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Abstract  

The vast amount of heterogeneous omics data, encompassing a broad range of biomolecular information, 

requires novel methods of analysis, including those that integrate the available levels of information. In this 

work we describe Regression2Net, a computational approach that is able to integrate gene expression and 

genomic or methylome data in two steps. First, penalized regressions are used to build Expression-

Expression (EEnet) and Expression-Genome or –Methylome (EMnet) networks. Second, network theory is 

used to highlight important communities of genes. When applying our approach Regression2Net to gene 

expression and methylation profiles for individuals with glioblastoma multiforme, we identified respectively 

284 and 447 potentially interesting genes in relation to glioblastoma pathology. These genes showed at least 

one connection in the integrated networks ANDnet and XORnet derived from aforementioned EEnet and 

EMnet networks. Whereas the edges in ANDnet occur in both EEnet and EMnet, the edges in XORnet occur 

in EMnet but not in EEnet. In-depth biological analysis of connected genes in ANDnet and XORnet revealed 

genes that are related to energy metabolism, cell cycle control (AATF), immune system response and several 

cancer types. Importantly, we observed significant over-representation of cancer related pathways including 

glioma, especially in the XORnet network, suggesting a non-ignorable role of methylation in glioblastoma 

multiforma. In the ANDnet, we furthermore identified potential glioma suppressor genes ACCN3 and 

ACCN4 linked to the NBPF1 neuroblastoma breakpoint family, as well as numerous ABC transporter genes 

(ABCA1, ABCB1) suggesting drug resistance of glioblastoma tumors. 

Keywords: epigenome, transcriptome, penalized regression, integrated networks 
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Introduction 

 

Glioblastomas are aggressive brain tumors affecting glial cells of the central nervous system including 

astrocytes and oligodendrocytes. The exact causes are not fully understood but current experimental 

evidence suggests that its onset is linked to mutations in the p53 gene, the essential cell cycle control protein 

and neurofibromin 1 - NF1, inhibitor of the RAS signaling pathway (ZHU et al. 2005). In oligodendrocyte 

tumors the key marker OLIG2 that regulates oligodendrocyte differentiation, is not expressed (MARIE et al. 

2001). Additional studies confirm that the key markers of glial cancers are related to nerve cell development 

BMP-BMPR/RAS- APK and PI3K- activated signaling pathways. The genetic inheritance component of 

glioblastomas is thought to be weak based on heterogeneity of genetic alternations of known disease markers 

amongst subjects (KRAUS et al. 2001). This heterogeneity enormously complicates the development of 

effective therapies. However, exploiting the availability of high-throughput omics data, together with the 

development of novel computational data integrative analysis techniques, may facilitate formulating 

targeted biological and clinical hypotheses. These hypotheses potentially speed up research and improve 

early detection and diagnosis of glioblastomas in clinical settings.  

Several authors have indicated the added value of integrative omics analysis that involve the integration of 

at least two different omics data types, referring to different biological components in a cell. The 

methodologies to analyze such data are starting to emerge, with the biggest success stories reported for 2-

omics analyses. Examples of 2-omics analyses include eQTL (FRANKE and JANSEN 2009) and meQTL 

(SMITH et al. 2014) analyses that respectively assess the influence of genetic and epigenetic markers on 

gene expression. Combining >2 omics data types is much more complex, given the hierarchical structure 

and interdependencies such data entails (HAMID et al. 2009; VAN STEEN and MALATS 2014; RITCHIE et al. 

2015).  With a few exceptions, most methods integrate >2 different data sources by combining evidences 

obtained from pairwise analyses (VAN STEEN and MALATS 2014). These evidences are often based on the 

derivation of standard measures of association, linking (epi-)genetic markers to gene expression combined 

with gene expression analysis (WAGNER et al. 2014). 
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In this work, we developed a novel integration pipeline, Regression2Net, which combines information from 

for instance methylation and gene expression data via penalized regressions to construct gene-based 

networks. We furthermore applied our method to publicly available data for individuals affected by 

glioblastoma multiforme. The original glioblastoma pre-processed and partially annotated data were 

