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ABSTRACT 

The extracellular matrix (ECM) of articular cartilage is comprised of complex networks of proteins 

and glycoproteins, all of which are expressed by its resident cell, the chondrocyte. Cartilage is a 

unique tissue given its complexity and ability to resist repeated load and deformation. The 

mechanisms by which articular cartilage maintains its integrity throughout our lifetime is not fully 

understood, however there are numerous regulatory pathways known to govern ECM turnover in 

response to mechanical stimuli. To further our understanding of this field, we envision that proteomic 

analysis of the secretome will provide information on how the chondrocyte remodels the surrounding 

ECM in response to load, in addition to providing information on the metabolic state of the cell.  In 

this review, we attempt to summarize the recent mass spectrometry-based proteomic discoveries in 

healthy and diseased cartilage and chondrocytes, to facilitate the discovery of novel biomarkers linked 

to degenerative pathologies, such as osteoarthritis (OA). 
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INTRODUCTION 

To gain a deeper understanding of the mechanisms that drive osteoarthritis (OA), it is 

important to appreciate the underlying biology of healthy and diseased joint tissues. Of interest is the 

pathophysiology of articular cartilage, and the processes that govern synthesis and organisation of 

extracellular matrix (ECM) components secreted by chondrocytes into the pericellular milieu. The 

chondrocyte is the unique resident cell of articular cartilage and thus solely responsible for ECM 

composition and regulation. Chondrocyte metabolism is influenced by its micro-environment, and in 

return influences ECM composition, organization and ultimately the mechanical resilience of cartilage 

[1-3]. As such, chondrocytes play a key role in ECM remodelling in physiological and pathological 

conditions [4]. 

 

It is commonly established that healthy articular chondrocytes change into different phenotypes as OA 

develops and progresses: 

(i) A catabolic phenotype develops, associated with an increase in proteolytic enzymes and 

reactive oxygen/nitrogen species, in response to mechanical stress and inflammatory 

cytokines, tumour necrosis factor (TNF)-and interleukin (IL)-1, leading to further ECM 

degradation. 

(ii) An anabolic phenotype emerges that is associated with regeneration of the ECM, including 

increased collagen type II and proteoglycan expression regulated by growth factors 

(transforming growth factor (TGF)-, bone morphogenetic protein (BMP)s and insulin 

growth factor (IGF)-I), expressed either by the surrounding joint tissue or by the 

chondrocytes themselves. 

(iii) A hypertrophic phenotype develops, manifesting in expression of type X collagen and 

induction of apoptosis, ultimately resulting in osteophyte formation. 
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(iv) A fibroblastic-like phenotype with an increased number of dedifferentiated chondrocyte and 

expression of type I collagen. 

(v) Lastly, a chondroblastic phenotype emerges with expression of foetal type IIA collagen, type 

III collagen and early/late differentiation markers[5]. 

 

The specific phenotype that any individual chondrocyte exhibits is dependent on the zone in which the 

chondrocyte is situated and the stage of OA progression. In the upper zone, cellular proliferation and 

hypertrophy are observed, whereas the mid and deep zones display increased expression of type II 

collagen [6]. As OA progresses, cartilage is lost and chondrocytes undergo senescence, due to a 

combination of replicative exhaustion and oxidative stress [7].  

Eventually, chondrocytes will undergo apoptosis, and the articular cartilage will be destroyed. The 

ultimate goal of mass spectrometry-based proteomics strategies is the identification of a specific 

tissue-derived secretome that is unique to the diseased chondrocyte and surrounding ECM and is able 

to distinguish between healthy and diseased cartilage. 

Because protein expression is dependent on environmental conditions, the secretome is highly 

dynamic in composition and turnover. In 2010, Agrawal et al. suggested defining the secretome as 

“the global group of secreted proteins into the extracellular space by a cell, tissue, organ, or organism 

at any given time and conditions through known and unknown secretory mechanisms involving 

constitutive and regulated secretory organelles”[8]. In this narrative review, we only considered the 

chondrocyte (or cartilage) as the source of secreted proteins, which have been uncovered by state-of-

the-art mass spectrometry-based proteomics techniques. 

Proteomic techniques include different methods, all relying on the separation of proteins and their 

further analysis using either gel-based (Two-dimensional electrophoresis) or gel-free methods. Protein 

separation methods are coupled to a mass spectrometer for identification of sequence by mass 

spectrometry [9, 10]. In differential analysis, the peptides may be marked with stable isotope at various 

stages of the analysis process, or Label-free methods could be performed. Several modes of analysis are 
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available in mass spectrometry[10]. They differ markedly by the ionization source of the sample. The 

main sources used in proteomic analysis are matrix-assisted laser desorption/ionization (MALDI) and 

surface-enhancer laser desorption/ionization (SELDI) [10, 11]. These techniques allow a soft ionization 

of molecules without excessive fragmentation [9, 11]. 

More than the total tissue protein extract, it is expected that well-defined protein fractions such as the 

secretome could be a source of novel OA biomarkers, with the potential to predict disease severity and 

monitor progression. 

 

MATERIALS AND METHODS  

A literature search was performed in Pubmed/Medline and Scopus, identifying articles published 

between January 2004 and March 2016. Keywords used in 'Any fields' were;  (chondrocyte OR 

cartilage) AND secretome (19 relevant papers out of 38 found), or (chondrocyte OR cartilage) AND 

(proteomic OR mass spectrometry) (65 articles relevant papers out of 290 found). Only results from 

mass spectrometry-based studies were included in this article. The review has considered all species, 

even if  the majority of  studies have been performed on human source of chondrocytes or cartilage. 

