

DIRECTION RECHERCHE ET DEVELOPPEMENT

DESIGN OPTIMIZATION OF RANKINE CYCLE SYSTEMS FOR WASTE HEAT RECOVERY FROM PASSENGER CAR ENGINES

INTERNATIONAL FORUM AUTOMOTIVE THERMAL MANAGEMENT 2017

7-8 February 2017, Michigan, USA

Vincent LEMORT¹, Arnaud LEGROS¹, Olivier DUMONT¹, Mouad DINY²

¹ University of Liège, Belgium

² PSA Peugeot Citroën, France

International Forum Automotive Thermal Management 2017

Introduction

Context

- Worldwide regulations enforce to decrease the CO2 emissions of passenger cars
- Increasing the efficiency of ICE is one of the mid-term strategies

 Transportation represents a significant part of world energy consumption and CO2 emissions.

Introduction

Context

Combustion engine global efficiency can be increased by valorizing waste heat

- Almost 2/3 of fuel energy is lost in exhaust heat and engine cooling circuit
- Waste heat sources differ by the amount and quality of energy available.
- There exists different techniques of waste heat recovery
 - To produce power
 - To produce cooling effect
 - To produce heating effect

Content of the presentation

- 1. Introduction
- 2. Comparison of waste heat recovery techniques for passenger cars
- 3. Design of a scroll expander
- 4. Tests on a prototype of components
- 5. Conclusions and perspectives

Comparison based on litterature

- Focus on **power production** (other technologies available for cooling: ejector, sorption)
- o Turbocompounding and Rankine cycle are the most promising technologies
- **TEG**: lower produced power and low maturity
- Thermo-acoustics/thermo PV: low maturity
- Joule/Stirling cycle: large volume

Comparison based on simulation – Rankine cycle model

- 3-zone evaporator model
- Models calibrated based on experimental data
- o Condenser not modeled since condensing temperature is maintained constant by control

WASTE HEAT RECOVERY TECHNIQUES Comparison based on simulation – TEG and TC models

- o Regression model for the turbine efficiency and displaced mass flow rate
- Model parameters identified based on a turbocharger turbine

Comparison based on simulation

- WHR systems models are connected to a vehicle model
- Additional weight is taken into account
- Back-pressure not considered
- Power output is used to drive an electrical motor to boost the ICE

Comparison based on simulation

 Turbocompound yields the best results if engine back-pressure not taken into account

Introducing a limit on the backpressure sharply decreases the turbocompound power.

Ο

Comparison based on simulation

- Turbocompound yields the largest BSFC reduction if engine back-pressure not taken into account
- RC shows less back pressure (depending on the evaporator hydraulic performance)
 => good compromise.

- TC: largest power, less frequent time of use (mainly accelaration phases), highly sensitive to mass flow rate
- RC more often used (except during start up), mid power
- TEG: lower power, almost awlways used, less sensitive to mass flow rate.

Turbocharged engine

Content of the presentation

- 1. Introduction
- 2. Comparison of waste heat recovery techniques for passenger cars
- 3. Design of a scroll expander for a Rankine cycle system
- 4. Tests on prototype of components
- 5. Conclusions and perspectives

Architecture of the Rankine cycle system

Choice of expansion technology

Previous works stressed the advantage of scroll machines (design simplicity, reliability, promising performance, etc.) and water or ethanol (or a mixture) as working fluid.

- However, no commercial high temperature scroll expander designed for such an application is available on the market.
- Lubricating oil may be a major issue in ORC systems, especially in steam Rankine cycle (high operating temperatures, oil separation require bulky apparatus not compatible with mobile applications).

An high-temp., oil-free scroll expander has been designed and prototyped.

Which nominal point?

- First step of the design is the sizing.
- The World Harmonized Light Vehicles Test Cycle (WLTC) was applied to a 120 kW gasoline engine.
- Frequential distribution of power available in exhaust gases indicates that most of the time, the engine power in located in the first class (0-17).

