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A B S T R A C T

To obtain high quality of results in gamma spectrometry, it is necessary to select the best HPGe detector for
particularmeasurements, to calibrate energy and efficiency of gamma detector as accurate as possible. To achieve
this aim, the convenient detector model and gamma source can be very useful. The purpose of this study was to
evaluate the soil specific activity using two HPGe model (BEGe-6530 and GC0818-7600SL) by comparing the
results of the two detectors and the technics used according to the detector type. The relative uncertainty activity
concentration was calculated for 226Ra, 232Th and 40K. For broad energy germanium detector, BEGe-6530, the
relative uncertainty concentration ranged from 2.85 to 3.09% with a mean of 2.99% for 226Ra, from 2.29 to 2.49%
with a means of 2.36% for 232Th and from 3.47 to 22.37% with a mean of 12.52% for 40K. For GC0818-7600SL
detector, it was ranged from 10.45 to 25.55% with a mean of 17.10% for 226Ra, from 2.54 to 3.56% with a means of
3.10% for 232Th and from 3.42 to 7.65% with a mean of 5.58% for 40K. The average report between GC0818-7600SL
model and BEGe-6530 model was calculated and showed the mean value of 3.36. The main study was based on
the following points:
� Determination of The relative uncertainty activity concentration of 226Ra, 232Th and 40K
� Determination of the relative uncertainty related to the radium equivalent activity to compare the performance
of the two detection systems

� Proved that the activity concentration determination in gamma spectrometry depended on the energy range
emitted by a radionuclide.

This study showed that the standard deviation measurement was less important to the result realized with

BEGe-6530 HPGe model. Our findings were demonstrated that the results of the Broad Energy Germanium
detector were more reliable.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

A R T I C L E I N F O
Keywords: HPGe, Gamma spectrometry, [26_TD$DIFF]Specific activity, BEGE-6530, GC0818-7600SL, [27_TD$DIFF]Relative uncertainty
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Method details

Gamma-ray spectrometry is a non-destructive technics used to gauge electromagnetic radiation in
the gamma-ray spectrum of radioactive sources. This is performed through the procedure of the
counting and measuring the energy of individual photon emitted from different elements present in
soil. The use of germanium detectors in high-resolution gamma-ray spectrometry is a standout
amongst the most generally utilized strategies for the identification and quantification of unknown
gamma-ray emitting radionuclides in sample [1,2]. The estimation of gamma rays is valuable for the
determination of the elemental sample composition of a wide assortment of sources. The measured
energy of a gamma-ray corresponds to the type of element and its isotope, while the number of counts
corresponds to the abundance of the radioactive source present in the measured sample with some
little considerations. The process of measuring a gamma ray begins at the radioactive source, which
emits high energy photons during its unstable radioactive decay [3]. This spectrometry technique
requires earlier learning of the photo-peak efficiency of the detector in the counting geometry for each
photon energy.

In any case, measures crevices with various equipment in gamma spectrometry are nowadays a
real challenge for scientists: to locate the most efficiency and enhance the measurement time in the
lab and the statistic is not always obvious device [4]. That is the framework inwhich this study is part
which consists of a double measure of natural radioactivity present in soil from two campuses of the
University of Douala. A first step of this studywasmade in Cameroonwith a Broad Energy Germanium
detector (BEGE-6530 model) and a second with an HPGe (GC0818-7600SL model) detector took place
at the Laboratory of Nuclear Physics of the University of Liege in Belgium.

This process is high customizable and there are multiple methods of measuring natural
radioactivity based on detection of gamma-rays. This project compared two different types of gamma-
ray spectrometers in several different regards. Two different types of germanium detectors are used
Please cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison
techniques: Application to the soil measurement, MethodsX (2016), http://dx.doi.org/10.1016/j.
mex.2016.12.003
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for two comparative techniques for recording the response of gamma rays exciting electrons. A
comparison of the values of the two measures was made in this work in perspective of promoting
research and to improve the gamma spectrometry apparatus used in our laboratories.