obtained from (WANG et al. 2014) (see online supplementary). By comparing the topology of the integrated 

networks derived from the inferred Expression-Expression and Expression-Methylation networks, and via 

subsequent functional analysis, we identified a list of genes with potential interest to the trait under 

consideration. In addition, our approach was capable of discovering biological mechanisms that may further 

enhance our understanding about the disease. Although experimental verification is needed to validate the 

novel formulated hypotheses in this work, our approach highlighted pathways that are significantly 

associated to glioblastoma. This suggests that our approach is one step forward towards translating 

evidences from bench to bedside. In the next section, we motivate and provide details about the proposed 

integrative analysis pipeline Regression2Net.  

Method 

Regression2Net uses a combination of penalized regression analysis and network theory to find structure in 

multiple omics data. The main goal of Regression2Net consists of inferring gene network topologies and 

deriving meaningful key communities of disease-associated genes based on integrated data.  To facilitate 

the explanation of our approach, we assume having transcriptome and epigenome data, collected on the 

same set of individuals. We split the entire analytic pipeline in four parts, which we describe below.   

Part 1: Penalized regression 

Here, we consider each gene as response and regress it (via penalized regression) against the remaining 

genes. Since both gene expression and methylation data may contribute to a gene’s expression level, we 

perform two types of regression: one in which only gene expression data are used, and one in which gene 

expression data (e.g., via gene expression probes) are used at the response level and methylation data (e.g., 
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via methylation probes) as potential explanatory information. Thus the envisaged regressions consecutively 

consider each gene’s expression as a dependent variable (response) and remaining gene expressions or 

methylation data as independent variables. Mapping of probes to genes is based on genomic location of the 

probe to the nearest gene as in (WANG et al. 2014). The strategy for variable selection and their 

“significance” assessment with penalized regression is based on principles outlined in (MEINSHAUSEN and 

BÜHLMANN 2006) and was evaluated to synthetic data in (GADALETA and VAN STEEN 2014). In practice, 

Regression2Net currently leverages penalized linear regression with L1-norm penalty. Given Xi the 

expression of gene i and the expression profiles of the remaining genes (referred to as X, for simplicity), the 

L1−norm penalized estimate consists of providing a solution for Equation 1. The vector of regression 

coefficients Θ determines the conditional independence structure among predictors. 

Θ̂a,λ =  argmin
s.t.  Θ:Θa=0 

(
1

n
 |Xi − XΘ|2

2 + λ|Θ|1) (Equation 1) 

One important feature of the L1-norm penalty is a tendency to shrink many coefficients to zero and to 

consequently remove them from the set of predictors X. This is an effective way to provide sparse solutions, 

which in turns lowers the variance of the selected regression coefficients. Variance that is lower than the 

one provided by non-penalized regression approaches is usually associated to higher bias of the prediction, 

as explained in (TIBSHIRANI 1996). However, since our goal is to perform variable selection, we do not 

consider higher bias as a harmful limitation. It would be so if we were interested in predicting the expression 

value of the response genes. It is known that the crucial parameter that directly determines the rate of false 

positives and false negatives is the shrinkage factor λ in Equation 1. Regardless of a number of methods 

specifically designed to estimate λ reported in (EFRON et al. 2004; ZOU 2006; HIROSE et al. 2013), we 

perform 10-fold cross validation on a subset of the dataset, which provides an optimal estimate of the 

shrinkage factor. At the end of the iterative procedure, two collections of genes (corresponding to the two 

types of regressions) with their “explanatory genes” are obtained. 

Part 2: Network construction 



Page 6 of 16 
 

All explanatory genes are subsequently connected to the genes they explain. In practice, all aforementioned 

connections are stored within an adjacency matrix A, the entries of which (Aij) being binary values 0/1 that 

show if gene i and gene j are connected or not. This gives rise to two networks EEnet (Expression-

Expression network) and EMnet (Expression-Methylation network) respectively only using gene expression 

data and using both methylation and gene expression information. Note that for instance the number of 

methylation probes associated to a given gene may vary from one gene to another and hence multiple 

methylation probes may be considered as explanatory variables in the regression framework. The same 

holds for gene expression data where a single gene may be represented by multiple probes. Currently 

multiplicity is not explicitly accounted for in our strategy: In the presence of multiple probes per gene, two 

genes are connected in an EMnet (EEnet) network when there is evidence for it via at least one probe-pair. 

