SOLE DISTRIBUTORS FOR THE UNITED STATES OF NORTH AMERICA
D. VAN NOSTRAND CO.\IP;\NY', INC.
120 Alexander Street, Princeton, N. J. (Principal office)
257 Fourth A enue, New York 10, N.Y.

SOLE DISTRIBUTORS FOR CANADA
D VAN NOSTRAI\D COMPANY { CA\’ ADA), LTD.
25 Hollinger Road, Toronto 16

SOLE DISTRIBUTORS FOR THE BRITISH COMMONWEALTH EXCLUDING CANADA
D. VAN NOSTRAND COMPANY, LTD.
358 Kensington High Street, London, W. 14



([ 7 " "/ 7\'/’" ’ Repor: 04-2

ROCKET PROPULSION

BY

MARCEL BARRERE

" Head of Research Division at the
National Office for Aeronautical Studies and Researches (ONERA), Paris

. ANDRE JAUMOTTE
Professor at the University of Brussels =

BAUDOUIN FRAEIJS DE VEUBEKE
Professor at the Universities of Liége and Louvain

JEAN VANDENKERCKHOVE
Lecturer at the Institute of Aeronautics
University of Brussels

PREFACE BY

MAURICE ROY

Director of the
.Natwnal Office for Aeronautical Studies and Researches (O.NERA), Parz.r

INTRODUCTION BY

THEODORE VON KARMAN

Chairman of the Advisory Group for
Aeronautical Research and Developmen! of the NATO, Paris

~ELSEVIER PUBLISHING COMPANY
AMSTERDAM - LONDON — NEW YORK ‘- PRINCETON
1960



bodig CONTENTS

10.3.3. Theoretical study of high-frequency instability . . 696
Acoustic study of the combustion chamber, 656 -
Longitudinal oscillations, 700 Transverse oscilla-

tions, 704 = -
10 4. Thc Effect of Scale on Combustion Instabxhty ..... . 707
10.4.1. Low-frequency mstablhty ........... 707
~ 10.4.2. High-frequency lnstabllxty B N 708
Rcfcrencm ........... {..........;710

Chapter 11. Elementary Problems of Overall Rocket Performance 712
by B. Fraeijs de Veubeke

1L1 Introduction . . . . . . . . ... PR L T12
11.2. The Ideal Velocity Gain: . . . . . . . . . . . . .. 712
11.3. Gravitational Losses. . . . . . . . . . .. ... .. 713
11.4. A Classification of Orbits about an Inverse Square Law
Attracting Centre . . . . . . . . . . . .. ... 715
11.5. The Elementary Ballistic Range Problem. . . . . . . . 720
11.6. The Elementary Satellite Launching Problems . . . . . 724
11.7. Structural or Merit Indices. . . . . . . . . . . . . . 731
11.8. Engine Size and Gravitational Losses . . . . . . . . . 733
11.9. Optimal Mass Ratios for Multistaged Rockets. . . . . . 738"
11.9.1. Rocket staging neglecting gravitational losses. . . 740
11.9.2. Rocket staging including gravitational losses . . . 746
11.9.3. Steprocketsinparallel . . . . . . . . . . .. 754

11.9.4. Step rockets in parallel — Continuous case . . . . 757
11.10. Integration of Vertical Trajectories . . . . . . . . . . 761
11.11. Zero-Lift Trajectories

11.12. Effects of the Rotational Inertia During Steady-State

Gravity Turns. . . . . . . v v v v v v v o v« . . 765
11.13. The Equation of Motion on Rotating Earth . . . . . . 767
References . . . . . .. . ... . 0000 oTo 77



CONTENTS . XXIm

Chapter 12. Variational Methods in Optimizing Rocket Perform-

T . 772
by B. Fraeys de Veubeke

12.1. Guidance Variables and Their Programming. . . . . . . 772

12.2. Vertical Flight of a Contmuously Staged Rocket for
Maximum Payload Ratio. . . .. . . . . . . . .. 774
'12.2.1. The identity between Eulerian equations. . . . . 777
12.2.2. The Weierstrass-Erdmann corner conditions . . . 777
12.2.3. The constant thrustarc . . . . ., . . « . . . . 778
12.2.4. The constant accelerationarc . . . . . . . . . 778
12.2.5. The discontinuous solutions . . . . . . . . . . 779
12.2.6. Stationary paths . . . . . . . . . ..o . 781
12.2.7. Integration along the stationary paths. . . . . . 785
12.2.8. Results for simple constant thrust path. . . . . . 786