Only research articles published in English were included. Supplementary files of all papers were 

analysed and included in this review. 

CHONDROCYTE SECRETOME 

Recent mass spectrometry-based proteomic studies have identified several proteins which form the 

chondrocyte secretome. In this part of the review, we focused on proteins identified either directly in 

the secretome of cartilage explants [12-20] or chondrocytes cultures [18, 21-31]), both of which are 

listed in Table 1. We further complete this list with proteins recently identified by proteomic analysis 

performed directly on fresh chondrocytes or cartilage tissue[32-36] (sometimes de-cellularized [37]) 

whereby different locations in the joint were compared, or healthy joint tissues were compared with 
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OA tissues. The characteristics of all these studies are summarized in Table 2. Proteins have been 

classified in different sections: ECM proteins, cytokines and growth factors, enzymes and 

miscellaneous. 

ECM proteins 

As expected, the most abundant ECM proteins produced by chondrocytes, and detected by proteomic 

analysis, are collagens and proteoglycans, Table 1. 13 collagens are found in the chondrocytes 

secretome, of which type II, VI and XII are the most abundant[35]. Collagen type XII is also known to 

interact with other cartilage elements such as cartilage oligomeric matrix protein (COMP), decorin and 

fibromodulin [38].  Collagen type II and VI levels are increased in the secretome of chondrocytes 

taken from the medial condyle of patients with early OA (Mankin score 0-3), compared with samples 

taken from patients with severe OA (Mankin score 5-10) [25]. 

Beside the collagens, other ECM proteins found in high abundance in the chondrocyte secretome 

include; aggrecan, HPLN-1 (proteoglycan link protein), biglycan, COMP, fibronectin, prolargin 

(Proline-arginine-rich end leucine-rich repeat protein (PRELP)), matrilin-3, cartilage acidic protein-1 

(CRTAC1 or ASPIC), latent-transforming growth factor beta-binding protein-1 (LTBP1), extracellular 

matrix protein-1 (ECM-1), tenascin, lubricin and chitinase-3-like protein 1 (CHI3L1), also known as 

YKL-40). CHI3L1 was found at lower levels in cartilage explants treated with IL-1β compared to 

controls[12]. CHI3L1, is a biomarker of OA found in synovial fluid and serum[39], and plays a role in 

tissue remodelling and inflammation. The concentration of CHI3L1 in OA synovial fluid positively 

correlates with levels of matrix metalloproteinase (MMP)-1, MMP-3, IL-6 and IL-17. 

IL-6 and IL-17 enhanced CHI3L1 production in human primary chondrocyte cultures[40] and CHI3L1 

serum concentration positively correlated with osteophyte size in OA patients[41]. This protein is 

more abundant in knee compared to hip cartilage [37] and in OA compared to healthy cartilage [27] 

and is considered to be an early OA biomarker in the Stenberg’ proteomic study, which compared 

early and severe OA secretomes [25]. 
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In comparison with normal cartilage explants, CRTAC1 is found elevated in the OA cartilage 

secretome [13]. This protein is considered a cartilage specific protein, appearing early during 

chondrocyte differentiation of mesenchymal stem cells (MSCs) [26]. Expression of CRTAC1 allows 

discrimination between human chondrocytes and osteoblasts, or MSCs, in monolayer cell culture [26, 

42]. This protein is therefore considered a good marker of chondrocytic differentiation of MSCs. 

LTBP1 also seems to be an important ECM protein secreted early in the differentiation of MSCs to 

chondrocytes [26]. Beside its structural role in the ECM, this protein is involved in the storage and the 

activation of TGF-β1, and therefore may play an important role in facilitating cartilage homeostasis. 

ECM-1 is a protein involved in endochondral bone formation serving as a negative regulator of bone 

mineralization [43]. It is able to enhance the proliferation of endothelial cells during angiogenesis[44] 

and inhibit MMP-9 proteolytic activity[45]. Louridos et al observed that the level of ECM-1 secreted 

by cells originating from damaged OA cartilage is 3-fold higher than that of healthy cartilage [13]. 

Periostin secretion from explants increases with cartilage degradation [13], and was only found in 

cultured OA chondrocytes [35]. Expression of periostin was previously shown to be elevated in OA 

cartilage compared to normal, and located in the pericellular ECM close to damaged areas of cartilage 

[46, 47]. Periostin is able to increase expression of IL-6, IL-8, MMP-1,-3,-13 and a disintegrin and 

metalloproteinase with thrombospondin motifs (ADAMTS)-4 by chondrocytes in vitro[46, 47]. 

Fibronectin and fibromodulin are secreted at comparable levels by OA and normal chondrocytes, but 

fragmentation of these ECM proteins is found to differ depending on whether the cell is healthy or 

diseased [36, 48]. 

Cytokines and growth factors 

Classical cytokines and chemokines like IL-6, IL-8, CCL8-20, CXCL1-3-5-8, CSF-1 are detected by 

tandem mass spectrometry only after an IL-1β stimulation of chondrocytes, cultured either in explant 

or in monolayer [12, 14, 19, 22, 27]. 
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The IGFBP family is widely represented in chondrocyte secretome by IGFBP-2,-3,-4,-5,-6 and -7 [12, 

21, 22, 24-27]. Expression of IGFBP-3,-4,-6 and -7 is increased in early OA [25]. These proteins serve 

as a carrier protein for IGF-1 and modulate the availability of IGF-1 to bind its receptor. Furthermore, 

IGFBP3 is known to induce chondrocyte apoptosis during OA[49]. In contrast IGFBP5 that has a 

positive role in cartilage anabolism, and inhibits enzymatic degradation; in fact IGFBP3 promotes 

cartilage extracellular matrix formation  in vivo in the DMM OA rat model [50]. 

