Optimising workforce and energy costs by exploiting production flexibility

Thibaut Cuvelier, Quentin Louveaux — Liège University

Electricity price in Belgium [€/MWh]

Context

What if November 2016 becomes usual?

Thus...

electrical flexibility

 Flexibility is about exploiting those price fluctuations to lower the costs

- Some possible answers?
 - Load shifting: produce later
 - Load shedding: avoid producing
 - Fuel switching: gas instead of electricity, e.g.

What we want

Use the machines when the prices are low

What **limits** flexibility?

- Price prediction: highly dependent on weather
 - Good predictions for a few days
 - Useless after a week
- Processes are not always flexible
 - Some cannot be switched on and off on demand, e.g.

- What about the workers? They need:
 - Schedule predictability
 - Schedules that barely impact health

Overview of this talk

- InduStore
- Methodology
 - Production model
 - HR model
- Evaluation
- Conclusions and future work

InduStore

Two goals: quantify and exploit electrical flexibility

Partenariat

http://www.industore-project.be/

InduStore
highlights
energy
flexibility in
industrial
sites

Our methodology

How to exploit electrical flexibility in industrial sites?

Three different time scales

Hence, decompose in three steps:

Focus on long-term planning

How do we exploit flexibility?

- Long term: two optimisation models
 - First, **production**: when are workers required?
 - → Workers are modelled as a cost
 - Second, HR: who works when?
 - → Well-being-related constraints

How do we deal with the long-term planning?

Production model

Goals:

- Estimate a production planning
- Determine when workers are needed

Production model

Determine a production planning

Which level of details for the plant?

Rough model	Fine model
Any process lasts 1 h	Some processes take 30 min, others 45 min
Consumption is constant with production, fixed batch size	Consumption is linear, quadratic
Some stages are ignored	All stations are included
No wait time between processes	Wait time can be optimised

- A rough model is enough
 - Except if a process is not well approximated
- The details are for shorter-term optimisation

A glimpse of the MILP formulation

- Decision variables:
 - Are workers required? shiftOn_s $\in \{0,1\}, \forall s$
 - Is the process on? process $On_{t,p} \in \{0,1\}, \forall t, \forall p$
 - What quantity is being processed? quantity_{t,p} ≥ 0 , $\forall t$, $\forall p$
- Objective: minimise costs $\min \sum_{s} cost_{s} shiftOn_{s} + \sum_{t} price_{t} \sum_{p} processOn_{t,p}$
- Constraints:
 - Process started only if workers are present
 - Process succession
 - Fixed batch size
 - Order book

Goal: assign shift to worker teams

Respect legal and well-being constraints

Assign teams to shifts

Shift workers must have some rest between two shifts

Assign teams to shifts

Shift workers also need a WE, i.e. a pair of days off every so often

Assign teams to shifts

Shift workers should work no more than 50 hours per week

Otherwise, overtime

MILP model so far

- Decision variable:
 - Is a team assigned to a shift? assigned_{s,t} $\in \{0,1\}, \forall s, \forall t$
- Constraints:
 - Assign workers when they are needed
 - Rest between shifts: if working shift s, cannot work any shift within the set of forbidden shifts FS(s)
 - WE: detect pairs of days off; at least one pair for each period of nine consecutive days
 - 50 hours per week: less than 50 hours per week... plus slack (for overtime)

Objective function

- Maximise well being, i.e. minimise:
 - Hours overtime
 - Number of changes against previous solution
 - Unfairness in the number of shifts for each team

Evaluation

Axes:

- Computation times
- Monetary gains

Computation times

- These problems are easy to solve
 - Mixed-integer programs with a horizon of 2 weeks
 - Mill used 50-85% of the time, staffed with 5 teams

Production model: 90% below 0.1s, 100% below 30s

HR model: 90% below 0.5s, 100% below 5 minutes

Statistics based on 6 order books, 18 price scenarios, 4 penalisation weights

Monetary gains

Compare this "smart" approach to:

- A usual industrial scenario
 - Independent of price scenario
 - No flexibility
- A softened version of our approach:
 - Cannot reconsider shifts once they are decided
 - Weaker flexibility

Monetary gains

Approaches	HR cost		Electricity cost		Total cost	
High flexibility	974,426		752,689		1,727,114	
Low flexibility	1,023,973 + 5.:	1%	904,324	+ 20.1%	1,928,297	+ 11.6%
Current situation	1,289,920 + 32	2.4%	979,200	+ 30.0%	2,269,125	+ 31.4%

Conclusions and future work

Conclusion

- From 20th-century planning to full flexibility:
 - > Could save 30% in costs!