Materials and methods

Material used

�
 Two High purity germanium detectors (HPGe) including
- Broad energy germanium detector (including germanium crystal and all protection material)
[(Fig._1)TD$FIG]
-
 High voltage supply

-
 Analog-to-digital converter (ADC)

-
 Pre-amplifiers

-
 Amplifier

-
 Nuclear Instrumentation Material (NIM)

-
 Multichannel Analyzer (MCA)
� Sample in cylindrical barker (Including all materials used during sampling campaign, laboratory

transfer and sample preparation)
�
 Global positioning system (GPS used to mark site during sampling campaign)

�
 Nitrogen cooling system

�
 Computer including Genie 2000 software and LabSocs mathematics simulation software for
calibration
�
 Calibration sources

Sampling and sample preparation
The field experiment was carried out at the two campuses of the University of Douala-Cameroon [28_TD$DIFF]

(04�44000.1”–04�44029.7” N and 09�44000.1”–09�44045.2” W). Composites of eighteen soil samples
were randomly chosen from the two campuses of the University of Douala (seven from
Campus1 ESSEC situated at Angel-Raphael and eleven from large area coverage of Campus 2 located
at Ndong-Bong Douala-Bassa).

The vertical or near vertical surface was dressed to remove smeared soil. This was necessary to
minimize the effects of contaminant migration interferences due to smearing of material from other
levels. Each composite samplewas amixture of five samples collectedwithin an area of 5m2 separated
from each other by a distance of 300m to cover the study site and to observe a significant local spatial
variation in terrestrial radioactivity (see Fig. 1). Each sampling point was marked using a global
positioning system (GPS). Four samples were collected at the edges and one at the center. These five
Fig. 1. Composite Sample Collection within the Sampling Sites.

Please cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison
techniques: Application to the soil measurement, MethodsX (2016), http://dx.doi.org/10.1016/j.
mex.2016.12.003
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samples collected at a depth of approximately 20 cm from the top surface layer were mixed
thoroughly to form a composite sample and packed into a polyethylene bag to. At the laboratory, the
samples were air-dried for a week then oven-dried at 105 �C for 24h. [29_TD$DIFF] The dried samples were grinded
into powder and sieved through a 2mm wire mesh to obtain a uniform particles size. In order to
maintain radioactive equilibrium between 226Ra and its daughters, the soil samples were then packed
in a 120mL air tight polyethylene cylindrical container, dry-weighed, and stored for a period of 32days
for equilibrium between the long-lived parent and daughter nuclides (For more details, see
Ndontchueng et al. [30_TD$DIFF][5]). The specifications of the two high purity germanium (HPGe) detectors used
are displayed as a part of Table 1.

Detector calibration procedure: energy and efficiency calibration

The two analyzes use fairly similarmethods for calibration of the detectors, but herewementioned
accuracy for each laboratory technics.

In Douala, each sample was subjected to a coaxial gamma-ray spectrometer consisting of broad
energy germanium detector (BEGe-6530) manufactured by Canberra Industries. Excellent perfor-
mance, routinely available in coaxial germanium detectors, may be represented by energy resolutions
(FWHM) of approximately 0.5 keV at 5.9 keV for 55Fe, 2.2 keV at 1332keV (60Co) and approximately
0.75 keV at 122keV (57Co) for the BEGe detector. For these higher efficiency detectors, “peak-to-
Compton ratios” are usually quoted in the range of 25 to 40. These ratios are strong functions of
resolution, efficiency, and exact detector crystal geometry, and no typical values can be givenwithout
knowledge of all of these parameters. The detector is placed in a low-level Canberra Model 747 lead
shield with thickness of 10 cm [6]. The energy distributions of the radioactive samples were generated
by the computer inbuilt Multiport II Multichannel Analyzer (MCA). Each sample was counted for
86400 s [31_TD$DIFF](24h) for effective peak area statistics of above 0.1%. Following the sample analysis process,
the specific activity concentration in Becquerel per kilogram (Bq [32_TD$DIFF]kg�1) for each radionuclide was
calculated after background separation using the Genie-2000 software version v3.2 incorporatedwith
cascade summing correction coefficient.

The procedure for extracting Full-Energy Peak Area from the spectral data will be determined by
the complexity of the gamma ray spectra as well as the intensity and complexity of the gamma-ray
background at energies near the peaks of interest. Assuming a state of secular equilibrium between
238U and 232Th and their respective decay daughter products, the following relatively intense gamma-
ray transitions were used to measure the activity concentrations for the above mentioned
radionuclides [5,7].
Table 1
Specifications of HPGe detector at the National Radiation Protection Agency Laboratory (BEGE-6530) and GC0818-7600SL at the
laboratory of nuclear physics at the University of Liege.

