly at random
in [0, 1]. The input space density ranges from 10−3 to 1. Each point is
an average over 20 experiments.

Figure 8.2a shows in logarithmic scale the computing times to grow
a single stump. We first note that column-based layouts (the fortran
and csc format) are more appropriate to grow decision tree on sparse
data. While the density is ranging from 10−3 to 10−1, the most expen-
sive part of the tree growing for a single stump is to retrieve the input
values from a sample set and to sort them. For a set of n samples and
p features with a sparsity s, the computational cost to grow a stump
on dense data is O(pn logn). By contrast, growing a stump using a
csc sparse input matrix has a computational complexity of

O(p(1− s)n log ((1− s)n) + min{pn log (n(1− s)),pn(1− s)})

= O(p(1− s)n log ((1− s)n))}. (8.7)

The first term of Equation 8.7 corresponds to the sorting of non zero
elements. The second term highlights the contribution of the retrieval
of the non zero values, which is always less costly than the sorting op-
eration. If the density is 1 (s = 0), both the dense and sparse formats
have the same complexity as shown in the right point of Figure 8.2a.
Overall with a sparse dataset, the csc format is significantly faster as
it leverages the sparsity. The bad performance of the dense c layout
compared to the fortran layout or csc layout can be explained by the
higher number of cache misses.

The time required to predict the training set using the fitted stump
is shown in Figure 8.2b. The only difference between the three input
matrix layouts (c, fortran and csr) is the access to the non zero ele-
ments. The differences between the dense and the sparse input ma-
trix format can be explained by a better exploitation of the cache for
the sparse format, especially when the density is below 0.02. When
the density if over 0.02, the cost of copying the non zero values to the
arrays nz_mask and nz_values becomes dominant.

Figure 8.3 shows the time required to learn a fully grown decision
tree as a function of the dataset density. Note that the maximal depth
decreases as a function of the dataset density (see Figure 8.3c) as the
decision tree becomes more balanced. As with the stump, the fortran
layout is more appropriate than the c layout to grow a fully grown
decision tree on sparse data. The sparse csc algorithm is significantly
faster than the dense splitting algorithm if the density is sufficiently
low (here below 0.02). The sparse splitting algorithm becomes slower
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Figure 8.2: Learning and prediction time of stumps as a function of the input
space density.

Table 8.1: Dataset properties ordered by input space density.

Dataset n p Density

news20.binary (Keerthi and DeCoste, 2005) 19996 1355191 0.0003

20newsgroup (Lang, 1995; Rennie and Rifkin, 2001) 11314 130107 0.0012

rcv1 (Bekkerman and Scholz, 2008) 23149 47236 0.0016

sector-scale (Keerthi et al., 2008; Rennie and Rifkin, 2001) 9619 55197 0.0029

farm-ads-vect (Mesterharm and Pazzani, 2011) 4143 54877 0.0036

E2006-train (Kogan et al., 2009) 16087 150360 0.0083

mushrooms (Lichman, 2013) 8124 112 0.1875

mnist (LeCun et al., 1998) 70000 784 0.1914

covtype (Lichman, 2013) 581012 54 0.2110

as the density increases (here beyond 0.02) since the extraction of the
non zero values becomes more costly than finding the right split.

With fully developed decision trees, the prediction time (see Fig-
ure 8.3b) is similar between its dense and sparse version. The predic-
tion time is lower when the input space density is high as the trees
are more balanced. We note that the prediction time is correlated with
the maximal depth of the tree.

Whenever the complexity of the decision tree lies between a stump
and a fully developed tree, the behavior moves from one extreme to
the other.

8.3.2 Effect of the input space density on real datasets

To further study the impact of the input space density, we have se-
lected 9 datasets whose input space density ranges from 0.00034 to
0.22. These datasets are presented in Table 8.1 ordered by input space
density.

Table 8.2 shows the time to train a single stump. The fastest algo-
rithm here is the tree growing algorithm with the input sparse csc
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Figure 8.3: Learning time, prediction time and maximal depth as a function
of the input space as a function of the input space density for
fully grown decision trees.
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Table 8.2: The time (in second) required to train a stump using a sparse csc
layout is always faster than with the fortran or c dense memory
layout on all sparse selected datasets.