Part 3: Identification of important genes 

Here, the aim is to employ network-theory concepts to select the most important genes from the derived 

networks. These networks can be analyzed separately and results compared, or they can be integrated into 

a single combined network prior to analysis. A fundamental concept that needs to be clarified is the concept 

of “node importance”. A simple procedure to select the most important nodes (or in this case genes) from a 

network is to consider its degree distribution. Note that the node degree or betweenness centrality of a 

specific node in a network is a local topological measure that refers to the number of connections the node 

has in the network. These local topological network descriptions can be summarized into a global 

description of the network via the degree distribution P(k). This distribution gives the proportion of nodes 

in the network having degree k. Node prioritization may then be based on selection of nodes in the EEnet 

and EMnet networks that have the highest degree. Biological networks are known to have negative 

(dissociative) degree correlation. Notably, two nodes with extremely high degrees are much less likely to 

be connected to each other than two nodes with low or zero degree (HAO and LI 2011). This leads to 

formation of highly connected modules (e.g., hubs). However, there is no guarantee that an edge exists 

between two low degree nodes.  



Page 7 of 16 
 

In Regression2Net, rather than restricting attention to either EEnet or EMnet networks and prioritizing genes 

with high degrees in the single networks, we use EEnet or EMnet to create integrated networks ANDnet, 

XORnet and INTnet using different edge definitions.  The edges in ANDnet are the edges that exist in both 

EEnet and EMnet. For the purposes of this manuscript, XORnet is built by all the edges that are present in 

the EMnet but not in the EEnet. INTnet is a fused network of EEnet and EMnet using the approach of (WANG 

et al. 2014) but adapted to gene-based adjacency matrices (with entries 0 and 1) derived from the EEnet and 

EMnet networks. Note that in the original approach of Wang and colleagues fusion is based on similarity 

matrices with numerical matrix entries that require a priori normalization. Here, no normalization is carried 

out and EEnet and EMnet networks are iteratively updated with information from the other network, 

resulting in a fused network INTnet (WANG et al. 2014). As the entries of INTnet are no longer binary (0/1), 

the network is converted to an adjacency matrix by substituting strictly positive matrix entries with 1 and 

replacing all other entries by zero. Once an integrated network is obtained via ANDnet, XORnet or INTnet, 

we prioritize those genes with node degree ≥1, giving rise to three lists of unique genes. Those genes are 

then submitted to the last part of our integrative analysis pipeline. 

Part 4: Annotation protocol and pathway enrichment analysis 

In order to assess the significance of the selected genes in Part 3 in relation to the disease of interest, we 

perform annotation and pathway enrichment analyses, supplemented by literature searches. In practice, we 

use the R package biomaRt (R version 2.20.0) to annotate genes from gene expression data and the R 

packages GGHumanMethCancerPanelv1.db to annotate genes from methylation panels. The selected 

annotation criteria include gene full name, chromosome name, ensemble gene and transcript IDs. KEGG 

pathway enrichment analysis is performed with the R package KEGGprofile (ZHAO 2012) on non-

overlapping genes from the unique gene lists derived from ANDnet and XORnet networks. The minimum 

threshold to accept a significant pathway is set to p-value<0.05 and is computed from a hypergeometric 

distribution for testing whether a pathway is over-represented in our gene list, compared to KEGG. Reported 

p-values are Bonferroni-corrected to deal with multiple testing.   
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The source code developed in the context of this manuscript is available at 

https://bitbucket.org/kbessonov/regression2net/ and via http://www.statgen.ulg.ac.be 

Data  

 

The data at our disposal are heterogeneous datasets composed of gene expression and methylation profiles 

of 215 individuals affected by glioblastoma already considered in a study of patient similarity in. DNA 

methylation probes (in total 1305) and mRNA (in total 12042) probes covered 680 and 12,042 genes, 

respectively. For more details about the platforms that generated the data, we refer to (WANG et al. 2014).  