Descriptions Detector

Detector type (Canberra) GC0818-7600SL BEGe-6530
Detector geometry Plan (coaxial one open end,

closed and facing window)
Plan

Detector active area-facing window (mm2) / 6500
Active diameter (mm) 43 91.5
Thickness (mm) 32 31.5
Distance from window (outside) (mm) 5 5
Window thickness (mm) / 0.6
Detector end-cup type / Carbon epoxy
Relative efficiency at 1332.5 of 60Co (%) 30 60
Full Width Half Maximum (FWHM) Resolution (keV) at 5.9KeV / 0.478
Full Width Half Maximum (FWHM) Resolution (keV) at 122KeV 0.825 0.695
Full Width Half Maximum (FWHM) Resolution (keV) at 1332.5KeV 1.88 1.785
Peak/Compton 38 /
Cryostat description Horizontal dipstick Vertical dipstick
Peak shape (FWTM/FWHM) for 60Co 1.71 1.88

Please cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison
techniques: Application to the soil measurement, MethodsX (2016), http://dx.doi.org/10.1016/j.
mex.2016.12.003
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(a)
P
r
t
m

226Ra concentration was calculated based on the assumption that it is a weighted mean of the
activity concentrations of the gamma-rays of 214Pb (295.1 keV, 351.9 keV), 214Bi (609.3 keV and
1120.29 keV), and its specific gamma-ray at 186.2 keV. Interference correction due to the presence
of 185.7 keV energy peak of 235U has been taken into account and subtracted accordingly.
(b)
 The gamma-ray photopeaks used for the determination of the 232Th activity concentration
contents were 338.4 keV, 911.2 keV, and 969.11 keVof 228Ac and 238.6 keVof 212Pb.
(c)
 40K was directly determined by using its gamma-ray at 1460.8 (10.7%) gamma-ray.
In Liege, Each sample was measured with a gamma-ray spectrometer consisting of a high purity
germanium detector setup (GC0818-7600SL model) and multichannel analyzer 8192 channel. The
system was consisted of a Canberra germanium detector which was shielded to reduce background
with active diameter of 43mm, relative efficiency of 30% at 1.33MeV 60Co line and a resolution of
1.88 keV at the same line. The selected samples were subjected to gamma spectral analysis with a
counting time of 86,400 s (24h[33_TD$DIFF]). The absolute photopeak efficiency calibration of the system was
carried out using standard multi-gamma emitter 152Eu source. The sources were placed surrounding
the germanium detector with the radionuclides dispersed in gel matrices within planar beakers of
geometries identical to that of the evaluated samples. The calibration spectra were also acquired for [34_TD$DIFF]
7200 s (2h) [5,8,9].

In order to determine the background distribution due to naturally occurring radionuclides in the
environment around the detector, an empty polystyrene containerwas counted in the samemanner as
the samples prepared in our laboratories. After measurement and subtraction of the background, the
activity concentrations were calculated in unit of Bq kg�1.

Measurements of activity concentration

Each sample was counted for a 24h time and spectra were analysed using Genie 2000 software
provides by Canberra Version V.3.2 (BEGe-6530) and version V.3.1 (GC0818-7600SL), including peak
search, nuclide identification, activity and uncertainty calculation, and MDA calculation modules
software based on the following equation [10]:
le
ay
ech
e

AðBq=kgÞ ¼
NS
tS
� NB

tB

MS � e� Pg � KSC � KSA � KDC
ð1Þ
[35_TD$DIFF]Where A(Bq/kg)is the activity concentration of radionuclide, NS
tS

the count rate of radionuclide in the

sample, NB
tB

the count rate of radionuclide in the background, [36_TD$DIFF]MS the mass of the sample, [37_TD$DIFF]e the full
energy peak efficiency, [38_TD$DIFF]Pg the emission probability, [39_TD$DIFF]KSC the cascade summing correction, [40_TD$DIFF]KSA the
correction factor for self-attenuation, KDC the decay correction factor for radionuclide. The uncertainty
of the activity concentration (DA) was calculated using the following equation:
DA
A

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DN
N

� �2

þ DPg
Pg

� �2

þ De
e

� �2

þ DM
M

� �2
s

ð2Þ
[41_TD$DIFF]Where DN is the count rate uncertainty, DPg the emission probability uncertainty found in the
nuclear data tables, De the efficiency uncertainty and DM the weighing uncertainty [10,11].

The Minimum Detectable Activity (MDA) calculations based on the following equation:
MDA ¼ ð2:71þ 4:65�
ffiffiffi
B

p
Þ � Decay

e� b� LT � k� q
ð3Þ
[42_TD$DIFF]Where B=Background sum, Decay=decay factor, e = efficiency, b = abundance, LT = elapse live time,
k =3700 dps/mCi and q= sample quantity.