Dataset c fortran sparse fortran / sparse

news20.binary N/A N/A 3.31 N/A

20newsgroup 213.18 15.77 0.79 20.1

rcv1 197.61 28.90 15.97 1.8

sector-scale 58.56 7.10 1.08 6.6

farm-ads-vect 26.03 3.22 0.14 23.0

E2006-train 413.35 35.44 8.62 4.1

mushrooms 0.03 0.02 0.02 1.2

mnist 5.23 2.65 2.00 1.3

covtype 3.89 2.57 2.35 1.1

matrix. The speed up factor between the sparse and fortran memory
layout ranges from 1.1 to 23 times. Note that the fortran layout is al-
ways faster than the c layout. The column major order layout is here
better suited for sparse dataset. The difference could be explained by
fewer cache misses with the fortran memory layout than with the c
memory layout.

Table 8.3 shows the time required to grow a fully developed deci-
sion tree with c, fortran or sparse csc memory layout. The dense for-
tran layout is here always faster than the dense c layout. The sparse
memory layout is faster by a factor between 1.3 and 7.5 than the for-
tran layout when the input space density is below 0.3%.

Note that we were unable to grow a decision tree with a dense
memory layout on the news20.binary dataset as it would require 108.4
Gigabyte to only store the input matrix instead of 78 Megabytes.

8.3.3 Algorithm comparison on 20 newsgroup

Decision trees are rarely used in the context of sparse input datasets.
One reason is the lack of implementations exploiting sparsity dur-
ing the decision tree growth. With the previous experiments, we have
shown that it increases significantly the computing time, but also the
amount of memory needed. With the proposed tree growing and pre-
diction algorithms, it is interesting to compare the training time, pre-
diction time and accuracy of some tree based models, such as random
forest or adaboost, with methods more commonly used in the pres-
ence of sparse data.

We compare tree based methods to methods more commonly
used on sparse datasets on the 20 newsgroup dataset, which have
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Table 8.3: The time required to train a fully grown decision tree using a c, a
fotran or a sparse csc memory layout.

Dataset c fortran sparse fortran / sparse

news20.binary N/A N/A 428.89 N/A

20newsgroup 4281.02 518.34 69.06 7.5

rcv1 1458.45 562.19 442.15 1.3

sector-scale 5337.65 878.67 206.69 4.3

farm-ads-vect 227.24 45.71 7.95 5.7

E2006-train 2467.39 752.15 1083.62 0.7

mushrooms 0.07 0.05 0.04 1.3

mnist 80.09 56.11 178.59 0.3

covtype 53.51 33.82 240.26 0.1

p = 130107 input variables, 11314 training sample ands 7532 testing
samples.

The compared algorithms are optimized on their respective hyper-
parameters (see Table 8.4 for the details) using 5-fold cross validation
strategy on the training samples.

The results obtained on the 20 newsgroup dataset are shown in Ta-
ble 8.5 using scikit-learn version 0.17.1 and input sparsity-aware im-
plementations. The algorithm with the highest accuracy is the linear
estimator trained with ridge regression. It is closely followed by the
random forest (m = 1000) model, the multinomial naives Bayes and
extra-trees (m = 1000). More generally, tree-based ensemble methods
(random forest, extra trees, and adaboost) show similar performance
as linear methods (ridge, naive bayes, linear SVC and SGD), with all
methods from these two families reaching at least 0.75 of accuracy.
On the other hand, the k-nearest neighbors and the single decision
tree perform very poorly (with an accuracy below 0.6).

We also note that increasing the number of trees from 100 to 1000

significantly improves the performance of both random forests and
extra trees. Their accuracy increases respectively by 0.0573 and 0.0409
in absolute value. Building tree ensembles also very significantly im-
proves the accuracy with respect to single trees (by at least 0.20). This
further suggests that the variance of single trees is very high on this
problem.