Among growth factors detected in the chondrocyte secretome, gremlin-1, chondromodulin and 

pleiotrophin are known to be involved in hypertrophic differentiation regulation. Gremlin-1 is a BMP 

antagonist presenting reduced secretion from OA chondrocytes compared to normal [14][35], and 

plays an important role in bone development by inhibiting bone formation [51]. Gremlin-1 is 

therefore, potentially, a potent inhibitor of chondrocyte hypertrophy in cartilage. Chondromodulin is 

also important for chondrocytes stabilization, acting by inhibiting hypertrophic differentiation, and is 

shown to be secreted only by superficially located chondrocytes [34]. Pleiotrophin is a secreted 

heparin-binding peptide expressed in mesodermal and neuroectodermal cells during development, but 

rarely in adult tissues. Pleiotrophin is abundant in foetal and juvenile cartilage, but not in mature. 

Furthermore, pleiotrophin is re-expressed in chondrocytes in early OA, and is involved in the 

clustering and proliferation of chondrocytes observed in the early stages of OA [52]. Pleiotrophin is an 

inducer of hypertrophy during chondrogenic differentiation of MSCs [53] and is also a potent pro-

angiogenesis factor. 

Proteolytic enzymes and their regulators 

Proteomic analysis of the chondrocyte secretome shows that the most abundant family of enzymes 

secreted is the MMPs, along with their endogenous inhibitors, the TIMPs.  MMP-1 and 3, and TIMP-

1, are particularly abundant. TIMP-3 appears to be more abundant in normal hip cartilage than knee, 

but MMP-1 is contrarily abundant in normal knee cartilage [37]. According to these studies,  MMP-13 

was only identified  following IL-1β-stimulation [15], or is at very low levels without stimulation [14]. 

With the exception of MMP-2 [13], MMP protein levels do not vary substantially between normal and 
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OA chondrocytes, but all increase with IL-1β treatment. TIMP-1 and -2 levels are decreased in OA 

medial condyles [25], and TIMP-1 is increased with TGF-β1 stimulation [24]. 

The other family of metalloproteinases expected to be found in cartilage is the ADAMTSs. Although 

ADAMTSs were found in some proteomic secretome studies [12, 22, 25], they were not identified in 

all studies; most likely due to varying extraction methods which can eliminate ADAMTSs, along with 

the glycosaminoglycan (GAG) attachments of proteoglycans [15]. ADAMTS's may not be easily 

identified in mass spectrometry-based proteomic studies also due their relatively low abundance. 

Indeed, saturation of detectors with high abundance ions, type of protease used in mass spectrometry 

based studies (mainly trypsin) which may lead to non-identification of ionized peptides as they are too 

small, too large or contain amino acid sequences less likely to be 'seen' following ion identification. 

Positive studies, which identified ADAMTSs in the secretome, were all performed using OA 

chondrocytes or OA cartilage explant culture [12, 22, 25]. A recent study published by Svala, showed  

that  peptides cleaved from aggrecan, following IL-1β stimulation in chondrocytes, were generated by  

MMPs, but not by ADAMTSs [14]. This finding confirms the importance of MMPs in cartilage ECM 

breakdown mediated by IL-1β. However, the fragmentation patterns, and differential distribution 

between cartilage and synovial fluid, are consistent with the existence of at least two proteolytic 

pathways for aggrecan degradation in human OA, generating both 342FFGV- and 374ARGS-fragments 

[54]. Both the MMP-generated N-terminus of 342FFGV- fragment and the aggrecanase 374ARGS- 

fragment are found in the OA synovial fluid, but only the 342FFGV is found in cartilage tissue itself 

[54].  

A further intriguing proteomic study was conducted to elucidate the target of MMPs and ADAMTSs 

in articular cartilage [20, 55]. Human articular cartilage[55] or crude equine cartilage proteoglycan 

extract[20] was digested by the addition of exogenous metalloproteases, including MMP-2, -3, -8, -9, -

12, and -13 and the aggrecanases ADAMTS-4 and ADAMTS-5. Digestion products were identified by 

proteomic methods, and complete sequences of generated peptides were determined. A wide variety of 

peptides, originating from collagen types I, II, and III, biglycan, prolargin, fibromodulin, fibronectin, 
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decorin, COMP, cartilage intermediate-layer protein, megakaryocyte-stimulating factor, clusterin, 

mimecan, aggrecan, and lumican, were obtained [20, 55]. MMP-2 was the most active protease used in 

the study, and the aggrecanases were the least active in generating peptides from cartilage digestion. 

The aggrecanases showed a preference for cleaving proteoglycan-containing proteins. However, all of 

the proteases cleaved many types of cartilage ECM proteins [55]. Interestingly, IL-1β treatment 

generated many COMP neopeptides [14, 20]. Some biglycan and COMP neopeptides were identified 

as being generated by ADAMTS-4 or MMP-3 and even increased by IL-1β concerning COMP [20] 

are found increased in the horse OA synovial fluid compared to normal one, i.e. 191CIEMGGNPL for 

biglycan and 149CEACPPGYSGPTHEGVGM166 and 87AQCAPGSCFPGVACTQ102 for COMP[56]. 