Several transitions fromdecays of shorter-lived radionuclides in the 238U decay chain, such as 214Pb
and 214Bi, were also used to estimate the activity concentration of 226Ra. The activity concentration of
232Thwas determined using gamma-ray transitions associatedwith the decay of 228Ac, 212Pb and 208Tl.
Background contributions were also subtracted from the peak areas for themeasured samples [12,13].
ase cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
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The radium-equivalent activity was considered in this case to assess the representative relative
uncertainty for specific radioactivity. The radium-equivalent activity is a weighted sum of activities of
the 226Ra, 232Th and 40K radionuclides based on the assumption that “370Bqkg�1 of 226Ra, 259Bq kg�1

of 232Th and 4810Bqkg�1 of 40K produce the same gamma-ray dose rate” [5,14]. It can be calculated by
the following relation:
Plea
rays
tech
mex
ð4Þ
226 232 40 �1
[43_TD$DIFF]Where ARa, ATh and AK are the activity concentration of Ra, Th and K in Bq [44_TD$DIFF]kg , respectively.

Method [45_TD$DIFF]validation

Radioactivity measurement validation

The activity concentrations of 226Ra, 232Th and 40K in soil samples from the two campuses of the
University of Douala-Cameroon have been measured with both spectrometry instruments and
presented below in Table 2 with the geological coordinates of each sampling point.

As shown in Tables 2 and 3, the measurement results of the specific activity with the BEGe-
6530 detector are very interesting. Indeed, the relative uncertainty is very small compared to the
results obtained with the detector GC0818-7600SL regarding 226Ra and 232Th. It is important to notice
that the Broad Energy Germanium Detector is very adaptable to low energies. The gamma ray of 226Ra
at 186.2 keV is detectedwith best resolution andminimal uncertainty according to BEGe. However, for
potassium which emits a line around 1461 keV, the report Err (7600SL)/Err (BEGE-6530)<1 is less
than one. Therefore, the HPGe detector GC0818-7600SL model is more suitable for measuring high
gamma energies and not be able at low energies. It can therefore be seen that BEGe measurement
results are suitablemeasures and that we can really use 7600SL only tomeasure high energies gamma
emitters. This is already checked through the computation of the minimum detection activity MDA.

Great information is characterized as being spectral data in which the peaks of interest are well
shaped, all around molded and have good “signal to noise." This is a key thought; simply having more
data doesn’t enhance the data.

Onemeasure of the quality of a spectrum is theminimumdetectable activity (MDA) of the detector
system [15,16]. The resolution, background and efficiency of the detector are related to the MDA. This
relationship might be essentially expressed as:
MDAðEÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðEÞ:NðEÞp
eðEÞ ð5Þ
TheMDA shiftswith energy because the quantities onwhich it depends changewith energy. All the
factors in the MDA that exclusively rely on the detector itself were isolated out. For example, the
gamma rays per decay, the shield and count time affect the MDA, but will do so in the sameway for all
detectors. R(E) is the energy resolution of the detector as a function of energy; N(E) is the background
counts per keV (unit energy) as a function of energy and e(E) is the absolute efficiency of the detector
and depend on gamma energy. This straightforward is highly huge in directing us towards the right
choice of detector using in gamma-ray spectrometry.

In order to reliably measure the gamma-rays emitted from environmental samples (water, air, rock
and soil in this case), it is important to achieve as low uncertainties as possible by getting appropriate
photon counts. Relative counting uncertainty is defined as reciprocal of the square root of the number
of counts (1/(n)1/2, n =number of counts), and subsequently, can be diminished by increasing the
photon counts. In spite of the acceptable degree of relative uncertainty relies upon investigations,
usually under 3.2% of relative uncertainty is viewed just like the minimum value to ensure the
unwavering quality of the measurements. The number of photon counts is influenced by
measurement time, amount of sample, geometry of samples and detector types.

As shown in Table 3, the relative uncertainty of specific activities for each detector and the ratio of
these values for the two detectors shows a relatively larger error for the GC0818-7600SL for 226Ra and
232Th. These reports ratio between the two detectors ranged from 3.50 to 8.26 with a mean of 5.71 for
226Ra and from 1.08 to 1.48 with amean of 1.32 for 232Th, which shows the interest to use the BEGe for
se cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison
niques: Application to the soil measurement, MethodsX (2016), http://dx.doi.org/10.1016/j.
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Table 2
Specific activities of 226Ra, 232Th and 40K in soil samples from Campus 1 and 2 of the University of Douala measured using BEGe-6530 (Douala) and GC0818-7600SL (Liege) high purity
germanium detectors.