From a modeling perspective, growing decision tree ensemble on
datasets with sparse inputs is possible. From a training time perspec-
tive, the time needed to grow and to optimize an ensemble of 100

trees is comparable to the time needed to train linear models, e.g.,
with SGD or ridge regression. Note that naive Bayes models are par-
ticularly fast to train compared to the other estimators. However note
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Table 8.4: Hyper-parameters grids.

k-nearest neighbors

k, number of neighbors {1, . . . , 10}

Decision tree

nmin, min. number of samples to split a node {2, 5, 10, 15}

Extra trees, random forest

nmin, min. number of samples to split a node {2, 5, 10, 15}

k, number of features drawn at each nodes {1, logp,
√
p, 0.001p}

M, ensemble size 100 or 1000

Adaboost with decision trees as weak estimators

nmin, min. number of samples to split a node {2, 5, 10, 15}

k, number of features drawn at each nodes {1, logp,
√
p, 0.001p}

M, ensemble size 100

µ, learning rate {1, 0.1, 0.01}

Bernoulli and multinomial naive Bayes

λ, additive smoothing parameter {0, 0.001, 0.01, 0.1, 1}

Ridge classifier

λ, penalty parameter {0.0001, 0.001, 0.01, 0.1, 1, 10}

Linear support vector machine classifier (SVC)

λ, penalty parameter {10i}4i=−5

Stochastic gradient descent (SGD)

Loss {hinge, logistic}

Penalty constraint {`1, `2, elastic net}

λ, penalty parameter {0.0001, 0.001, 0.01, 0.1, 1, 10}

Number of iterations 100
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Table 8.5: Accuracy, training time (in second) and prediction time (in second)
of algorithms on 20 newsgroup sorted by accuracy score.

Estimator Training time Prediction time Accuracy

K-nearest neighbors 295 22.35 0.457

Decision tree 859 0.02 0.557

Adaboost 37867 8.84 0.752

Bernoulli naives Bayes 25 0.52 0.765

Random forest (m = 100) 11766 12.71 0.778

Extra trees (m = 100) 22186 28.07 0.794

SGD 42776 0.25 0.814

Linear SVC 2481 0.20 0.822

Extra trees (m = 1000) 213009 253.39 0.833

Multinomial naives Bayes 14 0.11 0.833

Random forest (m = 1000) 114472 125.92 0.835

Ridge 5737 0.13 0.844

that the comparison is dependent upon the chosen hyper-parameters,
the implementation and the grid size. From the point of view of pre-
diction time, tree ensemble methods are particularly slow compared
to the other estimators.

8.4 conclusion

We propose an algorithm to grow decision tree models whenever the
input space is sparse. Our approach takes advantage of input sparsity
to speed up the search and selection of the best splitting rule during
the tree growing. It first speeds up the expansion of a tree node by
extracting efficiently the non zero threshold of the splitting rules used
to partition data. Secondly, the selection of best splitting rule is also
faster as we avoid to sort data with zero values. We reduce the mem-
ory needed as we do not need to densify the input space. We also
show how to predict samples with sparse inputs.
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C O N C L U S I O N S

9.1 conclusions

As we now gather or generate data at every moment, machine learn-
ing techniques are emerging as ubiquitous tools in sciences, engi-
neering, or society. Within machine learning, this thesis focuses on
supervised learning, which aims at modelling input-output relation-
ships only from observations of input-output pairs, using tree-based
ensemble methods, a popular method family exploiting tree struc-
tured input-output models. Modern applications of supervised learn-
ing raise new computational, memory, and modeling challenges to
existing supervised learning algorithms. In this work, we identified
and addressed the following questions in the context of tree-based
supervised learning methods: (i) how to efficiently learn in high di-
mensional, and possibly sparse, output spaces? (ii) how to reduce the
memory requirement of tree-based models at prediction time? (iii)
how to efficiently learn in high dimensional and sparse input spaces?
We summarize below our main contributions and conclusions around
these three questions.