12.2.9. Rosults for constant thrust — constant acceleration
path . . . ..o oo oo o . . . . 787

12.3. Vertical thht of a Continuously Stagcd Rocket with other
Minimal Requirements . . . . . 0oL 0L 0L L. 789

12.4. Application of the Weierstrass Strong Variation Test . . . 792

12.5. The Problem of Thrust Programming along a Curved Path 795

12.5.1. The sustaining phase . . . . . . . . . . . .. 797
12.5.2. The maximum thrustarc . . . . . . . . « . . 798
12.53. Thezerothrustarc. . . . . . . . . . o . . . 799
12.5.4. The Weicerstrassian excess funcuon ....... 799
12.5.5. Minimal paths. . . . . . . . . e e e e 799
12.5.6. Boostphases. . . . . . ... .0 0L, 802
12.6. Thrust Programming alonq aVv crtncal Path. . . . . .. 804
12.7. -Thc Case of & Preseibed Path L 0 o0 0 0 L L L L L. 806
12.8. Thrust Prour. mmung for \l.numum Range. . . . . . . 808
References & o v 0 0 v o e e e e e e e e e 812
\uthor, Index . . . . . o oL oL L 813
Subject Index. . . . . . ..o, . e 818



CHAPTER 11

oy

Elementary Problems of Overvall. Rocket'Performance

11.1. INTRODUCTION

Problems of stability on the flight path are generally considered in
the realm of exterior ballistics and fall outside the scope of the present
book. The analysis of rocket performance in flight will therefore be
restricted to the simple dynamics of a point mass. Even in this restricted
field many problems arise in the choice of design parameters or in the
programmation of guidance variables when a given performance is to
be optimized. Some of these problems are of an elementary nature and
will be dealt with in the present chapter. Other problems require the
use of more advanced mathematical tools especially the calculus of
variations. In Chapter 12 a general method of analysis of such problems
will be given, together with some examples. '

11.2. Tue IDEAL VELOCITY GAIN -

The simplest performance equation is for a rocket flying in a vacuum
without being subjected to any gravitational force. Then, in the ab-
sence of drag and gravitational field, and supposing the thrust to be
tangenual to the path

M-d—t._F . (1)

where JAf denotes the instantaneous mass of the rocket and V¥ the mod-
ulus of the flight velocity. The thrust modulus may be written as

F=m : 2)
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and ¢ the effective exhaust velocity. Elimination of F and m gives

a0
AV =—c—n - (4
| ’ Y, . (4)
and on further integration
. M :
AV=V—V‘=cln745- \ : (5)

This is the well-known law of ““ideal velocity increase’, which connects
the initial variables (¥, Af;) and the instantaneous variables (V, M).

It is important to observe that the law holds true even for a variable
mass flow m(t), provided such variations do not affect the value of ¢.
In particular, there is no gain or loss of velocity performance for a
given mass ratio M;/M, if propellant is burnt fast in a large rocket or
very slowly in a micro-engine. This is not true, however, if the velocity |
performances are compared on the basis of the same propellant con-
sumption My — M = M, for then we may write

1

4V =clo——
R,

and the smaller A7 the larger the ideal velocity increase. A small engine,
giving a minimum initial mass Ay, is thus advantageous unlcss flight
time becomes a dominant consideration.

11.3. GraviTaTIONAL LOSSES

What has been said above is still valid in the presence of a gravity field
if the rocket is steered along a path lying in an-equipotential surface of
this field. If the gravitational acceleration has a retarding component
&s along the tangent to the flight path, eqn. (1) is modified to:

av ,
and eqn. (4) to:
dv = —o if-;,dx . @

Hence
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This equation shows the importance of short burning times to minimize
the gravitational loss represented by the last term. The requirement of
short burning times conflicts with our previous considerations of maxi-’
mum performance for a given propellant consumption. The existence
of a best compromise regarding the cngine size may be inferred, and
further thought will be given to this problem at a later stage. Velocity,
however, is not the only uscful form into which chemical energy is

converted. There is also potential encrgy gained against the gravity
" field. The total energy per unit mass of rocket is

E=§V’+J‘g.d: _ ®)
. ° e o

Then, multiplying eqn. (4’) by V, and noting that Vdt = ds, we have:

aM
dE = VAV + gds = —cV i

The ideal increase in total specific energy is obtained by substituting
Vfrom eqn. (5) and the real increase by substituting ¥ from eqn. (5).
Hence, the difference between ideal and real gain, the gravitational
energy loss, is, in differential form

¢ t
daM M : M
dG = —¢ (J;g.dt) _M—:—Cd (ll’l"ﬁ‘—J‘Og:df) + c-ln-—ﬁ‘—g;dt
Integration between (Mi, 0) and (M, ty) yields:
’ 5 ¢y L)
M, M M
= — _— —_— P = ——— 7
G ¢ln o, J;g.dt + cfoln M gadt cJ;In 7R gsdt @)