Sampling Sites Sample ID Latitude Longitude Specific activity (Bq [1_TD$DIFF]kg�1)

226Ra 232Th 40K

Laboratory of measurement Dlaa (BEGe) Lgeb (7600SL) Dla (BEGe) Lge (7600SL) Dla (BEGe) Lge (7600SL)
Campus 1 UD01 [2_TD$DIFF]04�03020.8”N 09�43057.6”W 26.70�0.76 11.20�1.86 65.88�1.55 35.71�0.51 32.56�3.22 117.94�3.80

UD02 [3_TD$DIFF]04�03025.1”N 09�44000.1”W 28.95�0.84 31.51�2.18 80.03�1.87 54.94�0.57 13.93�2.88 195.72�4.07
UD03 [4_TD$DIFF]04�03022.6”N 09�44007.1”W 21.99�0.68 28.89�2.18 59.14�1.41 28.83�0.49 70.89�3.70 218.30�4.13
UD04 [5_TD$DIFF]04�03019.7”N 09�44004.1”W 25.44�0.77 28.38�2.45 63.27�1.52 27.37�0.43 38.01�3.38 170.06�3.94
UD05 [6_TD$DIFF]04�03017.2”N 09�44002.9”W 23.27�0.71 29.04�2.33 59.78�1.42 29.94�0.49 44.03�3.29 93.82�3.74
UD06 [7_TD$DIFF]04�03014.8”N 09�44008.0”W 29.17�0.87 21.52�2.33 71.06�1.71 45.44�0.60 21.82�3.09 187.97�4.10
UD07 [8_TD$DIFF]04�03016.7”N 09�44011.0”W 22.82�0.69 39.59�2.55 62.57�1.48 31.28�0.53 52.80�3.12 254.53�4.27

Minimum 21.99�0.68 11.20�1.86 59.14�1.41 27.37�0.43 13.93�2.88 93.82�3.74
Maximum 29.17�0.87 39.59�2.55 65.88�1.55 54.94�0.57 70.89�3.70 254.53�4.27
Average values� Standard Deviation 25.48�0.92 27.16�2.27 65.96�7.39 36.22�0.52 39.15�19.14 176.91�4.01
Campus 2 UD08 [9_TD$DIFF]04�03029.7”N 09�44026.5”W 22.27�0.68 13.89�2.00 52.60�1.27 30.17�0.53 44.70�3.27 248.63�4.28

UD09 [10_TD$DIFF]04�03031.0”N 09�44030.3”W 27.68�0.80 41.61�2.18 62.79�1.51 32.50�0.54 16.76�3.06 47.38�3.60
UD10 [11_TD$DIFF]04�03022.0”N 09�44030.0”W 24.94�0.73 92.88�3.06 72.50�1.66 69.02�0.55 14.68�2.76 225.98�4.65
UD11 [12_TD$DIFF]04�03025.1”N 09�44036.8”W 21.99�0.68 11.79�2.55 63.93�1.49 76.01�0.67 11.89�2.66 172.56�4.21
UD12 [13_TD$DIFF]04�03021.5”N 09�44039.0”W 22.89�0.69 50.66�2.87 64.46�1.51 69.23�0.71 15.82�2.90 238.96�4.63
UD13 [14_TD$DIFF]04�03016.5”N 09�44039.8”W 25.87�0.76 69.77�3.17 74.12�1.71 91.41�0.70 15.10�2.96 225.65�4.52
UD14 [15_TD$DIFF]04�03018.4”N 09�44037.5”W 23.84�0.71 41.51�2.91 63.27�1.48 78.10�0.75 80.76�2.80 198.16�4.41
UD15 [16_TD$DIFF]04�03016.8”N 09�44035.5”W 26.74�0.80 49.89�1.75 78.99�1.83 66.69�0.65 18.29�3.21 260.74�4.78
UD16 [17_TD$DIFF]04�03024.9”N 09�44042.2”W 24.64�0.76 62.85�2.46 71.66�1.69 73.85�0.59 29.94�3.24 244.97�4.59
UD17 [18_TD$DIFF]04�03021.2”N 09�44045.2”W 24.98�0.74 23.45�2.18 72.39�1.66 76.32�0.60 19.84�1.81 240.18�4.56
DU18 [19_TD$DIFF]04�03018.2”N 09�44042.7”W 23.67�0.71 49.43�288 57.20�1.36 59.77�0.65 42.26�3.18 271.76�4.74