learning in high dimensional and possibly sparse out-
put spaces . Decision trees are grown by recursively partitioning
the input space while selecting at each node the split maximizing
the reduction of some impurity measure. Impurity measures have
been extended to address with such models multi-dimensional out-
put spaces, so as to solve multi-label classification or multi-target re-
gression problems. However, when the output space is of high di-
mension, the computation of the impurity becomes a computational
bottleneck of the tree growing algorithm. To speed up this algorithm,
we propose to approximate impurity computations during tree grow-
ing through random projections of the output space. More precisely,
before growing a tree, a few random projections of the output space
are computed and the tree is grown to fit these projections instead
of the original outputs. Tree leaves are then relabelled in the origi-
nal output space to provide proper predictions at test time. We show
theoretically that when the number of projections is large enough,
impurity scores, and thereby the learned tree structures and their
predictions, are not affected by this trick. We then exploit the ran-
domization introduced by the projections in the context of random
forests, by building each tree of the forest from a different randomly
projected subspace. Through experiments on several multi-label clas-
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sification problems, we show that randomly projecting the outputs
can significantly reduce computing times at training without affect-
ing predictive performance. On some problems, the randomization
induced by the projections even allows to reach a better bias-variance
tradeoff within random forests, which leads to improved overall per-
formance. In contrast with existing works on random projections of
the output, our proposed leaf relabelling strategy also allows to avoid
any decoding step and thus preserves computational efficiency at pre-
diction time with respect to standard unprojected multi-output ran-
dom forests.

Multi-output random forests build a single tree ensemble to pre-
dict all outputs simultaneously. While often effective, this approach
is justified only when the individual outputs are strongly dependent
(conditionally to the inputs). On the other hand, building a separate
ensemble for each output, as done in the binary relevance / single
target approach, is justified only when the outputs are (conditionally)
independent. In our second contribution, we build on gradient boost-
ing and random projections to propose a new approach that tries to
bridge the gap between these two extreme assumptions and can hope-
fully adapt automatically to any intermediate output dependency
structure. The idea of this approach is to grow each tree of a gradient
boosting ensemble to fit a random projection of the original (residual)
output space and then to weight this model in the prediction of each
output according to its “correlation” with this output. Through ex-
tensive experiments on several artificial and real problems, we show
that the resulting method has a faster convergence than binary rel-
evance and that it can adapt better than both binary relevance and
multi-output gradient boosting to any output dependency structure.
The resulting method is also competitive with multi-output random
forests. Although we only carried out experiments with tree-based
weak models, the resulting gradient boosting methods are generic
and can thus be used with any base regressor.

reducing memory requirements of tree-based models at

prediction time . One drawback of random forest methods is
that they need to grow very large ensembles of unpruned trees to
achieve optimal performance. The resulting models are thus poten-
tially very complex, especially with large datasets, as the complexity
of unpruned trees typically depends linearly on the dataset size. On
the other hand, only very few nodes are required to make a predic-
tion for a given test example. Our investigation of the question of
ensemble compression started with the observation that the random
forest model can be viewed as linear models in the node indicator
space. Each of these binary variables defining this space indicates
whether or not a sample reaches a given node of the forest. In the
original linear representation of a forest in the indicator space, non
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zero “coefficients” are given only to the leaf nodes. We propose to
post-prune the random forest model by selecting and re-weighting
the nodes of the linear model through the exploitation of sparse lin-
ear estimators. More precisely, from the tree ensemble, we first extract
node indicator variables. Then, we project a sample set on this new
representation and select a subset of these variables through a Lasso
model. The non zero coefficients of the obtained Lasso model are later
used to prune and to re-weight the decision tree structure. The result-
ing post-pruning approach is shown experimentally to reduce very
significantly the size of random forests, while preserving, and even
sometimes improving, their predictive performance.