This condensed and general form of the gravitational energy loss
shows, since the logarithm is positive in the whole range of integration,
that a gain in potential energy (gs > 0) is nccessarily accompanied
by a loss in total energy. It shows furthermore that this loss is reduced
by short burning times. An equivalent formulation consists in substi-
tuting dt from eqn. (3)
M, N M
& RN
Gf—cj Lmiam @

3
M
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For constant g,/m this leads to the closed form:

tg.ﬂlb [ M; ' ( M; )] ( & )
= 1 + 1 — y | = .
G - A n 7 1 - const 9)

If the mass flow is such that the acceleration ¥ = a is constant, egns.
(4’) and (3) yield:

M .
m="(a+g) )

and substitution of this in eqn. (8) gives, for a constant g,:

1 & Moy
G=— :
2 a+g (cln Mo) ’ an

In the cases represented by eqns. (9) and (11), the reduction of energy

loss by increase in the mass flow or in the acceleration of the rocket,

both of which correspond to a reduction in burning time, is clearly
indicated. The energy loss and the loss in velocity disappear entirely

when the burning time tends to zero. In this limiting case of “impulsive

burning”, eqn. (5) remains valid.

11.4. A CrassiFICATION OF ORBITS ABOUT AN INVERSE SQUARE Law
ATTRACTING CENTRE

Before applying the performance equations to specific problems, it
seems appropriate to recall some properties of the orbits described by
satellites or ballistic missiles in the gravitational field of a planet. If the
planetisanidealisolated sphere of radius R and if g, denotes the acceler-
ation of gravity at the surface, the radial acceleration is g,(R/r)2 at a
distance r from the centre. From the radial and tangential components
of the acceleration in polar coordinates, one gets as equations of motion
for a point mass subjected to the gravitational field alone:

SN
and

d
E? (7’20) =0
References p. 771



716 OVERALL ROCKET PERFORMANCE 11
First integrals of these equations are:

R )
e+ (’9)’]—'&7=E (12)
and .
16 =4 - (13)

The constant E is the total specific encrgy, the potential energy being
so defined that it vanishes when the point mass is at'infinite distance:

T R
—fg.
. r

2
,2 dr = — &,
The constant 4 is twice the ‘“‘areal velocity™. Eliminatif;g 6 between
the two first integrals and replacing

. dr A dr

r = 0=
"Z3 "T T ae

one obtains the differential equation of the orbit in polar coordinates:

A dr\® Az R2 T
(r’ dO) T —2 r =2E a9

Changing to 1/r as independent variable and differentiating with res-

pect to 6,
()t mn ) o |
de \r/\dez \r +r_g° Az )

Apart from the special solution r = constant, the general solution is

1 e )
T=—P——‘7COS (0—09) . (15)
where ¢ is the eccentricity and o .
. ‘ \ﬁ\A’ =g°R!p —_— : . (]6)
and substitution of this solution in eqn. (14) gives - -/
(,z_',)( Lo )a —2E (17)

Eqns. (16) and (17) connect the parameters p and e of the orbit with
the energy and areal velocity constants. From eqn. (15), it appears that
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the perigee rp, or shortest distance from the orbit to the attracting
centre, is

£

1 +e¢

I =

whilst the apogee, which only exists if ¢ < 1, is:

In order to classify the orbits, it will be convenient to introduce di-
mensionless quantities by using R and g, as units. Z\VC accordingly
define :

e=r/R, &= r./R_, B = r./R

E A :
h = ’ a= —> f-_= _p_
&R RYgR R
v, N /2
‘,, -
W

=\ Ar

\ . /-/”—'
N\ I
N e r t-'T/
) o’ 4—/3
4 )
N\,

Fig. 11.1. Definition of the angle @.

R ’ =

:‘,\
1
J{
-t
h

.and introduce the angle o (Fig. 11.1) such that ¥ cos @ = rf. Eqns.
(12) and (13) are then rewritten:

l v.
h=ir—— (12)

References p. 771
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: . a = yp CoOs @
Egns. (16) and (17): '
_ atmf
. et — 1 = 2ha?
and finally
a(l—e) =Bl +¢) =f

From this, we find that v

a? 1 1 2
Tt E T s

aff = —

so that ¢ and B are the roots of the algebraic equation

2hx? 4 2x —a2 =0

i1

(139
(169
17)
(18)

(19)

(20)

This suggests representing an orbit as a point in a Cartesian diagram
(a?,h) (Fig. 11.2). In such a diagram, the curves “x = constant™ are

R
4
. s
al oz
r3 - ' )
. (1t kar )
- 2 - _____,”_.____ EES—
LA
.1 - ”""’r"—f/fj"‘z
Lh -
€ . 3
3 R N A [/
-2