Minimum 21.99�0.68 11.79�2.55 52.60�1.27 30.17�0.53 11.89�2.66 47.38�3.60
Maximum 27.68�0.80 92.88�3.06 78.99�1.83 91.41�0.70 80.76�2.80 271.76�4.74
Average values� Standard Deviation 24.50�1.80 46.16�2.55 66.72�7.91 65.73�0.65 28.19�20.72 215.91�4.45
Worldwide Range [20_TD$DIFF]17.00�60.00 11.00�68.00 140.00�850.00

Average 35.00 30.00 400.00

a Dla means Measured at the laboratory of the University of Douala.
b Lge means measured at the laboratory of the University of Liege.
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Table 3
Errors related to Specific activities of 226Ra, 232Th and 40K and standard deviation in soil samples from Campus 1 and 2 using
both detectors.

sample
Id

Err Ra/Ara
(BEGe)

Err Ra/Ara
(7600SL)

Ra7600SL/
BEGe

Err Th/Ath
(BEGe)

Err Th/Ath
(7600SL)

Th7600SL/
BEGe

Err K/AK
(BEGe)

Err K/AK
(7600SL)

K7600SL/
BEGe

UD1 2.85 18.67 6.56 2.35 3.14 1.33 9.89 3.74 0.38
UD2 2.90 16.48 5.68 2.34 2.98 1.28 20.67 3.59 0.17
UD3 3.09 16.85 5.45 2.38 3.28 1.38 5.22 3.49 0.67
UD4 3.03 19.23 6.35 2.40 2.95 1.23 8.89 3.60 0.41
UD5 3.05 17.69 5.80 2.38 3.20 1.35 7.47 3.83 0.51
UD6 2.98 20.44 6.85 2.41 3.49 1.45 14.16 3.70 0.26
UD7 3.02 17.22 5.69 2.37 3.45 1.46 5.91 3.42 0.58
UD8 3.05 19.18 6.28 2.41 3.53 1.46 7.32 3.44 0.47
UD9 2.89 14.54 5.03 2.40 3.56 1.48 18.26 4.05 0.22
UD10 2.93 12.20 4.17 2.29 2.95 1.29 18.80 7.53 0.40
UD11 3.09 25.55 8.26 2.33 3.12 1.34 22.37 7.65 0.34
UD12 3.01 16.67 5.53 2.34 3.10 1.32 18.33 7.48 0.41
UD13 2.94 15.58 5.30 2.31 2.86 1.24 19.60 7.47 0.38
UD14 2.98 18.86 6.33 2.34 2.92 1.25 3.47 7.56 2.18
UD15 2.99 10.46 3.50 2.32 3.00 1.29 17.55 7.47 0.43
UD16 3.08 12.78 4.14 2.36 2.54 1.08 10.82 7.49 0.69
UD17 2.96 18.15 6.13 2.29 2.60 1.14 9.12 7.53 0.83
UD18 3.00 17.25 5.75 2.38 3.17 1.33 7.52 7.44 0.99
Min 2.85 10.46 3.50 2.29 2.54 1.08 3.47 3.42 0.17
Max 3.09 25.55 8.26 2.41 3.56 1.48 22.37 7.65 2.18
Average 2.99 17.10 5.71 2.36 3.10 1.32 12.52 5.58 0.57
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these radioisotopes. This ratio is less than one except the case of one sample (UD14), which proves that
the use of GC0818-7600SL is more suitable in high energy measurement.

Validation of the [46_TD$DIFF]radium equivalent calculation

Table 4 presents the values of radium equivalent activity and uncertainty about the different
values.We can see in the last column the uncertainties relative ratio to both facilities calculated by the
Table 4
Errors related to equivalent radium of 226Ra, 232Th and 40K and standard deviation in soil samples from Campus 1 and 2 using
both detectors.