learning in high dimensional and sparse input spaces .
Some supervised learning tasks (e.g., text classification) need to deal
with high dimensional and sparse input spaces, where input variables
have each only a few non zero values. Dealing with input sparsity in
the context of decision tree ensembles is challenging computation-
ally for two reasons: (i) it is more difficult algorithmic-wise to exploit
sparsity during the tree growth than for example with linear models,
leading to slow tree training algorithms requiring a high amount of
memory, (ii) the decision tree structures are very unbalanced, which
further affects computational complexity. For these two reasons, lin-
ear methods are often preferred to decision tree algorithms to learn
with sparse datasets. In our last contribution, we specifically devel-
oped an efficient implementation of the tree growing algorithm to
handle sparse input variables. While previous implementations re-
quired to densify the input data matrix, our implementation allows
to directly fit decision trees on appropriate sparse input matrices. It
speeds up decision tree training on sparse input data and saves mem-
ory by avoiding input data “densification”. We also show how to
predict unseen sparse input samples with a decision tree model. Note
that in this contribution we only focus on improving computing times
without modifying the original algorithm.

9.2 perspectives and future works

We collect in this section some future research directions based on the
presented ideas of this thesis.

9.2.1 Learning in compressed space through random projections

• The combination of random forest models with random pro-
jections adds two new hyper-parameters to tree based meth-
ods: the choice and the size of the random output projection
subspace. It is not clear yet what would be good default hyper-
parameter choices. Extensive empirical studies and the Johnson-
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Lindenstrauss lemma might help us to define good default val-
ues. These two hyper-parameters also introduce randomization
in the output space. It would be interesting to further inves-
tigate how the input and output space randomizations jointly
modify the bias-variance tradeoff of the ensemble.

• Single random projection of the output space with the gradi-
ent boosting algorithm is a generic multi-output method usable
with any single output regressor. In this thesis, we specifically
focused on tree-structured weak models. We suggest to investi-
gate other kinds of weak models.

• We have combined a dimensionality reduction method with an
ensemble method, random forest methods in Chapter 5 and
with gradient boosting methods in Chapter 6, while keeping the
generation of the random projection matrix independent from
the supervised learning task. It would be interesting to inves-
tigate more adaptive projection schemes. A simple instance of
this approach would be to draw a new random projection ma-
trix according to the residuals, e.g. by sub-sampling an output
variable with a probability proportional to the fraction of un-
explained variance. An optimal instance of this approach, but
computationally more expensive, would compute a projection
maximizing the variance along each axis with the principal com-
ponent analysis algorithm.

• Kernelizing the output of tree-based methods (Geurts et al.,
2006b, 2007) allows one to treat complex outputs such as images,
texts and graphs. It would be interesting to investigate how to
combine output kernel tree-based methods with random projec-
tion of the output space to improve computational complexity
and accuracy. This idea has been studied (Lopez-Paz et al., 2014)
in the context of the kernel principal component algorithm and
the kernel canonical correlation analysis algorithm.

9.2.2 Growing and compressing decision trees

• In the context of the `1-based compression of random forests,
we first grow a whole forest, and then prune it. The post-
pruning step is costly in terms of computational time and mem-
ory as we start from a complex random forest model. A first
study in collaboration with Jean-Michel Begon (Begon et al.,
2016) shows that we actually do not need to start from the whole
forest, and can grow a compressed random forest model greed-
ily. Starting from a set of root nodes, the idea is to sequentially
develop the nodes that reduce the most the error of the chosen
loss function. The process continues until reaching a complexity
constraint, saving time and memory.
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• The space complexity of a decision tree model is linear in the
number of (test and leaf) nodes, which is typically proportional
to the training set size n. In the context of d outputs multi-
output classification or regression tasks, or d classes multi-class
classification tasks, a leaf node is a constant model stored as a
vector of size d. The space complexity of a decision tree model
is thus O(nd). With high dimensional output spaces or many
classes, it thus may become prohibitive to store decision tree or
random forest models. We would like to investigate two further
approaches to compress such models: (i) by adapting the (post)-
pruning method developed in (Joly et al., 2012) and in Chapter 7

to multi-output tasks and multi-class classification tasks and
(ii) by compressing exactly or approximately each constant leaf
model. Both approaches can be used together. For approach (ii),
an exact solution would compute the constant leaf models on-
the-fly at prediction time by storing once the output matrix and
the indices of the samples reaching the leaf at learning time.
With totally developed trees, it should not modify the compu-
tational complexity of the prediction algorithm. If we agree to
depart from the vanilla decision tree model, it is also possible to
approximate the leaf model, for instance by keeping at the leaf
nodes only the subset of the k output-values reducing the most
the error either at the leaf level as in (Prabhu and Varma, 2014)
or at the tree level. Also, if the output space is sparse, appro-
priate sparse data structures could help to further reduce the
memory footprint of the models.

