Identification of complex nonlinearities using
cubic splines with automatic discretization

T. Dossogne, J.P. Noé€l and G. Kerschen

Space Structures and Systems Lab
Aerospace and Mechanical Engineering Department
University of Liege
9, Allée de la Découverte (B52/3), 4000 Liege, Belgium
Email: tdossogne, jp.noel, g.kerschen@ulg.ac.be

Abstract

One of the major challenges in nonlinear system identification is the selection of appropriate mathe-
matical functions to model the observed nonlinearities. In this context, piecewise polynomials, or splines,
offer a simple and flexible representation basis requiring limited prior knowledge. The generally-adopted
discretization for splines consists in an even distribution of their control points, termed knots. While this
may prove successful for simple nonlinearities, a more advanced strategy is needed for nonlinear restoring
forces with strong local variations. The present paper specifically introduces a two-step methodology to se-
lect automatically the location of the knots. It proposes to derive an initial model, using nonlinear subspace
identification, and incorporating cubic spline basis functions with fixed and equally-spaced abscissas. In a
second step, the location of the knots is optimized iteratively by minimizing a least-squares cost function.
A single-degree-of-freedom system with a discontinuous stiffness characteristic is considered as a case study.
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Introduction

The complete process of identifying a nonlinear structural model is often performed using the well-known
methodology discussed in [1]. In this methodology, the nonlinear parameter estimation is preceded by a detection
and a characterization of the nonlinearity. Such characterization step is generally useful to select an appropriate
set of basis functions for the proper estimation, but is not always achievable due to the potential complexity of
nonlinear phenomena. In that case, the identification can be carried out in the framework of grey-box modeling
where no mathematical representation of the nonlinearity is available, while still assuming a general model
structure [2].

In this framework, adopting cubic splines as basis functions proved efficient [3][4]. However, while providing
a simple and flexible tool, cubic splines are inherently smooth functions as their first and second derivatives
are imposed to be continuous functions. Therefore, the use of cubic splines must be considered with care
when considering complex nonlinearities that exhibit discontinuous and nonsmooth behaviors. Such cases
can be successfully handled though, if the splines are sufficiently discretized in the regions where abrupt and
nonsmooth variations occur [5]. As the knowledge of those regions is rarely available prior to the identification,
an automatic procedure is hence needed to find the optimal location of the splines control points, termed knots.
The objective of this paper is hence to develop a methodology to address the identification of complex non-
linearities by means of cubic splines whose knot distribution is automatically optimized. The methodology is
developed in Section 1 and divided in two steps. First, an initial estimation of the linear and the nonlinear
parameters is acquired using nonlinear subspace identification with splines whose knots have fixed and equally-
spaced abscissas. This initial estimation is also enhanced by an additional curve fitting operation. Second, that
estimation is improved by allowing the knots to move along the x-axis and using an optimization algorithm in
order to minimize the model error. Finally, the whole procedure is applied to a system of one degree-of-freedom
(DOF) with a piecewise-linear spring, in Section 2, where several cases of knot numbers are considered.



1 Identification procedure

1.1 Initial state-space model obtained using nonlinear subspace identification and curve
fitting

The first step of the procedure consists in obtaining an initial model that will be later needed for the optimization.
This can be performed by means of the Frequency-domain Nonlinear Subspace Identification (FNSI) method
[6]. That method enables identifying a state-space model of the system and nonlinear restoring forces defined
as the sum of basis functions associated with nonlinear coefficients. In the present case, the basis functions are
cubic splines described by the abscissas of their knots. Without any prior knowledge on the nonlinear behavior,
the knots are set following an even distribution. The result of the FNSI identification can next be adopted as
an initial state for the following optimization process.

However, such initial state often leads to local minima during the optimization, a better state, closer to the
optimal solution must hence be provided. Such initial state is obtained by a curve-fitting method where the
previously identified nonlinear curve is approximated by a piecewise-linear function. That function possesses a
number of linear portions equal to the number of knots minus 1, and the abscissas of the discontinuities between
the linear parts is optimized using a least-square algorithm. Then, the computed abscissas are used as new
locations for the splines knots and a new nonlinear curve can be identified. The process can be repeated for a
few iterations and the set of abscissas leading to the smallest model error can be selected as an initial state for
the full optimization.

1.2 Final state-space model obtained using nonlinear optimization

Starting from the initial state defined in the previous section, a nonlinear optimization is carried out on the
location of the splines knots using an algorithm of Sequential Quadratic Programming, as it is suited to opti-
mization with inequality constraints [7]. The selected cost function to minimize is the model error, namely the
difference between the modeled output, synthesized using the identified system properties, and the measured
output.