Sample Id Req (Bq [1_TD$DIFF]kg�1) Err Req err/Req T7600SL/BEGE

BEGe-6530 7600SL BEGe-6530 7600SL BEGe-6530 7600SL

UD1 145.98 41.02 3.22 2.88 0.02 0.07 3.18
UD2 154.12 49.31 3.74 3.31 0.02 0.07 2.77
UD3 161.15 43.40 2.98 3.20 0.02 0.07 3.98
UD4 145.18 42.00 3.20 3.37 0.02 0.08 3.63
UD5 142.66 42.61 2.99 3.32 0.02 0.08 3.71
UD6 147.59 44.49 3.55 3.50 0.02 0.08 3.27
UD7 152.95 46.41 3.05 3.64 0.02 0.08 3.93
UD8 131.91 41.87 2.75 3.10 0.02 0.07 3.56
UD9 130.37 43.95 3.19 3.24 0.02 0.07 3.01
UD10 139.92 66.99 3.32 4.73 0.02 0.07 2.98
UD11 122.57 51.01 3.02 4.21 0.02 0.08 3.36
UD12 127.25 59.12 3.07 4.59 0.02 0.08 3.21
UD13 143.49 67.10 3.43 4.94 0.02 0.07 3.08
UD14 176.50 58.69 3.04 4.59 0.02 0.08 4.54
UD15 153.78 57.47 3.66 3.41 0.02 0.06 2.49
UD16 150.17 62.07 3.43 4.02 0.02 0.06 2.84
UD17 143.77 54.37 3.25 3.75 0.02 0.07 3.04
UD18 138.01 55.96 2.90 4.55 0.02 0.08 3.87
Min 122.57 41.02 2.75 2.88 0.02 0.06 2.49
Max 176.50 67.10 3.74 4.94 0.02 0.08 4.54
Average 144.85 51.55 3.21 3.80 0.02 0.07 3.36

Please cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
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following equation:
[(Fig._2)TD$FIG]

Fig. 2.
for 226R

Ple
ray
tech
me
T7600SL
BEGe

¼
ðErrReq

Þ7600Sl
ðErrReq

ÞBEGe
ð6Þ
The average ratio ranged from 2.49 to 4.54 with an average of 3.36; which means that the
measurementsmadewith the BEGe are generallymore relevant. This variation is also seen in Fig. 2: for
18 samples, uncertainties are higher for GC0818-7600SL.
Standard deviation between the twomeasurements using BEGe-6530 and GC0818-7600SL HPGe detectors: (a) deviation
a, (b) deviation for 232Th and (c) deviation for 40K.
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Fig. 3. Relative error related to the equivalent radium between the two measures.
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Fig. 2 presents a comparison of uncertainties relating to the two types of detector and for different
radioisotopes. The fluctuation is almost imperceptible to the measurement of the specific activity of
226Ra and 232Th with BEGe-6530. But for potassium, the gamma ray is emitted to 1461 Kev, stability is
observed rather for GC0818-7600SL. This stability is reflected rather the extent GC0818-7600 as
regards the values of 40K. A very stable uncertainty is observed for BEGE to the first two curves. Once
again, the explanation comes of high and low energies. This is generally reflected in Fig. 3, wherein
comparing the standard deviation of radium equivalent activity Raeq for both types of detectors. It is
clear that for measuring natural low level radioactivity the BEGe is more suitable for gamma
spectrometry.

The right detector, in this case, is the detector that delivers the most analyzable information in the
shortest time for the best statistic measurement. Most spectrometry issues can be tackledwith simple
detectors. There is no need to have exotic, fascinating or excessively complex designs [15–17].

Additional informations

Poisson [47_TD$DIFF]statistics applies

For spectrometers that measure and count individual events, such as gamma-rays, counting
statistics normally controls the accuracy for measuring the number of events [18,19]. In the case of a
small peak superimposed on a high background in the acquired spectrum, the fluctuation in the
background counts degrades the precisionwithwhich the net peak counts can bemeasured. At least, it
is this uncertainty in the background counts that determines as far as possible the detection limit for
the peak.

It is important to analyze the contribution of counting statistics to the uncertainty in determining
the net peak area, and in controlling detection limits. This situation is sometime used in matter-rays
Physics like gamma-ray spectrometry. The methodology is applicable to spectrometers that count
single events The outcomes proved that it is essential to maximize the peak-to background ratio, the
event counting rate, and the counting time to enhance our detection performances and have more
reliable results [20]. The latter two parameters enhance accuracy by increasing the number of
measured counts.

The above applications normally meet the conditions that characterized the Poisson distribution:
1) The events are uniformly and randomly distributed over the sampling intervals. This is the real

principle of Monte Carlo methods used in gamma-ray interaction.
Please cite this article in press as: G.S.C. Joel, et al., Precision measurement of radioactivity in gamma-
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2) The probability of detecting an event during an infinitesimal time interval dt is rdt, where r is
the expected counting rate.