Proteomics studies also highlight a serine protease, HTRA1, as one of the most abundant secreted 

protein by chondrocytes. This enzyme cleaves aggrecan, within the interglobular domain, in human 

cartilage [57]. Levels of HTRA1-generated aggrecan fragments, containing the VQTV(356) 

neoepitope, were significantly elevated in OA cartilage compared with cartilage from healthy joints; 

implicating HTRA1 as a critical protease involved in proteoglycan turnover and cartilage degradation 

during degenerative joint disease [57]. Cleavage of aggrecan by HTRA1 was strongly enhanced by 

HTRA1 agonists such as CPII, a C-terminal hexapeptide derived from the C-propeptide of procollagen 

IIα1 [57]. HTRA1 is preferentially localized in the deep layer of cartilage [34] and increased during 

chondrocyte differentiation of MSCs [26], and by TGF-β1 stimulation [24]. HTRA1 is reduced 4-fold 

in OA vs normal chondrocytes [35], with no difference detected between OA and normal 

decellularized cartilage [37]. 

Procollagen C-endopeptidase enhancer (PCOLCE)-1, and 2, are proteins which enhance procollagen 

C-proteinase activity, commonly identified in many proteomic studies. Furthermore, the C-terminal 

processed domain of PCPE (CT-PCPE) may have metalloproteinase inhibitory activity. PCOLCE1 is 

increased during chondrocyte differentiation of MSCs [26] and in OA cartilage [37], but is decreased 

with IL-1β [14, 15] and with TGF-β1 [24]. 
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Other enzymes that could be important in the regulation of collagen metabolism are the procollagen-

lysine,2-oxoglutarate 5-dioxygenases 1 and 2. Expression of these enzymes is increased upon IL-1β 

stimulation [22, 58], and they could be responsible for an over glycosylation of collagen fibrils, 

observed in OA, which decreases fibril flexibility [58]. 

Another set of enzymes found to be greatly increased in the OA chondrocyte secretome are the 

lysosomal enzymes, including cathepsins, phospholipases, peroxiredoxins, ovochymase-1 [36, 37].  In 

fact, cathepsin activity based probes have detected increased cathepsin B activity in blood and 

synovial fluid of early OA patients, while cathepsin S was associated with RA [59]. 

Other enzyme families detected in chondrocyte secretome comprise of SERPINs, superoxide 

dismutases (SODs), triosephosphate isomerase and lysozyme C enzymes. These are modulated by IL-

1β, but are not significantly modified with the disease, except SERPINA3. SERPINA3, also known as 

α1-antichymotrypsin, is mainly located in the superficial layer of the articular cartilage [34] and is 

decreased during OA [35]. 

Miscellaneous Secretome Proteins 

The chondrocyte secretome contains many proteins involved in cellular regulatory pathways, cell-cell 

or cell-ECM interactions, including chaperons, alarmins, apolipoproteins and chondrocalcin. 

Chondrocalcin is the C-terminal of type II collagen, associated with the calcification of cartilage ECM. 

Gelsolin, clusterin and transforming growth factor-beta-induced protein ig-h3 (TGF appeared in 

nearly all secretome studies and are one of the most highly secreted proteins by chondrocytes [14-19, 

22, 24, 26, 30, 34, 35, 37]. Gelsolin is increased in OA compared to normal chondrocytes[35, 37]. 

Clusterin inhibits protein aggregation and apoptosis. This protein is detected more in healthy than 

osteoarthritic cartilage[37]. TGFBI is known to be involved in the interaction of the cell with type II 

collagen, and plays an important role in endochondral bone formation. Indeed, this factor is an 



12 

 

inhibitor of mineralization. It was found to be highly secreted by OA chondrocytes, compared to 

normal chondrocytes[13], and present at a greater abundance in hip OA than healthy cartilage[33]. 

Osteonectin is involved in ECM-cytokine interactions. Similar to osteopontin, osteonectin is highly 

secreted in deep layer chondrocytes[34], and found to be increased in the secretome of medial 

condylar early OA cartilage[16, 25, 27]. TGF-β1 decreases the production of osteonectin[24]. 

Finally, thrombospondin-1,-3,-4 are all involved in cell-ECM interaction and angiogenesis, and are 

also secreted by chondrocytes [13, 14, 17, 19, 21, 24, 32, 34, 35, 37]. They are more abundant in the 

superficial layer of cartilage[34]. Thrombospondin-3 is increased in OA compared to normal 

chondrocyte secretomes[13], and thrombospondin-1 is increased with IL-1β treatment[19]. 

DISCUSSION 

The “omics” approach is a general exploratory approach used to investigate alterations in an 

enormous number of genes, transcripts, proteins, lipids and metabolites, in healthy versus 

diseased tissues. The challenge of using this approach is to identify those candidates that are 

specifically involved in the disease process. The most commonly used omics approaches 

include genomics, proteomics, lipidomics, metabolomics and transcriptomics. Such “omics” 

technologies applied to serum or urine samples have uncovered numerous new biomarkers, 

which are ubiquitous molecules in most cases. Therefore, it would be beneficial to refine 

“omics” technologies specifically to joint tissues (cartilage, bone, meniscus, synovial 

membrane) and compare “omics” profiles of the various articular tissues taken at different 

stages of evolution and correlate those amongst the various diseased tissues for the joint. In 

particular, the secretome of chondrocytes is of great interest because this approach provides a 

range of biomarkers reflecting the metabolic changes occurring in the main tissue affected by 