Results 

 

Data and network characteristics 

The number of methylation probes associated to a given gene ranged between 0 and 4 (see Supplementary 

Figure S1: probe counts across genes). These methylation probes are not uniformly distributed across the 

genome mapped to only 680 genes. We found strong predominance of methylation probes located in the 

5’UTR regions of the genes according to the  Golden Gate Human Methylation Cancer Panel 1 (BIBIKOVA 

et al. 2006). Gene expressions were in 1-1 correspondence to gene expression probes. Basic topology 

analysis of the ANDnet and XORnet networks (see Method section) developed on real-life data for 

glioblastoma multiforme showed degree distributions in line with scale-free networks (Figures S2, S3). No 

distinct pattern between degrees and relative number of methylation probes per gene has been found. From 

the ANDnet and XORnet networks, we identified 284 and 730 probes with node degree ≥1, respectively. 

After gene mapping, this resulted in respective unique gene lists of length 284 and 447. These gene lists 

were submitted to in-depth biological analyses.  

Annotation of the ANDnet and XORnet unique gene lists 
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The aforementioned 284 and 447 unique gene lists were annotated to biological functions and pathways in 

order to provide biological context in relation to glioblastoma pathology. Supplementary Tables S1 and S2 

contain the complete list of gene annotations. The selected annotation criteria include gene name, 

chromosome name, ensemble gene and transcript IDs (see Supplementary Tables S1 and S2).  

Amongst the 284 ANDnet genes are the two Amiloride-Sensitive Brain Sodium Channels encoded by 

ACCN3 and ACCN4 (Table S1). These genes were shown to be linked to the neuroblastoma breakpoint 

family NBPF1 genes related to the development of glioblastoma (VANDEPOELE et al. 2008). The NBPF1 

genes are thought to be involved in brain development and the neuroblastoma onset (JANOUEIX-LEROSEY 

et al. 2010).  When looking for the presence of transcription factors (TFs) amongst the genes of the ANDnet 

network, we noticed AATF and ABT1. They play an important role in the context of glioblastoma due to the 

fact that gene AATF controls crucial apoptotic cell death processes and gene ABT1 is responsible for basal 

transcription control via interaction with class II promoter sequences and onset of schizophrenia (SHI et al. 

2009; GEJMAN et al. 2010). Genes belonging to the ATP-binding cassette (ABC) are numerous in the 

ANDnet network. These transporter proteins are often involved in drug resistance (LAGE 2003). Their strong 

presence amongst ANDnet genes suggests a complex gene regulatory mechanism that involves synergetic 

methylation and expression components. The complex regulation of the ABC genes has been confirmed in 

(VANDEPOELE et al. 2008). Overall, the ANDnet network is mainly composed of genes related to energy 

metabolism, while the XORnet network is formed by genes related to various cancer types pathways, cell 

cycle control and immune system responses (Table S2). 

Enrichment analysis 

The results of the KEGG pathway enrichment analyses are reported in Table 1. Functional and pathway 

analyses of the 284 ANDnet genes revealed significant pathway enrichment in cancer-related genes, energy 

metabolism, ATP-binding membrane transporters, transcription regulation, cell cycle control proteins and 

other biological functions (Table 1, Figure 1). Energy metabolism and ABC transporters genes are only 

significant in the ANDnet network. This shows that these biological processes could have both expression 
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and methylation regulatory components (PHILLIPS 2008). Pathway analysis identified an important Glioma 

pathway (KEGG:hsa05214) enriched only in the XORnet network. The metabolic pathways in cancer 

(KEGG:hsa05200) is enriched in both the XORnet and ANDnet networks (Table 1). The following genes, 

exclusively present in the XORnet, are linked to KEGG:hsa05200: AXIN1 - axin 1, FGF7 - fibroblast growth 

factor 7, FZD9 - frizzled class receptor 9, NKX3-1 - NK3 homeobox 1, and TGFB1 transforming growth 

factor, beta 1. 