• However, operating conditions are highly transient.

No nominal point can be easily defined and an optimization of the scroll characteristics (mainly, the displacement) has to be conducted.

Characteristics of the expander

A built-in volume ratio lower than the optimal volume ratio has been selected for compactness. That should also allow for a reduction of internal leakages.

Characteristics of the expander

- **Displacement** is optimized based on quasi-static simulation of the Rankine Cycle system (including a grey-box expander model) over the driving cycle.
- $\circ~$ The rotational speed is a function of the displacement and evaporating pressure
 - Low displacements or low pressures will yield high speed and the latter is constrained
 - Large displacements or high pressures will yield low speed and a larger impact of internal leakages

Characteristics of the expander

There exists an optimal displacement maximizing the average power produced by the Rankine cycle system over the driving cycle.

Defining the geometry

- A detailed scroll simulation model is used to define the exact geometry of the expander.
- Suction port cross-sectional area has been maximized by enlarging the clearance volume (which is not a drawback in expander mode)
- Oil-free concept was selected: involute in coated aluminum and tip seals in self-lubricating material.

Content of the presentation

- 1. Introduction
- 2. Comparison of waste heat recovery techniques for passenger cars
- 3. Design of a scroll expander

4. Tests on prototypes of components

5. Conclusions and perspectives

TESTS ON PROTOTYPES Description of the test rig

- Open-loop steam Rankine cycle
- Connected to a gasoline engine
- Produced electricity dissipated in electric resistances

TESTS ON PROTOTYPES Evaporator

• Two heat exchangers configurations tested: counter-current and hybrid current

Type of evaporator	Counter Current (CC)	Hybrid Current (HC)
Mass [kg]	Х	1.77.x
Volume [dm ³]	У	0.83.y 🔶
Water exchange area [m ²]	Z	0.36.z

- Performance expressed in terms of efficiency and pressure drops.
- o Evaporator efficiency: ratio between the actual and maximal heat transfer rates

TESTS ON PROTOTYPES Evaporator

TESTS ON PROTOTYPES

Pump

- Gear pump
- Performance expressed in terms of isentropic and volumetric efficiencies
- Maximum isentropic efficiency = 45%
- Maximum volumetric efficiency = 90%

Parameter	Value
Swept volume	0.5 cm ³
Max. pressure	20 bar
Max. mass flow (3000 RPM)	20 g/s
Max. power consumption	105 W

International Forum Automotive Thermal Management 2017

TESTS ON PROTOTYPES Expander

- \circ $\,$ Taylor made expander presented previously.
- Two generations of expanders have been built: V1 and V2 (20% reduced scroll lateral clearance).

Parameter	Value
Swept volume	8 cm ³
Max. rotational speed	15 000 RPM
Max. temperature	250°C
Pressure	Up to 20 bars
Volume ratio	Confidential

TESTS ON PROTOTYPES Expander

- Performance expressed in terms of isentropic efficiency and filling factor.
- Max isentropic efficiency of 28% is achieved.

- Very low efficiency is explained by important internal leakages.
- For V2: optimal rotational speed of 4000 rpm (antagonistic effects of speed on mechanical losses and leakages)

TESTS ON PROTOTYPES

Overall performance

Conclusions and perspectives

- A model-based comparison of different waste heat recovery techniques has been conducted, highlighting the Rankine cycle system.
- A high temp. oil-free scroll expander has been designed, prototyped and tested.
 There is a large potential of performance improvement.
- \diamond A pump and 2 evaporators have also been tested showing good performance.
- \diamond A reduction of **BSFC of 5%** on a NEDC is achievable.

- \diamond Perspectives:
 - Tests with ethanol or with a mixture of water/ethanol will be conducted.
 - \circ $\;$ Test with oil will be conducted.
 - $\circ~$ Other components will be tested.
 - Waste heat recovery on engine cooling loop will be investigated.

Thank you for your attention!

Vincent.lemort@ulg.ac.be