OA. Further, by investigating the chondrocyte secretome we increase the chance of 

identifying a circulating biomarker specific to disease, even specific to a particular joint. In 
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this paper, we have reviewed and summarized data produced by proteomic analysis of 

cartilage or chondrocyte culture supernatants. Interestingly, some proteins have been found to 

increase in the secretome of OA explants or OA chondrocytes, while few were found 

decreased in comparison with normal secretome. Among these, some have been found in 

synovial fluid, serum or urine and proposed as potential biomarkers. For example, type II 

collagen[60-64], aggrecan[63, 65, 66], lumican[67, 68], COMP[64, 66], gelsolin[67, 69], 

fibulin-3[70], mimecan[69], periostin[13, 71, 72], SERPINs[67, 70, 73] are found in these 

fluids in their native form, but also post-transcriptionally modified and/or fragmented. Some 

of these proteins or protein fragments have demonstrated to be burden of disease, prognostic, 

and efficacy of intervention or diagnostic soluble biomarkers, according the Burden of 

Disease, Investigative, Prognostic, Efficacy of Intervention and Diagnostic (BIPEDS) criteria. 

Some peptides generated during type II collagen degradation have been particularly well 

investigated, because type II collagen is the most specific protein of cartilage. Further, their 

concentration appears to be modified in joint disease. As previously mentioned, many 

aggrecan neoepitopes are found in cartilage tissue, but those generated by aggrecanases are 

largely released from cartilage and found in blood circulation, while  the majority of 

fragments generated by MMPs remain entrapped  in the tissue[54]. 

Although the proteomic approach is a good approach to study secretome, there are some 

limitations associated with this method. Quantitative assessment of proteins secretome using 

these proteomic techniques remain hazardous, because the method promotes the 

quantification of some proteins relative to their solubility, binding to other components, their 

size, length, amino acid sequence and also their post-translational modifications. Small 

proteins, like cytokines, give few peptides after tryspinisation, and because at least 2 peptides 
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are needed to assure the identification of the protein, they are probably excluded from the 

final observation. 

In addition, there are some missing links in the secretome study. For example, there is to date 

few studies really dedicated and designed to investigate the dynamic kinetics of cartilage 

metabolism during OA disease. Most of the studies compare healthy and end-stage OA 

chondrocyte secretome, with the aim to discover new proteins secreted by the chondrocytes. 

For example, CRTAC1, HTRA1, PCOLCE, LTBP1, ECM-1, gremlin-1, clusterin, have been 

identified using this approach and now need more investigations to decipher their role in 

chondrocyte metabolism during OA pathogenesis. 

The abundance of diverse models used in these proteomics studies also make them difficult to 

interpret. In monolayer, chondrocytes certainly have a different secretome than in their native 

3D environment[31]. In explant culture, the majority of the newly synthesized proteins 

remains entrapped in the ECM and only degraded products are released into the 

supernatant[18]. Mechanical stimulation of the explant should be performed to mimic the 

physiological flow and help the protein to be released from tissue. 

Posttranslational modifications like glycosylation, glycation, nitration are seldom 

investigated. A metabolomics approach would allow to investigate these changes and to 

complete knowledge coming from proteomic. 

Many supposed cytoplasmic proteins are found in the chondrocyte secretome using proteomic 

technics. This finding seems surprising but can be explained by the secretion of ECM-derived 

vesicles by chondrocytes. Articular cartilage vesicles (ACVs) are 50–150 nm membrane-

bound extracellular organelles found in normal articular cartilage. They were initially 

characterized in reference to their role in pathologic mineralization in cartilage in studies 
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which mirrored those of matrix vesicles derived from growth plate cartilage and other 

normally mineralizing tissues. ACVs contain enzymes, ions and substrates necessary for 

mineral formation[74]. The presence of these ACVs explain why cytoplasmic/membrane 

proteins, such as annexins, have been identified in the secretome of the chondrocytes. 

Transmembrane proteins can also be cleaved leading to the release in the extracellular space 

of extracellular part of the protein, which is the case of syndecans [75]. Another explanation 

at the presence of membrane proteins in the secretome is the presence of apoptotic cells, 

mainly during OA[76-78]. Loss of cell integrity during apoptosis further contribute to emerging 

proteins and pathway end-products in synovium and other bodily fluids, potentially giving 

rise to several biomarkers which may predict the susceptibility of an individual to develop 

OA. 

Pro-inflammatory cytokines, prostaglandins and reactive oxygen species (ROS) activate the normally 

quiescent articular chondrocytes and induce them to undergo a phenotypic shift through a 

phenomenon recently described as “chondrosenescence”, leading to further disruption of homeostasis 

and metabolism in cartilage [7]. Effectively, chondrosenescence is the term that describes the age-

dependent deterioration of chondrocyte function and how it undermines cartilage function in OA. 

Until now, this particular phenotype has not yet been investigated by proteomic technics. This should 

be added in the research agenda.  

 

In conclusion, proteomic analysis of chondrocytes secretome is a promising approach for 

detecting changes in chondrocyte metabolism linked to OA diseases (Table 1). This review 

listed the advantages and disavantages of secretome investigation using the proteomic 

methods.  The main limitations is the lack of standardization of the culture protocols, while 

the main advantage is the possibility to compare different environmental condition on the 
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secretome. We have also suggested some research perspectives, including comparison of 

secretome at different disease stages. Definitively, research on secretome using proteomic 

methods have to be encouraged with the objectives to identify new biomarkers reflecting 

chondrocyte metabolic changes in OA.  
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FIGURE LEGEND 

Figure 1 

Schematic representation of the chondrocyte secretome, based on data from mass-

spectrometry based proteomic studies. 

