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Residual mean meridional circulation:

Hadley cell branches

Shading: Regions of 
breaking waves responsible for
driving the branches of the 
stratospheric and 
mesospheric circulation.
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Planetary (Rossby) waves
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[Andrews et al., 1987]
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● Study of the stratospheric variability, in particular the wintertime 
Northern Hemisphere (NH) polar stratosphere, and its effect on the 
tropospheric circulation.

● A number of Chemistry-Climate Model (CCM) simulations is used to 
evaluate such coupling, together with the "observational" data from 
ERA-interim reanalysis.

● Characterization of anomalous stratospheric events and their effects 
on the tropospheric circulation. 

● Implications: evaluation of the stratosphere as source of predictability 
both for climate and weather prediction.

Aim of the work



NH dynamics
● Sudden Stratospheric Warming (SSW): in the winter season the 

tropospheric waves can interact with the stratosphere, leading to a warming 
of the stratosphere (up to 40° C) and, in the most severe cases, a reversal of 
the westerly circulation is observed. This leads to a weakening of the polar 
vortex. 

Middle stratosphere

U
c
 is the Rossby critical velocity

k,l longitudinal and latitudinal wavenumber

Temperature at 10 hPa

Condition for vertical propagation
of stationary (Rossby) waves into the
stratosphere

Brunt-Vaisala
frequency



NH dynamics

● Annular Modes: hemispheric variability (pressure, wind), produced by 
atmospheric mass redistribution, and present at all levels. Positive phase: 
negative pressure anomalies over the Pole, and positive pressure anomalies 
over the mid-latitudes.

Negative phase of the NAM is
related to weak polar vortex 
regimes.

NAM: Northern Annular Mode
          (AO, NAO)

[Thompson and Wallace, 1999]

Leading structures of the monthly mean 50 hPa height anomaly field for 
November (SH, left) and Jan-Mar (NH, right). 

SH NH



Stratospheric variability: strato-tropo coupling

[Baldwin and Dunkerton 2001]

Downward propagation
of the stratospheric 
anomalies.
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Composites of time-height development of NAM (dimensionless).

Events determined by the dates on which the 10 hPa
annular mode values cross -3.0 and +1.5.

Red: polar vortex warm 
and weak.

Blue: polar vortex 
cold and strong.

These values are highly
correlated (0.95) to with u
at 10 hPa, 60N

positive values (+1.5)== strong vortex
negative values (-3.0)== weak vortex



[Sigmond et al., 2013]

Chicago on 
January 7, 2014

Stratospheric
anomalous event
January 2014

Record of
cold temperatures

https://www.climate.gov/news-features/event-tracker/wobbly-polar-vortex-triggers-extreme-cold-air-outbreak

Stratospheric variability: strato-tropo coupling

[Tripathi et al., 2015]

Extreme stratospheric events
improve wintertime 
tropospheric predictability.

https://www.climate.gov/news-features/event-tracker/wobbly-


METHODOLOGY

-CCM structure

-SSW events detection

-NAM regimes characterization



Chemistry-Climate Model structure

-Dynamics: temporal evolution
of the wind, pressure, etc.
Solving equations on discrete
spatial and temporal grid.
Sub-grid processes are parametrized.

-Radiation: Separation of 
shortwave (SW) and longwave
(LW) spectrum. Increased
resolution (SW) for ozone.

-Chemistry: solving equation governing
(among all) stratospheric ozone. Several 
schemes of inorganic chemistry included

Transport



Identification of stratospheric anomalies: SSW

● Date of occurrence index (discrete): based on the definition used by 
[Charlton and Polvani, 2007].

● A SSW occurs when the zonal mean zonal wind at 60°N and 10 hPa 
becomes easterly, and the temperature gradient between 60°N and 
90°N becomes positive during winter (November-March)(NDJFM).

● The central date: first day on which those conditions are met.

● Final warming (zonal wind easterly, but not returning westerly for 10 
days before 30 April) and minor warming (only temperature gradient 
condition) are not included in this analysis.

● Shortest duration: 4 days. Minimum distance between events: 20 
days

[Charlton and Polvani, 2007]

Geopotential height on the 10 
hPa pressure surface.
Shading shows potential
vorticity greater than a 
threshold value (polar vortex).



● NAM index (continue): based on the methodology reported by 
[Baldwin and Thompson, 2009].

● NAM is defined as the leading Empirical Orthogonal Function (EOF) 
of the NH (20°-90°N) winter zonal mean geopotential height 
anomalies at 10 hPa.

● The index is the standardized Principal Component (PC) of the 
leading EOF (k=1).

● Events of "strong" (95% prct) and "weak" (5% prct) vortex.

● Minimum duration of the event: three days. Minimum distance 
between two events: 30 days.