9.2.3 Learning in high dimensional and sparse input-output spaces

• In Chapter 8, we have shown how to improve tree growing
efficiency in the case of sparse high-dimensional input spaces.
However, the small fraction of non zero input values exploited
for each split typically leads to highly unbalanced tree struc-
ture. On such tasks, it would be interesting to grow decision
trees with multivariate splitting rules to make the tree balanced.
For instance in text-based supervised learning, the input text is
often converted to a vector through a bag-of-words, where each
variable indicates the presence of a single word. In this context,
each test node assesses the presence or the absence of a single
word. The tree growing algorithm lead to unbalanced trees as
each training sample has only a small fraction of all possible
words. We propose to investigate node splitting methods that
would combine several sparse input variables into a dense one.
In the text example, we would generate new dense variables
by collapsing several words together. In a more general context,
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we could use random “or” or random “addition” functions of
several sparse input variables.

Furthermore, while we have shown empirically that the imple-
mentation proposed in Chapter 8 indeed translates into a speed
up and reduction of memory consumption, it would be interest-
ing to study formally its computational complexity as a function
of the input-space sparsity.

• In the multi-label classification task, the output space is often
very large and sparse (as in Chapter 5 and Chapter 6), having
few “non zero values”1. It would be interesting to exploit the
output space sparsity to speed up the decision tree algorithm.
The algorithm interacts with the output space during the search
of the best split and the training of the leaf models. The search
for the best split for an ordered variable is done by first sorting
the possible splitting rules according to their threshold values,
and then the best split is selected by computing incrementally
the reduction of impurity by moving samples from the right
partition to the left partition. The leaf models are constant esti-
mators obtained by aggregating output values. Both procedures
require efficient sample-wise indexing or row-wise indexing as
provided by the compressed row storage (csr) sparse matrix
format. We propose to implement impurity functions and leaf
model training procedures to work with csr sparse matrices.

1 We assume that the majority class of each output is coded as “0” and the minority
classes is coded with the value “1”.
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A
D E S C R I P T I O N O F T H E D ATA S E T S

a.1 synthetic datasets

• Friedman1 (Friedman, 1991) is a regression problem with p =

10 independent input variables of uniform distribution U(0, 1).
We try to estimate the output y = 10 sin (πx1 x2) + 20(x3 −
1
2)
2 + 10x4+ 6x5+ ε, where ε is a Gaussian noise N(0, 1). There

are 300 learning samples and 2000 testing samples.

• Two-norm (Breiman, 1996b) is a binary classification problem
with p = 20 normally distributed (and class-conditionally inde-
pendent) input variables: either from N(−a, 1) if the class is 0
or from N(a, 1) if the class is 1 (with a = 2√

20
). There are 300

learning and 2000 testing samples.

a.2 regression datasset

• SEFTi (AA&YA, 2008) is a (simulated) regression problem
which concerns the tool level fault isolation in a semiconductor
manufacturing. One quarter of the values are missing at ran-
dom and were replaced by the median. There are p = 600 input
variables, 2000 learning samples and 2000 testing samples.

a.3 multi-label dataset

Experiments are performed on several multi-label datasets: the
yeast (Elisseeff and Weston, 2001) and the bird (Briggs et al., 2013)
datasets in the biology domain; the corel5k (Duygulu et al., 2002)
and the scene (Boutell et al., 2004) datasets in the image domain;
the emotions (Tsoumakas et al., 2008b) and the CAL500 (Turnbull
et al., 2008) datasets in the music domain; the bibtex (Katakis et al.,
2008), the bookmarks (Katakis et al., 2008), the delicious (Tsoumakas
et al., 2008a), the enron (Klimt and Yang, 2004), the EUR-Lex (sub-
ject matters, directory codes and eurovoc descriptors) (Mencía and
Fürnkranz, 2010) the genbase (Diplaris et al., 2005), the medical1, the
tmc2007 (Srivastava and Zane-Ulman, 2005) datasets in the text do-
main and the mediamill (Snoek et al., 2006) dataset in the video do-
main.