ADAMTS: A Disintegrin And Metalloproteinase with Thrombospondin Motifs, Apo: 

apolipoprotein, BMP: Bone morphogenetic protein, CCL: Chemokine ligand, CHAD: 

Chondroadherin, ChM: chondromodulin, CILP: Cartilage intermediate layer protein, CHI3L1: 

Chitinase-3-like protein 1, COMP : Cartilage oligomeric matrix protein, CRLF: Cytokine 

receptor-like factor, CRTAC: Cartilage acidic protein, CSF: Macrophage colony-stimulating 

factor, CTGF: Connective tissue growth factor, Cx: connexin , CXCL: C-X-C motif 

chemokine ligand,  ECM: extracellular matrix protein, ENPP: Ectonucleotide 

pyrophosphatase/phosphodiesterase family member, EMI: emilin,  HSPA5: 78 kDa glucose-

regulated protein, HTRA:  High-temperature requirement A serine peptidase, IL: Interleukin, 

LTBP: Latent-transforming growth factor beta-binding protein, MGP: matrix gla protein, 

MMP: matrix metalloproteinase, PCOLCE: Procollagen C-endopeptidase enhancer, PLOD:  

Procollagen-lysine,2-oxoglutarate 5-dioxygenase, PRELP: proline-arginine-rich end leucine-

rich repeat protein, SERPIN: serine protease inhibitors, SOD: superoxide dismutase, SPARC: 

Secreted protein acidic and rich in cysteine, TGFBI: Transforming growth factor-beta-induced 

protein ig-h3, TGF: transforming growth factor, TIMP: tissue inhibitor of metalloproteinase, 

TNAP: tissue non-specific alkaline phosphatase, TSP: thrombospondin. 
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TABLES 

 

Table 1 

Table 1: Summary of recent mass spectrometry-based proteomic studies carried out on human 

chondrocytes and cartilage to identify secretome components.  

ECM Proteins Specificity OA vs 

normal 

with IL-1β References 

Aggrecan core protein  ↘  [13, 14, 17, 18, 

20, 22, 27, 31-

37] 

Asporin    [32, 34, 37] 

Basement membrane-specific 

heparin sulfate proteoglycan core 

protein (PGBM) 

 ↗  [13, 18, 20, 30] 

Biglycan  ↗  [13, 14, 17, 18, 

20-22, 27, 30, 

32-37] 

Cartilage acidic protein-1 

(CRTAC1, ASPIC) 

Specific 

chondrocyte 

marker 

↗  [13, 16, 22, 26, 

33, 35] 



21 

 

Chitinase-3-like protein -1, -2 Tissue 

remodelling, 

inflammation 

↗ ↘ [13, 16, 18, 20-

22, 24, 25, 27, 

30, 31, 33, 35, 

37] 

Chondroitin sulfate proteoglycan 

4 (CSPG4) 

   [18] 

Collagens type I, II, III, V, VI, 

VIII, IX, X, XI, XII, XIV, XV, 

XVI 

 ↗  [13, 14, 16, 18, 

20, 21, 24-27, 

30-35, 37] 

Cartilage oligomeric matrix 

protein (COMP) 

 ↗  [13, 14, 17, 18, 

20, 22, 26, 27, 

30-35, 37] 

Decorin    [12-14, 18-21, 

27, 30, 32, 34, 

35, 37] 

Extracellular matrix protein-1 negative regulator 

of bone 

mineralization, 

promote 

angiogenesis, 

inhibit MMP-9 

activity 

↗  [13, 14, 19, 22, 

25, 33] 

Fibrillin-1    [18, 22, 25, 27, 

30, 35, 37] 
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Fibromodulin   ↗ [14, 16-20, 22, 

24, 26, 27, 32-

34, 36] 

Fibronectin    [14, 16-18, 20-

22, 26, 27, 30, 

32, 34, 35, 37] 

Fibulin-1, -3, -4, -7  ↗  [13, 18, 20-22, 

24, 25, 27, 30, 

33, 34] 

HPLN-1 (proteoglycan link 

protrein-1) 

Bind hyaluronic 

acid and aggrecan 

↗ ↗ [13, 14, 18, 19, 

22, 24, 27, 32-

35, 37] 

Latent-transforming growth factor 

beta-binding protein -1, -2 

(LTBP1, 2) 

Storage/activation 

TGF-β1, 

structural role in 

ECM 

  [13, 20, 26, 27, 

30] 

Lubricin (proteoglycan-4)  ↗  [13, 14, 18, 20-

22, 26, 27, 30, 

32-35, 37] 

Lumican    [13, 14, 16, 18-

22, 24, 25, 27, 

30, 32-35, 37] 

Matrilin-2*, -3*    [25, 33-35, 37] 
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Matrix gla protein (MGP)  ↗ ↗ [14, 19, 20, 22, 

24, 26, 33-35, 

37] 

Mimecan (osteoglycin)  ↗  [13, 18, 22, 27, 

30, 32-34, 37] 

Osteomodulin    [18, 22, 30-32, 

34, 37] 

Periostin  ↗  [13, 22, 35] 

Perlecan    [34, 37] 

Prolargin (PRELP) Bind type II 

collagen and 

perlecan 

  [13, 17, 18, 20, 

22, 25, 27, 32-

37] 

Syndecan-2, -4   ↗ [19, 21, 35] 

Tenascin C, X  ↗  [13, 18, 20-22, 

30-32, 34, 35, 

37] 

Versican  ↗  [13, 32, 34, 37] 

Cytokines and Growth Factors Specificity   References 

CCL2, -8, -14, -20   ↗ [14, 21, 22, 25, 

33] 
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CSF-1   ↗ [21, 27] 