3) pdt<<1
4) The probability of detecting more than one event during the infinitesimal time interval dt is

negligible.
On the off chance that the events are counted over a finite time period, t, the Poisson Distribution, P

(N), describes the probability of recording N counts in a single measurement of duration, t.
Ple
ray
tech
me
PðNÞ ¼ mNe�m

N!
ð7Þ
If the measurement is repeated a large number of times, the average value of N approaches the
mean of the distribution,m, as the number of repeatedmeasurements approaches infinity. The Poisson
distribution has a standard deviation expressed by the following equation:
sN ¼ ffiffiffiffi
m

p �
ffiffiffiffi
N

p
ð8Þ
Substituting N form in equation (7) recognizes that the value of N from a single measurement is an
adequately accurate estimate of m [21].

A more useful description of the accuracy of the estimation is gotten by multiplying the relative
standard deviation, [48_TD$DIFF]sN/N, by 100% to express it as
sN% ¼ sN

N
� 100% ¼ 100%ffiffiffiffi

N
p ð9Þ
Table 5 shows indicated how the percent standard deviation enhances as the counted number of
events increases. Clearly, countless must be accumulated to achieve a precision better than 1%.

Strictly speaking, [49_TD$DIFF]Eqs (7) through (9) precisely describe the statistical distribution of events
counted only if:

a) dead time losses are negligible, or
b) a perfect lifetime clock is employed to make up for dead time losses [22–24]. For the ultimate

objective of these studies, no less than one of these conditions will be presumed to be fulfilled to our
gamma spectrometry framework.

Clearly, it is important to amplify the peak-to-background ratio, the net counting rate in the peak,
and the counting time to achieve the lowest detection limits. This same strategy is likewise important
for achieving the best relative standard deviation for concentrations well above the detection limit.

Output of this research

Unmistakably, a few decisions are better than others with regards to picking a detector to quantify
natural radioactivity in sand samples with particular energy gamma rays, in a particular geometry and
count rate regime. The choice of the best HPGe detector for specific radioactivity estimation
circumstance depends on a few basic guidelines. To acquire reliable measurements of radionuclide
activity, the knowledge of the detector absolute peak efficiency in the counting conditions is very
important.
Table 5
[21_TD$DIFF]sN% for selected values of N.

N [22_TD$DIFF]sN%

1 100.0%
100 10.0%
10,000 1.0%
1,000,000 0.1%
100,000,000 0.01%
10,000,000,000 0.001%
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Background can be lessened by equipping the 10 cm lead shield to obstruct the gamma-ray
from outer environment and by applying ultra-low background cryostat materials with low-
radioactivity (this case is applied to the BEGe detector of National radiation protection agency of
Cameroon).

Broad Energy Germanium detector has a low-form cylindrical shape that is of large detection area,
entrancewindow beingmade of composite carbon epoxy. Low-form shape has larger solid angle than
those of other coaxial type detector (GC0818-7600SL). Subsequently, efficiency in the low energy
range is higher than different sorts of detector with comparable relative efficiencies. Theoretically,
however, the efficiencies in the high energy range are lower than other coaxial type of similar relative
efficiencies. In spite of the fact that, the useful energy range of BEGe detector is from 3keV to 3MeV
which is smaller than that kind of coaxial HPGe detector (50keV to 10 MeV), this narrow detection
range does not make big difference in measuring the natural radioactivity of environmental samples,
the energy ranges of which are mostly below 2 MeV. The acquired results demonstrate that broad
energy germanium detector (BEGe-6530 model in this study) is more precise. This conclusion is
defended for the accompanying reasons:

� Flat, non- bullettized gems offer ideal efficiencies for samples counted close to the BEGe detector
� Thin, stable entrance window permits the detector to be stored warmwith no fear of low energy

efficiency loss over time
� The BEGE detector dimensions are for all intents and purposes the same on a model by model

basis. This suggests like units can be substituted in an applicationwithout complete recalibration and
that computer modeling can be done once for each detector size and used for all detectors of that
model.

� With cross-sectional areas of [50_TD$DIFF]20–65 cm2 and thickness of [51_TD$DIFF]20–30mm, the nominal relative
efficiency is given underneath close by with the details for whole scope of models. BEGE detectors are
ordinarily outfitted with our composite carbon windows which are healthy and provide excellent
transmission to underneath 10 keV. Beryllium or aluminum windows are additionally accessible
because the transmissivewindow is formed in the assembly by removing the transition layer material
from the central region. Aluminum is more suitable used when there is no interest in energies below
30keV and enhance toughness is coveted. Beryllium ought to be chosen to take full preferred
standpoint of the low energy capability (down to 3keV) of the BEGE detector [22–25].
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