The relevance of some genes belonging to this pathway is supported by literature, specifically regarding 

gene NKX3-1, which is known to be implicated in prostate cancer development in adult mice (ABDULKADIR 

et al. 2002), and gene FGF7, implicated in brain tumors (FRANCAVILLA et al. 2007). 

In addition, the pathways identified in INTnet are most similar to those identified in XORnet. Common 

pathways relate to cancer (KEGG:hsa05200) and glioma (KEGG:hsa05214).  

Discussion 

The concept of a network makes it easy to visualize highly connected genes as potential regulators of 

biological activity. It also facilitates the detection of biological pathways under which those genes operate. 

The fact that genes act depending on other genes and not as singletons is a well-accepted hypothesis in the 

biology community (HORVATH and DONG 2008; HUANG et al. 2008). Generally speaking, a network model 

is composed of nodes and edges. In our specific application, each node represented a gene. Two genes were 

connected by an unweighted edge to indicate conditional dependence between them. If the edge between 

two genes does not exist, these two genes are considered to be conditionally independent. It has been shown 

that in gene co-expression networks, the degree of a gene or betweenness centrality of a specific node in the 

network is a good indicator of the gene’s biological importance (AZUAJE 2014). Equally, it has been found 

that highly connected genes are responsible of fundamental biological functions and are potentially involved 

in many biological processes (HUANG et al. 2008; AZUAJE 2014). Furthermore, biological networks often 

show sparse topology that usually resembles the structure of a power law network (BARABÁSI et al. 2011; 
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SILVERMAN and LOSCALZO 2012), also referred to as scale-free networks. For such networks, the 

distribution of the nodes degree follows a power law: whereas nodes with small degree are common, high-

degree nodes with degrees far above the average node degree (hubs) are not. Hence, at first sight, the degree 

distribution offers an easy way to identify key nodes in the networks. However, there are reported cases of 

real biological networks in which node degrees show correlation patterns (i.e., the probability that two nodes 

are connected depends on their degrees dictated by network topology) (MASLOV and SNEPPEN 2002). 

Hence, the structure of a network is determined by the correlation pattern of node degrees (HAO and LI 

2011), which may be hard to estimate accurately in networks of finite size (BOCCALETTI et al. 2006). 

Moreover, degree correlation patterns may differ between biological networks, hereby biasing making direct 

comparisons between networks and motivating going beyond degree correlation to highlight important 

drivers of topological structure.   

Therefore, we combined EEnet and EMnet into integrated networks: either ANDnet, XORnet or INTnet. The 

motivation to derive XOR type of networks is our belief that expression-based gene-gene interactions may 

be quite different from gene-gene interactions that capture the effect of methylation on gene expression. 

INTnet provides a more elaborate way of integrating EEnet and EMnet information based on the non-linear 

combination method of (WANG et al. 2014). In our application, the INTnet approach gave rise to the same 

adjacency matrix as we would obtain by connecting two genes whenever a connection was present in the 

EEnet or in the EMnet (results not shown). Therefore, it is not surprising that the unique gene list derived 

from INTnet was larger than the gene sets derived from ANDnet or XORnet. Interestingly, the highest 

number of significantly enriched pathways was identified for XORnet (Table 1), indicating the potential 

importance of methylation regulation in glioblastoma. Notably, whatever integrative network approach is 

followed, the quality of the integrated network will depend on the quality of the constituent networks. The 

EEnet and EMnet networks may be differentially affected by false positive (or false negative) node 

connections due to technical and probe-selection biases related to the platform technologies that generated 
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the data, hereby challenging signal over noise detections (LI et al. 2011).  The practical application included 

in this work relied on adequately cleaning and pre-processing the input data (WANG et al. 2014). 

Currently, in Regression2Net, mapping results for methylation probes to genes does not account for gene 

length, neither for the number of (methylation / transcription) probes in a gene. In our application, 

multiplicity only occurred in methylation data. In the presence of multiple methylation probes per gene, two 

genes are connected in the EMnet network when at least one methylation probe has been selected by 

penalized regression. We consider this an acceptable strategy due to the fact that the mapped Expression-

Methylation network of interest in our strategy is an unweighted one. Potentially, larger genes may have 

increased chances to get connected in a network, as those genes include a higher number of methylation 

probes. Investigation this in more depth is the subject of future research. Regardless, although there are 

more elaborate ways to deal with gene length and probe multiplicity, the integration pipeline applied to real-

life data on glioblastoma produced biologically relevant results with good correspondence to evidences 

obtained from literature searches.  