X ' (t ,S)=∑
k=1

M

c k (t)uk(S)

Identification of stratospheric anomalies: NAM regimes

PDF

Standardized PC NH[Baldwin and Thompson, 2009] Standardized PC SH



● Resolution: 3.75x3.75 lat,lon (≈415x415 km)

● Uppermost level: ≈100 km (8.1*10-7 hPa), 71 levels

● Used in operational seasonal forecast simulations from the Canadian Centre for 
Climate Modelling and Analysis (CCCma).

CCMs and reanalysis

CMAM(1960-2000)

● Resolution: 2.75x3.75 lat,lon (≈272x415 km)

● Uppermost level: ≈84 km (0.1 hPa), 31 levels

NIWA(1960-1999)

ERA-interim(1979-present)(ERA)

● Resolution: 1x1 lat,lon (≈110x110 km)

● Uppermost level: ≈54 km (1 hPa), 37 levels 

● Dataset created via data assimilation scheme (combining observations and forecast 
output from a weather model): at all times and spatial grid points.

[Dee et al., 2011]

Considered models:
-CCSRNIES   [Akiyoshi et al. (2009)]
-CMAM          [Scinocca et al. (2008)]
-HadGEM3      [Walters et al. (2011)]
-MRI              [Shibata and Deushi (2008)]
-NIWA           [Morgenstern et al. (2013)]
-SOCOL       [Stenke et al. (2012)]



RESULTS



Atmospheric mean state(DJF) and interannual variability
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Intraseasonal SSW distribution
High frequency in
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Interannual SSW distribution
High frequency in
mid-winter (Jan, Feb)
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Downward propagation: SSW

[u' ]>0

Delayed downward
propagation of the
negative zonal wind anomaly after SSW events.

        : clear representation.
CMAM: present but not as strong as ERA.
NIWA: not realistic representation (few events).
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Weak vortex NAM index

Stratospheric easterly
zonal wind anomaly
propagating into 
the troposphere after
the event
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Delayed downward
propagation of the
negative zonal wind anomaly after NAM weak
vortex events.

        : clear representation.
CMAM: quite similar to ERA.
NIWA: not realistic representation.

ERA



Weak vortex NAM index

Stratospheric easterly
zonal wind anomaly
propagating into 
the troposphere after
the event
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Delayed downward
propagation of the
negative zonal wind anomaly after NAM weak
vortex events

        : clear representation.
CMAM: quite similar to ERA.
NIWA: not realistic representation.

ERA



Weak vortex 30 days before
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blocking  event
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[Martius et al., 2009]
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Weak vortex 30 days after

Anomalies affecting 
high and low latitudes
(negative phase of 
the NAM represented)
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Strong vortex NAM indexContour every 5 m/s
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        : clear representation.
CMAM: quite similar to ERA.
NIWA: not realistic representation.
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Strong vortex 30 days before
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Strong vortex 30 days afterContours every 10 m
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● A comparison between CCMI models and reanalysis was made 
looking at the strat-tropo dynamical coupling using SSW and NAM 
indices.

● Possibility for better predictions of mid-latitude "weather" in weak and 
strong vortex regimes, requires models with a good representation of 
this coupling.

● Stratospheric variability (strong/weak polar vortex regimes in 
particular) is highly related to the mean state: reduced stratospheric 
variability is correlated with a colder polar stratosphere (e.g. NIWA).

● Weak vortex regimes seem to be preceded by tropospheric pattern 
resembling blocking event, in ERA but not in CMAM and NIWA.

● Models that do not show correct stratospheric variability, tend to have 
a uncorrect simulation of the NAM in the troposphere.

Perspectives: 

● a)Extend analysis to all 14 models in CCMI dataset.

● b) Create a metrics to compare stratosphere-troposphere coupling 
between different models.

Conclusions
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Backing slides

Model 
name

Resolution Uppermost
Level

Chemistry ODS/GHG
Emission

Ocean QBO

CMAM T47 0,00081 
hPa

Strat-trop N.A. Fixed Internal 

CCSRNIES T42/L34 0,012 hPa Strat. N.A. N.A. Nudged

HadGEM3 1,25/1,875
L85

84 km Strat-trop N.A. Coupled N.A.

MRI T42 0,01 hPa Strat-trop N.A. Coupled Internal

NIWA 2,5/3,75
L60

84 km Strat-trop Mixing Ratio Coupled Internal

SOCOL T42 0,01 hPa Strat N.A. N.A. Nudged

Models characteristics

Detailed informations about the forcings can be found in:

[Eyring et al., SPARC Newsletter, 2013]



Backing slides
ERA

Standardized PC Leading EOF



Backing slides

CMAM

Standardized PC Leading EOF



Backing slides

NIWA

Standardized PC Leading EOF



Backing slides

First EOF SH  for ERA-interim



Backing slides

Surface-based NAM Height-dependent NAM Zonal-mean NAM

Difficult reproduction
of upper stratosphere
annular modes.

Robust at stratosphere
and surface, but not at 
upper troposphere.

Less dependent on
subjective choice, higher
correlation between 
strat-trop variab, requires
less data.

Differences indeces in [Baldwin and Thompson, 2009] 
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