CTGF    [16, 18, 20, 22, 

24, 30, 31, 33] 

CXCL1, -3, -5, -6   ↗ [27, 33] 

Cytokine receptor like factor 1 decrease aggrecan 

and type II 

collagen synthesis  

  [20, 26] 

Gremlin-1 BMP antagonist, 

inhibit bone 

mineralization 

↘  [14, 35] 

IGFBP-2, -3, -4, -5, -6, -7  IGFBP3↗  [12, 18, 20-22, 

24-27, 30] 

IL-6, -8, -17β  IL-17β↘ IL-6, -8↗ [14, 19-21, 25, 

27, 33] 

Inhibin-βA/proinhibin-βA dimerise to form 

Activin A, 

stimulating 

TIMP-1 

production 

↗ ↗ [12, 16, 20, 27] 

Leukocyte cell-derived 

chemotaxin 2 (LECT2) 

reduce IL-1β, IL-6 

and other 

chemokines reduce 

IL-1β, IL-6 and 

↗  [18, 33] 
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other chemokines 

[79] 

Pleiotrophin (PTN)   ↗ [14, 33] 

TGF-β2    [22] 

Enzymes Specificity   References 

ADAMTS-1, -2,  -4 ,-5    [12, 22, 25] [20] 

Angiogenin Deep layer – 

stimulate 

angiogenesis 

↗  [12, 18, 32-34, 

37] 

Carboxypeptidase E    [14] 

Cathepsins (B, D, F, K, L1, Z)  B↗  [12, 14, 16, 18, 

20-22, 25, 30, 35] 

ENPP2 NTP 

pyrophosphatase, 

mineralization 

  [22] 

Extracellular sulfatase Sulf1  Sulf2    [14] 

HTRA1 (serine protease) Increase with TGF-

β1 

 

↘  [12, 14, 16, 18, 

22, 24, 26, 30, 32, 

34, 35, 37] [20] 

Lysozyme C   ↗ [12, 14-16, 20, 

32, 34] 
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MMPs (-1, -2, -3, -7, -10, -13, -14, -

16) 

 ↗ ↗ [12-16, 18, 20-25, 

27, 30, 31, 34, 35, 

37] 

Pappalysin-1 Metalloproteinase, 

cleave IGFBP-4,-5 

  [22] 

Peroxiredoxin-1, -2, -4 protecting cells 

from free-radical 

damage  

2↗  [13, 16, 20, 23, 

37] 

Phospholipase A2*  ↗  [12, 13, 32, 34, 

35, 37] 

Procollagen C-endopeptidase 

enhancer (PCOLCE)-1, -2 

enhances 

procollagen C-

proteinase activity. 

C-terminal 

processed part of 

PCPE (CT-PCPE) 

may have an 

metalloproteinase 

inhibitory activity. 

Decrease with 

TGF-β1 

↗  [12, 14-16, 18, 

22, 24, 26, 30, 33, 

34, 37] [20] 

Procollagen-lysine,2-oxoglutarate 5-

dioxygenase 1, 2  

Collagen fibre 

glycosylation 

 

 ↗ [22, 31, 58] 

Putative tryspin 6 (serine protease)    [21] 

Pyruvate kinase  ↑  [12, 13, 22]  
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Serine protease 23    [22] 

Sulfhydryl oxidase    [12, 22]  

Superoxide dismutase (SOD1, 

SOD2, SOD3) 

protecting cells 

from free-radical 

damage 

 SOD2↘ [12, 14-16, 22, 

23, 25, 31, 32, 34, 

35]  

Triosephosphate isomerase :  Carbohydrate 

degradation 

 ↗ [12, 14, 16, 20, 

22]  

Enzymatic inhibitors Specificity   References 

Antileukoproteinase   Serine proteinase 

inhibitor 

  [12, 25] 

Cystatin C Cysteine proteinase 

inhibitor 

  [18, 21, 22, 26] 

Inter α Globulin inhibitor H2  HA processing   [12] 

Inter α trypsin inhibitor  HA processing,    

           Heavy chain H1  ↗  [13] 

           Heavy chain H4    [18] 

SERPIN Serine protease 

inhibitors 

   

   A1 : α1-antitrypsin    [16, 21, 22, 25, 

32, 34] 
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   A2: anti-trypsin related protein       [22] 

   A3 : α1-antichymotrypsin  ↘  [12, 16, 18, 22, 

25, 30, 32-35]  

   A5 : Protein C inhibitor    [12, 22]  

   E1:    Plasminogen activator 

inhibitor 1 

   [18, 22, 30, 35] 

   E2 : Glia-derived nexin    [14, 20-22, 32, 

35] 

   F1: Pigment epithelium derived 

factor 

 ↗  [12, 13, 16, 18, 

30] 

   G1: Plasma protease C1 inhibitor    [18, 22, 30] 

   I2 α1 antiproteinase 2    [14, 15] 

TIMPs (-1, -2, -3, -4) TIMP-1 increase 

with TGF-β1 

 TIMP-1↘ [12, 14-16, 18, 

20-22, 24-26, 30, 

34, 35, 37] 

Tissue factor pathway inhibitor 1, 2 

(TFPI)  

Serine protease 

inhibitors 

  [26] 

Miscellaneous Specificity   References 

78kDa glucose regulated protein    [22, 33-35] 

A1 acid glycoprotein 1, 2 Binding and 

modulation of 

cytokines and 

↗  [13, 34] 



