How and when children master the

 numerical content conveyed by verbal numbers and number gestures?Line Vossius ${ }^{1}$, Marie-Pascale Noël ${ }^{2}$ \& Laurence Rousselle ${ }^{1}$

${ }^{1}$ University of Liège, Research unit on childhood
${ }^{2}$ Catholic University of Louvain

Group of contacts

Courtrai, April 2016

Fingers

- Many studies show that gestures support verbal number knowledge Luca \& Pesenti, 2011; Goldin-Meadow, Levine \& Jacobs, 2014; Roesch \& Moeller, 2015)

(Roesch \& Moeller, 2015)

Fingers

- Many studies about fingers in counting
- Finger pointing and finger counting allow children- to keep a visual track in the recitation of the verbal numerical chain (Fuson, Richards \& Briars, 1982; Saxe \& Kaplan, 1981; Alibali \& Di Russo, 1999)
- Many studies about fingers in arithmetics
- Fingers are usually used by young children to resolve arithmetic tasks (Fuson, 1982)
- Finger gnosia are a good predictor of performance in arithmetics and problem solving (Fayol, Barrouillet \& Marinthe, 1998; Noël, 2005)
- BUT... Fingers in the understanding of the cardinality concept are less studied in children

Cardinality

- The learning of cardinal meaning of number words is long and works through different stages (wynn, 1990, 1992)
- The first four number words are mastered in order one at a time (Carey, 2009; Sarnecka \& Lee, 2009)
- Children are first « one-knowers », then «two-knowers », « three-knowers » and « four-knowers)
- Then, children learn that the last number word reached when counting a set represents the size of this set (Gelman \& Gallistel, 1978)
- Children become «Cardinal-Principle » knowers
- This learning takes one year and starts at around the age of 3 years

Cardinal number gesture

- Two contradictory studies
- Nicoladis, Pika \& Marentette (2010)
- Gunderson, Speapen, Gibson \& Goldin-Meadow (2015)

Cardinal number gestures

Nicoladis, Pika \& Marentette (2010)
oulation : 44 children - Groups based on the age (2- to 5rs old)
ks : How many \& Give-a-number,
nclusion : Children are more accurate with number rds than number gestures in both tasks
iits :
Not an universal advantage for number words through the groups of age

Gunderson, Speapen, Gibson \& Goldin-Meadow (201
Population : 155 children - Groups based on knowledgelevel (assessed in Give-a-number task)

Tasks: What's on this Card-Gesture \& What's on this Car Speech

Conclusion : Children who are not yet CP-knowers are more accurate labelling small sets/estimating large sets with gestures than with words

Limits :

- Digital training before the tasks could influence the results

Cardinal number gestures

Nicoladis, Pika \& Marentette (2010)
oulation : 44 children - Groups based on the age (2- to 5rs old)
ks : How many \& Give-a-number
nclusion : Children are more accurate with number rds than number gestures in both tasks

Gunderson, Speapen, Gibson \& Goldin-Meadow (201
Population : 155 children - Groups based on knowledgelevel (assessed in Give-a-number task)

Tasks: What's on this Card-Gesture \& What's on this Car Speech

Conclusion : Children who are not yet CP-knowers are more accurate labbeling small sets/estimating large set with gestures than with words

Limits :

- Digital training before the tasks could influence the results

NO longitudinal study assessing developmental trajectories

Our study

How and when children come to master the numerical content conveyed by numbers?

At some point in the development, is there an advantage for the undertsanding of number gestures or verbal numbers?

Experimental design

T2		T3	
$\begin{gathered} \mathrm{N}=61 \\ 3 \text { years } 4 \text { months } \end{gathered}$		$N=61$ 3 years 8 months	
Verbal Tasks	Digital Tasks	Verbal Tasks	Digital Tasks

Experiment design

Experiment design

Enumeration task

Enumeration task

$$
\mathrm{n}=60
$$

- Time effect ($p<.01$)
- No Modality effect ($p>.10$) and no significant interaction

- Time effect ($p<.01$), Modality ($p<.01$) and significant interaction Time x Modality

Enumeration task

$$
\mathrm{n}=60
$$

Correlations between
performance through the Verbal
and the Digital modalities in the
enumeration task

| | Verbal | Small num. | | Large num. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Digita | | T2 | T3 | T4 | T2 | T3 | T4 |
| Small
 num. | T2 | 0,40 | | | | | |
| | T3 | | 0,05 | | | | |
| | T4 | | | 0,26 | | | |
| Large
 num. | T2 | | | | 0,33 | | |
| | T3 | | | | | 0,34 | |
| | T4 | | | | | | 0,31 |

Enumeration task

- Small numerosities : Children exhibit similar performance to tell How many with number gestures as with verbal numbers.
- Large numerosities : Children show better performance to tell How many with verbal numbers than with number gestures.

sessement of the understanding of cardinal meaning

sessement of the understanding of cardinal meaning

Verbal Tasks	Digital Tasks
Give-a-number » task	- « Give-a-number » task
Can you give me /THREE/ dots ? »	«Can you give me dots? »
Equivalence judgement » task	- « Equivalences judgement » task
Here are some appels in the box. Puppy says that there are /THREE/ appels in this box. Is it right or wrong? »	"Here are some appels in the box. Puppy shows that are apples in this box. Is it right or wrong? » between both tasks

« Give-a-number » task

« Give-a-number » task

$$
\mathrm{n}=51
$$

- Time effect ($p<.01$);
- No Modality effect ($p>.10$), no significant interaction

« Give a number » task

$$
\mathrm{n}=51
$$

Correlations between knowers groups in Verbal modality and in Digital modality in the « Give-anumber » task

« Give-a-number » task

- Children do not master the cardinality better in one specific modality compared to the other when giving a number of objects.
- The cardinal meaning understanding with number gestures and verbal number words develop in parallel and probably support each other

Equivalence judgement task

Verbal Tasks

re are some apples in the box. Puppy says that there 'THREE/ apples in this box. Is it right or wrong? »

- 4 items with small numerosities (2 \& 3)
- 4 items with large numerosities ($6 \& 7$)

Digital Tasks

"Here are some apples in the box. Puppy shows that the are apples in this box. Is it right or wrong? »

- 4 items with small numerosities (2 \& 3)
- 4 items with large numerosities (6 \& 7)

Equivalence judgement task

$\mathrm{n}=61$

- Time effect ($p<0,01$)
- No Modality effect ($p>0,10$) and no significant interaction

Equivalence judgement task

$$
\mathrm{n}=61
$$

	Verbal	Small num.		
		T2	T3	T4
Small num.	T2	0,45		
	T3		0,58	
	T4			0,40

Equivalence judgement task

- For small numerosities, there is no advantage, at any time point, to judge of the cardinal meaning of number gesture or verbal number words.
\rightarrow

Discussion

Thank you for you attention!

Tasks assessing Cardinality understanding

- $\mathrm{n}=51$

Correlations in both tasks assessing the understanding of Cardinality

($\mathrm{N}=51$)			Performances in Equivalence judgement task					
			V			D		
			T2	T3	T4	T2	T3	T4
	V	T2	0,41	0,33	0,40	0,23	0,34	0,34
		T3	0,28	0,50	0,33	0,17	0,40	0,30
		T4	0,45	0,38	0,43	0,20	0,26	0,30
	D	T2	0,33	0,44	0,57	0,46	0,42	0,28
		T3	0,27	0,34	0,50	0,37	0,20	0,05
		T4	0,40	0,44	0,50	0,16	0,17	0,23