- Implementation must be discussed:
 - Complete mentality change
 - Workers and directors not always ready
- Objective elements to foster thinking

Try it for yourself!
 https://github.com/dourouco5/IndustrialProcessFlexibilisation.jl

Future work

- Some HR flexibility not yet exploited:
 - What about variable shift lengths?
 - E.g., if 4 consecutive hours are very cheap
 - For now: fixed to 8 hours, distinction between morning/afternoon/night shifts
- Price uncertainty not explicitly modelled

Thank you for your attention!

Questions?

Back up

Production model 1/4

- Main decision variables:
 - Are workers required? $shiftOn_s \in \{0,1\}, \forall s \in shifts$
 - Is the process on? $processOn_{t,p} \in \{0,1\},$ $\forall t \in \text{time steps}, \forall p \in \text{processes}$

Production model 2/4

• Objective: minimise the costs $\min \sum_{s \in \text{shifts}} cost_s \text{ shiftOn}_s \\ + \sum_{t \in \text{time steps}} price_t \sum_{p \in \text{processes}} processOn_{t,p}$

 Could have more precise consumption model: linear, quadratic, etc.

Production model 3/4

- Constraints:
 - A process can be on only if workers are present $processOn_{t,p} \leq shiftOn_s, \\ \forall p \in processes, \forall s \in shifts, \forall t \in s$
 - A process can be used only if it is on; the batch size is fixed quantity_{t,p} = quantity_p^{max}processOn_{t,p}, $\forall p \in \text{processes}, \forall t \in \text{time steps}$

Production model 4/4

- Constraints:
 - The processes follow each other and last one time step

```
quantity<sub>t,lf</sub> = \alpha quantity<sub>t-1,eaf</sub>,
quantity<sub>t,cc</sub> = quantity<sub>t-1,lf</sub>,
quantity<sub>t,out</sub> = quantity<sub>t-1,cc</sub>,
\forall t \in \text{time steps}
```

- Transformation factor between EAF and LF: some losses between the input raw material and the molten steel
- The order book must be respected $\sum_{\tau \leq t} \text{quantity}_{\tau, \text{out}} \geq \text{totalOrderedQuantityUpTo}_{t},$ $\forall t \in \text{time steps}$

HR model (1/6)

- Decision variable:
 - Is a team assigned to a shift? assigned_{s,t} $\in \{0,1\}$, $\forall s \in \text{shifts}, \forall t \in \text{teams}$

Major constraint: are workers required?

$$\sum_{t \in \text{teams}} \text{assigned}_{s,t} = \text{required}_{s},$$

$$\forall s \in \text{shifts}$$

HR model (2/6)

- Shift workers must have some rest between two shifts
- Notion of "forbidden shifts"
 - If working shift s, cannot work any shift within FS

$$\sum_{u \in FS(s)} \mathsf{assigned}_{\mathsf{t},\mathsf{u}} \leq 1 - \mathsf{assigned}_{\mathsf{t},s},$$

 $\forall s \in \text{shifts}$

HR model (3/6)

- Shift workers also need a WE, i.e. a pair of days off every so often
- Detect pairs of days off
 - New variable: does the team work in the given pair of days? in Pair_{d,t} $\in \{0,1\}, \forall d \in \text{days} \setminus \{\text{last day}\}, \forall t \in \text{teams}$
 - Detect those pairs with shifts (6 shifts for 2 days off): $inPair_{d,t} \leq 1 \frac{\sum_{s \in d} assigned_{t,s}}{6}, \forall d \in days \setminus \{last \ day\}, \forall t \in teams \}$
 - For each period of nine days, at least one pair: $\sum_{d+8}^{d+8} inPairs > 1 \ \forall d \in days \setminus \{9 \text{ last days}\} \ \forall t \in \{0\}$

$$\sum_{\delta=d} \operatorname{inPair}_{\delta,\mathsf{t}} \geq 1, \forall d \in \operatorname{days} \setminus \{9 \text{ last days}\}, \forall t \in \operatorname{teams}$$

HR model (4/6)

- Shift workers should work no more than 50 hours per week
 - Otherwise, overtime
- Overtime is still allowed, though!
 - New variable: amount of overtime overtime_{t,w} ≥ 0 , $\forall w \in \text{weeks}$, $\forall t \in \text{teams}$
 - One shift lasts 8 hours

$$\sum_{s \in w} 8 \text{ assigned}_{t,s} \le 50 + \text{overtime}_{t,w},$$

$$\forall w \in \text{weeks}, \forall t \in \text{teams}$$

HR model (5/6)

- On average, shift workers should work 38 hours per week
 - The average is computed on 13 weeks
 - Hard to implement! Need for a trick!