29 

 

growth factor, like 

IL-6 and TNF-α 

ADAMTS-like 2  Bind to LTBP – no 

enzymatic function 

  [25] 

Annexin A1, A2, A5,  A1, A2 ↗  [14, 18, 20, 22, 

30, 35] 

Apolipoprotein AI, AII , D, E Bind lipids – 

proteoglycans and 

collagens 

interaction 

AI, AII↗ 

D↘ 

 [13, 18, 19, 30, 

34, 35] 

CILP (1-1, 1-2, 2-1, 2-2) No intrinsic NTP 

pyrophopshatase 

activity but IGF-

1/TGF-β 

antagonists, 

increase with TGF-

β1 

↗ ↗ [12, 14, 16, 18, 

20, 24, 25, 32, 34, 

36, 37] 

Chondroadherin Bind the cell to the 

type II collagen 

  [13, 14, 16-18, 

20, 25, 32-35, 37] 

Clusterin Chaperon – inhibit 

protein aggregation 

and apoptosis 

↘  [14-20, 22, 24, 

26, 30, 34, 35, 37]  

Complement C1q, C1r, C1s, C3, C8, 

C9, factor B, factor D, factor H 

 B, C1r, C3 

↗ 

 [12-14, 16, 18, 

20-22, 30, 32, 33, 

37] 
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Emilin-1 Cell-ECM 

interaction 

  [25, 35, 37] 

Ezrin-Radexin-Moesin-Transgelin Cytoskeletal related   [13, 20, 22, 27, 

32, 35, 80] 

Gelsolin Cytoskeletal related ↗  [16, 18, 20, 22, 

26, 30-32, 34, 35, 

37, 80] 

Lactadherin    [15, 18, 20-22, 

30] 

Osteonectin (SPARC) ECM-cytokine 

interactions 

  [14-16, 18, 22, 

24, 25, 30, 33-35] 

Osteopontin Bind to mineral and 

inhibit 

mineralization 

↗  [13, 20, 34, 37] 

Profilin-1 Cytoskeletal related   [18, 20, 27, 30, 

80] 

S100A1 Calcium binding 

proteins, role in 

inflammation 

A1↘ 

A8, A10↗ 

 [13, 19, 21, 22, 

25, 27, 32-35] 

Semaphorin 3A, 3C    [22] 

Spondin -1 and -2   Cell adhesion-bind 

GAGs-Wnt agonist 

  [12] 

Stanniocalcin 1, -2    [18, 26, 30] 
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Tetranectin Mineralization – 

bind to GAGs 

↗  [13, 18, 21, 30] 

TGFBI (Transforming Growth 

Factor, Beta-Induced) 

Cell to type II 

collagen 

interactions, 

endochondral bone 

formation 

↗  [13, 14, 18, 20-

22, 27, 30, 32-35, 

80] 

Thrombospondin-1, -3, -4 Cell-ECM 

interaction - 

angiogenesis 

-3↗ -1↗ [13, 14, 17-22, 

24, 30, 32, 34, 35, 

37] 

Vasorin may act as an 

inhibitor of TGF-β 

signalling 

  [22] 

 

Table 2: Characteristics of the reviewed studies. 

Study Method Secretome Chondrocyte 

culture 

Explant 

culture 

Peffers et al 2013 [12] OA +/- IL-1β X  X 

Lourido et al 2014 

[13] 

Normal vs wound or 

unwound OA 

X  X 

Svala et al 2015 [14] Equin +/- IL-1β X  X 
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Williams et al 2013 

[15] 

Equin +/- IL-1β X  X 

Hermansson et al 2004 

[16] 

OA only X  X 

Clutterbuck et al 2011 

[17] 

Equin +/- IL-1β X  X 

Peffers et al 2016 [20] Equin +/- IL-1β X  X 

Polacek et al 2010 [18] OA monolayer vs explant 

culture 

X X X 

Swan et al 2013 [19] Canine +/-IL-1β X  X 

Calamia et al 2012 

[21] 

Normal + IL-1β X X  

Calamia et al 2014 

[22] 

OA +/- chondroitine or 

glucosamine sulfate 

X X  

Catterall et al 2006 

[23] 

OA +/- IL-1β X X  

Riffault et al 2015 [24] OA +/- TGF-β1 X X  

Stenberg et al 2013 

[25] 

Early OA vs late OA X X  
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Rocha et al 2014 [26] bMSCs chondrogenic 

differentiation 

X X  

Lourido et al 2015 

[27] 

OA or normal+IL-1β X X  

Taylor et al 2015 [28] Bovine P0 vs P2 

chondrocytes 

X X  

Haglund et al 2008 

[29] 

Rat, +/- LPS X X  

Polacek et al 2011a 

[30] 

Chondrocytes vs MSCs X X  

Polacek et al 2011b 

[31] 

Monolayer vs aggregate 

culture 

X X  

Onnerfjord et al 2012 

[32] 

Type of cartilage   X 

Ikeda et al 2013 [33] Normal vs OA hip   X 

Muller et al 2014 [34] Normal at superficial vs 

intermediate vs deep layer 

  X 

Tsolis et al 2015 [35] Normal vs OA  X  
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Cillero-Pastor et al 

2013 [36] 

Normal vs OA from 

superficial to deep layer with 

MALDI-IMS 

  X 

Gago-Fuentes et al 

2015 [80] 

Cx43 complexes from 

normal vs OA chondrocytes 

 X  

Hsueh et al 2015 [37] Decellularized cartilage 

from normal vs OA, knee vs 

hip and superficial vs 

intermediate vs deep layer 

  X 
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