In order to ensure the correct definition of splines curves, constraints must be imposed on the knots abscissas.
Indeed, the knots must be in a crescent order and cannot share the same abscissa. Moreover, the two extreme
abscissas are fixed to the minimum and maximum values of the relative displacement while all the others must
stay between those two values.

2 Numerical demonstration on a single-DOF system with a trilinear stiffness

The described identification procedure is here demonstrated on a single-DOF system whose linear and nonlinear
parameters are listed in Table 1. The system possesses a piecewise-linear spring defined by three linear parts
having a slope of k,;. The transition between those parts occurs at displacements x,,; and is regularized using
third-order Hermit interpolation polynomials over a range of § * x,; to avoid convergence issues during the time
integration.

Linear parameters ‘ Nonlinear parameters
m = 2 kg fn =35.59 Hz Tny = £0.01 m
¢c=10Ns/m £=1.12% kni = [50;0;50] kN/m
k =100 kN/m 0=2%

Table 1: Linear and nonlinear parameters of the single-DOF system with a trilinear stiffness

A random phase multisine excitation [8] with a flat amplitude spectrum between 5 and 150 Hz and an RMS
value of 100 N is applied to the system. The time simulation is conducted using a nonlinear Newmark scheme,
with a sampling frequency set first to 15000 Hz for accuracy, and then reduced to 750 Hz after the integration
for practical reasons. 25 periods of 8192 points are considered, including 5 periods to capture transient effects
and to remove a posteriori.



2.1 Identification using 6-knot splines

The first considered case tackles the identification with splines possessing 6 knots. Splines with equally-spaced
knots provide a nonlinear curve, showed in gray in Figure 1, and an error between the modeled and the measured
output of 0.48%. The main discrepancies with the exact curve are found around the discontinuities where more
knots are needed, and in the extreme regions where less points are measured, making the identification more
arduous.

Using the curve fitting procedure on the gray curve leads to a new set of abscissas. The corresponding identi-
fication result is plotted in blue. It can be seen that this curve already presents a knot repartition where the
density of knots is higher in the nonsmooth regions. However, even if the repartition is better, the model error
is still at 0.22% as the extreme regions of the curve are poorly estimated.

After an optimization using the curve-fitted result as an initial state, the identified nonlinearity (in red) displays
a good estimation in both the nonsmooth and the extreme regions. The knots are seen to be even more
concentrated around the discontinuity and the model error drops to 0.018%, which is two orders of magnitude
lower than the case of equally-spaced knots.

2.2 Identification using 12-knot splines

The same identification is carried out while considering splines defined by 12 knots. Estimated nonlinear curves
are illustrated in Figure 2 and similar observations to the case of fewer knots can be made. Indeed, it can be
seen that the knots location resulting from the optimization is well concentrated in the nonsmooth regions.
Practically, 4 nodes cluster around the discontinuity in the negative displacement and 4 other nodes, very close
to each other, around the discontinuity in the positive displacement. Regarding the accuracy of the model,
the error goes from 0.14% for equally-spaced knots to 0.014% for optimally-located knots, gaining one order of
magnitude.

Conclusion

The goal of this work was to establish a nonlinear identification procedure based on cubic splines with automatic
discretization to address the case of complex nonlinear behaviors. This two-step procedure, consisting in a
nonlinear subspace identification with a curve-fitting phase followed by an optimization, was demonstrated
on a single-DOF system possessing a nonsmooth nonlinearity. The nonlinear stiffness curve was shown to be
accurately estimated and the model error significantly decreased after the optimization of the splines knots
location.
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Figure 1: Exact nonlinear stiffness curve (in dashed line) and FNSI reconstruction using 6-knot cubic splines
with: equally-spaced knots (in gray with circles at knots location), knots whose abscissas are found using curve
fitting (in blue with squares at knots location) and knots whose abscissas are computed using the complete
optimization procedure (in red with triangles at knots location). (a) Entire nonlinear stiffness curve; (b) close-
up of the discontinuity in negative displacement
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Figure 2: Exact nonlinear stiffness curve (in dashed line) and FNSI reconstruction using 12-knot cubic splines
with: equally-spaced knots (in gray with circles at knots location), knots whose abscissas are found using curve
fitting (in blue with squares at knots location) and knots whose abscissas are computed using the complete
optimization procedure (in red with triangles at knots location). (a) Entire nonlinear stiffness curve; (b) close-
up of the discontinuity in negative displacement