1 The medical dataset comes from the computational medicine center’s 2007 med-
ical natural language processing challenge http://computationalmedicine.org/

challenge/previous.
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Several hierarchical classification tasks are also studied to increase
the diversity in the number of label and treated as multi-label clas-
sification task. Each node of the hierarchy is treated as one label.
Nodes of the hierarchy which never occured in the training or test-
ing set were removed. The reuters (Rousu et al., 2005), WIPO (Rousu
et al., 2005) datasets are from the text domain. The Diatoms (Dimitro-
vski et al., 2012) dataset is from the image domain. SCOP-GO (Clare,
2003), Yeast-GO (Barutcuoglu et al., 2006) and Expression-GO (Vens
et al., 2008) are from the biological domain. Missing values in the
Expression-GO dataset were inferred using the median for continu-
ous features and the most frequent value for categorical features us-
ing the entire dataset. The inference of a drug-protein interaction net-
work (Yamanishi et al., 2011) is also considered either using the drugs
to infer the interactions with the protein (drug-interaction), either
using the proteins to infer the interactions with the drugs (protein-
interaction).

Those datasets were selected to have a wide range of number of
outputs d. Their basic characteristics are summarized at Table A.1.
For more information on a particular dataset, please see the relevant
paper.

a.4 multi-output regression datasets

Multi-output regression is evaluated on several real world datasets:
the edm (Karalič and Bratko, 1997) dataset in the industrial do-
main; the water-quality (Džeroski et al., 2000) dataset in the envi-
ronmental domain; the atp1d (Spyromitros-Xioufis et al., 2016), the
atp7d (Spyromitros-Xioufis et al., 2016), the scm1d (Spyromitros-
Xioufis et al., 2016) and the scm20d (Spyromitros-Xioufis et al., 2016)
datasets in the price prediction domain; the oes97 (Spyromitros-
Xioufis et al., 2016) and the oes10 (Spyromitros-Xioufis et al., 2016)
datasets in the human resource domain. The output of those datasets
were normalized to have zero mean and unit variance.

If the number of testing samples is unspecified, we use a 50% of
the samples as training and validation set and 50% of the samples as
testing set.
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Table A.1: Selected datasets have a number of labels d ranging from 6 up
to 3993 in the biology, the text, the image, the video or the mu-
sic domain. Each dataset has nLS training samples, nTS testing
samples and p input features.

Datasets nLS nTS p d

emotions 391 202 72 6

scene 1211 1196 2407 6

yeast 1500 917 103 14

birds 322 323 260 19

tmc2007 21519 7077 49060 22

genbase 463 199 1186 27

reuters 2500 5000 19769 34

medical 333 645 1449 45

enron 1123 579 1001 53

mediamill 30993 12914 120 101

Yeast-GO 2310 1155 5930 132

bibtex 4880 2515 1836 159

CAL500 376 126 68 174

WIPO 1352 358 74435 188

EUR-Lex (subject matters) 19348 10-cv 5000 201

bookmarks 65892 21964 2150 208

diatoms 2065 1054 371 359

corel5k 4500 500 499 374

EUR-Lex (directory codes) 19348 10-cv 5000 412

SCOP-GO 6507 3336 2003 465

delicious 12920 3185 500 983

drug-interaction 1396 466 660 1554

protein-interaction 1165 389 876 1862

Expression-GO 2485 551 1288 2717

EUR-Lex (eurovoc descriptors) 19348 10-cv 5000 3993
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Table A.2: Selected multi-output regression ranging from d = 2 to d = 16

outputs.

Datasets nLS nTS p d

atp1d 337 411 6

atp7d 296 411 6

edm 154 16 2

oes10 403 298 16

oes97 334 263 16

scm1d 8145 1658 280 16

scm20d 7463 1503 61 16

water-quality 1060 16 14
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