From a functional perspective NCAM (neural cell adhesion molecule) and FGF7 (fibroblast growth factor 

7) in XORnet draw the attention.  FGF competes with NCAM for FGF receptor binding (FGFR) that results 

in alteration of FGFR signalling (FRANCAVILLA et al. 2007). Aberration in the expression levels of gene 

NCAM and excessive FGFR signalling have been shown to be correlated with tumor onset (VAWTER 2000; 

GROSE and DICKSON 2005). In addition, among the XORnet genes we highlight the transcription factors 

FOSL2 and SIN3B in XORnet, which are respectively involved in cell proliferation and other oncogenic 

activities (see Table S2). More generally, XORnet was linked to 38 KEGG pathways, 10 of which are cancer-

related (Table 1). We have shown that there is an added value in constructing and functionally analyzing 

both XORnet and ANDnet networks, since they may give complementary information. The genes of the 

ANDnet showed significant enrichment in 9 KEGG pathways. Of these 3 pathways are cancer-related: ABC-

transporters (KEGG: hsa02010)(FLETCHER et al. 2010), pathways in cancer (KEGG:hsa05200), 

hematopoietic cell lineage (KEGG:hsa 04640)(ZHAO et al. 2014). 
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Importantly, a total of 25 out of 284 genes (9%) of the ANDnet network and 79 out of 447 genes (18%) of 

the XORnet network could be linked to the KEGG metabolic pathways in cancer (KEGG:hsa05200). We 

consider this to be a significant result as it suggests that glioblastoma cancers seem to be strongly linked to 

the methylation component, which in turn perturbs the expression component (MCLENDON et al. 2008). 

This is directly reflected within the topology of the EEnet and EMnet networks. Enrichment analysis of the 

447 genes of the XORnet network (genes with degree ≥1) showed consistent presence of pathways related 

to cancer and biological processes including various types of carcinomas, cell signalling and immune system 

responses. This supports evidence that cancers have a very strong methylation component, confirmed by 

several other studies (ESTELLER 2005; MCLENDON et al. 2008; PHILLIPS 2008). Also, KEGG pathway 

enrichment analysis performed on the genes of the ANDnet network identified 4 pathways that are common 

to both the ANDnet and XORnet network, including cytokine-cytokine receptor interaction, metabolic 

pathways in cancer, malaria and haematopoietic cell lineage pathways. This suggests that genes in these 

subsets may display highly complex regulations.  

Conclusion  

 

In this work we have described a computational method and integration pipeline based on penalized 

regression and graph theory: Regression2Net. Using data on genome-wide gene expression and methylation 

we applied our method in the context of glioblastoma pathology.  We biologically validated our findings by 

means of annotations, pathway enrichment analysis and literature searches. Our integrative analysis 

pipeline, which includes the construction of XORnet and ANDnet networks, highlighted the added value of 

network integration prior to functional analysis. We were able to confirm the strong methylation component 

in glioblastoma pathologies. The evidence provided by our findings, supported by the literature, strongly 

suggests the potentials of our proposed strategy.  
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List of figures 

Fig. 1 Visualisation of the ANDnet network with highlighted genes belonging to the significant pathways 

indicated in Table 1. White nodes have not been linked to any significant pathway. The size of each node is 

determined by a metric based on betweenness, defined by the number of shortest paths going through the 

node 

Supplementary figures 

Fig. S1 Distribution of methylation probes. The x-axis refers to genes and the y-axis to corresponding 

methylation probe counts. Gaps indicate missing methylation probes.   

Fig. S2 Degree distribution of the ANDnet network (ANDnet edges are present in both EEnet and EMnet). 

Fig. S3 Degree distribution of the XORnet network (XORnet edges are present in EMnet but not in EEnet). 
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