Budget of hours

- Use a *heuristic* 2-week budget
 - Try to have at least X hours, at most Y hours
 - Minimise budget violation
 - Leaves some freedom for the current 2 weeks
 - Keep margin for the weeks to come

HR model (6/6)

• The implementation of the budget of hours is straightforward:

$$\min \le \sum_{s \in \text{shifts}} 8 \text{ assigned}_{t,s} \le \max$$

 In practice: with slacks to avoid too quick infeasibility

Working conditions

Average hours per day

Monitor several KPIs: • Social KPIs

- Physiological KPIs
- Economical KPIs

Summarised in a complete visualisation

10 12 14

HR penalisation:

independent terms

— Electricity

Diff. w/

prev. sol.

Above budget

Below budget

Overtime

Team	#1	#2	#3	#4	#5
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	4	1	2
Night shifts	2	3	0	2	3

Social KPIs (14 days)

Team	#1	#2	#3	#4	# 5
Morning shifts	1	3	0	3	2
WE shifts	0	0	0	0	0

Economical KPIs (14 days)

Team	#1	#2	#3	#4	# 5
Total shifts	6	6	7	6	6
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Total wage	6000.	6000.	7000.	6000.	6000.
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Hourly wage	125.	125.	125.	125.	125.

Thyblological Iti lo (17 dayo)					
Team	#1	#2	#3	#4	# 5
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	4	1	2
Night shifts	2	3	0	2	3
Average hours per day	3.4	3.4	4.0	3.4	3.4

Social KPIs (14 days)

Team	#1	#2	#3	#4	# 5
Morning shifts	1	3	0	3	2
WE shifts	0	0	0	0	0

Economical KPIs (14 days)

Team	#1	#2	#3	#4	# 5
Total shifts	6	6	7	6	6
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Total wage	6000.	6000.	7000.	6000.	6000.
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Hourly wage	125.	125.	125.	125.	125.

Physiological KPIs (14 days)

Team	#1	#2	#3	#4	#5
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	4	1	2
Night shifts	2	3	0	2	3
Average hours per day	3.4	3.4	4.0	3.4	3.4

Social KPIs (14 days)

Team	#1	#2	#3	#4	#5
Morning shifts	1	3	0	3	2
WE shifts	0	0	0	0	0

Economical KPIs (14 days)

Team	#1	#2	#3	#4	# 5
Total shifts	6	6	7	6	6
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Total wage	6000.	6000.	7000.	6000.	6000.
Diff. with max (%)	14.2857	14.2857	0.	14.2857	14.2857
Hourly wage	125.	125.	125.	125.	125.

Thysiological Itt is (14 days)							
Team	#1	#2	#	#4	# 5		
Sequence night-rest	0	0	0	0	0		
Sequence rest-night	0	0	0	0	0		
Clockwise transitions (MA, AN, NM)	0	0	0	0	0		
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0		
No transition (MM, AA, NN)	1	3	3	1	0		
Night shifts	2	3	0	1	1		
Average hours per day	3.4	3.4	3.4	2.9	1.7		

Social KPIs (14 days)								
Team	#1	#2	#3	#4	#5			
Morning shifts	1	3	0	3	1			
WE shifts	0	0	0	0	0			
Shift estimate changes: come (at most 7 days before)	0	0	0	0	0			
Shift estimate changes: do not come (at most 7 days before)	0	0	0	0	2			

Economical KPIs (14 days)									
Team	#1	#2	#3	#4	#5				
Total shifts	6	6	6	5	3				
Diff. with max (%)	0.	0.	0.	16.6667	50.				
Total wage	6000.	6000.	6000.	5000.	3000.				
Diff. with max (%)	0.	0.	0.	16.6667	50 .				
Hourly wage	125.	125.	125.	125.	125.				