Fig. 11.2. Orbits about an inverse square law attracting centre characterized by
their reduced energy & and reduced areal velocity a. Representative points of orbits
with same apogee or perigee lie on a straight line. Envelope of straight-line family

is hyperbolic locus BDAEC of circular orbits.
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straight lines according to eqn. (20). Through each point of the region

k < 0 pass two straight lines of this one parameter family, and the two

values of the parameter x are the ratios of the perigee and apogee

distances to the radius R. In the region 2 > 0, there passes a single line

through a given point, corresponding to the perigee distance. Indeed,

from eqn. (17') ¢ is then greater than 1 and the orbits of this region

are hyperbolas. The envelope of the one parameter family is found in

the usual way by eliminating x between eqn. (20) and its derivative

with respect to x; it is the hyperbola Jacmdyn v 02 & Grmalnig Zene .
- I/fm 4 YV' ta Sty R, ﬁu.,—

Bt Anmclie omvondnd tom.

Along this curve, eqn. (20) has a double rodt and each point of it

represents a circular orbit; in particular, point A is the circular orbit

tangent to the surface. ’

ath = —«}

h\

ext. ractil

parabolic ballistic

&
L\

L int- ext. rectilinear

internal rectil.

Fig. 11.3. Classification of orbits in five regions. Boundaries of rcgion_s: zero energy

(parabolic) orbits, orbits touching the surface (x = 1) and circular orbits (hyperbolic
locus).

References p. 771



720 ' OVERALL ROCKET PERFORMANCE - 11

The boundaries constituted by this curve and the straight lines x = 1;

h = 0 and 42 = 0 delimit five regions corresponding to different types
of orbit (Fig. 11.3).

Region 1 is a region of (virtual) internal clliptical orbits, both @ and #
being smaller than unity.

Region 2 is one of external clliptical orbits, or a satellite region, for
which « and f are larger than one. .

Region 3 is one of external-internal clliptical orbits (¢ > 1, g < 1).
Each of these grbits cuts the surface of the planet twice.
It may be called the region of ballistic orbits.

Region 4 contains hyperbolic orbits cutting the surface of the planet
and may be called the region of escape orbits.

Region 5 contains external hyperbolic orbits; it is the comet reg10n.

11.5. THE ELEMENTARY BaLLisTic RANGE PrOBLEM .

Let us consider the problem of maximizing the range on a curved
Earth for a given propellant consumption (Fig. 11.4). To obtain a

Fig. 11.4. Elliptic orbit of maximum range for given initial velocity. Second focus
on the line joining launching and impact sites.
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I

simple first approximation, the earth rotation and aerodynamic drag
are neglected. It is also assumed that the burning time is so short that
the burnout velocity is given by the ideal velocity

' M,

Vi=cln

and may be regarded as an initial velocity impulsively communicated
to a missile. The only problem remaining is the search for the best
elevation angle w; to maximize range. The trajectory after burnout is
an orbit of the type described by eqn. (15). If we taker = Rand § =0
at the point of departure, r returns to R when 6 = 26,. Maximizing
the range 2 R0, measured along the surface is equivalent to minimizing

cosG°=—1—(I-——%) =-—1—(l——f)

The energy of the orbit is known from the initial values
h=1 -/:—1 where yi = VifJg.R

so that, eliminating a2 between (16’) and (17'), we obtain a relation
between the orbit parameters ¢ and f:

et —1 = 2f

We substitute for f to obtain:

o 1 ) ez—l)
‘ COs °——¢—( 2

This may now be differentiated with respect to ¢ to find the minimum.

One finds
d=— (1 + %) =1—p
F=9i@—w) (1)

and the maximum range is

2V1— ‘ '
2R, = 2R cos (——7—‘) | @2)

References p. 771



722 OVERALL ROCKET PERFORMANCE 11

To obtain the optlmum elevation angle g, we equate the areal velocity
as gwe by eqn. (13’) in the initial condition

a = Y(COS Wy

to its value taken from eqn. (16’) in which cgn. (21) is substituted and
obtain

cos wy = (2—)’:)-*‘ .
From this, we may compute
V1 - y:
sm2w¢ =2—2——F— == COS e°
) <

hq {i .
a1

020 1’
0.19 .
018 0.9
Q17

0.16 1%}
015

014 0.7 .
013

012 0.6
on

010 05
009

008] 04
[+1s74 -1
0.06 1 i03
005 —]
004 ; o2
Q03i/_/1 : _ »
00 / ll ' I \ _\Jos
o . LR 1 ! T N

0 T 30°  ; e0° 90° 120° 150° 180°
28,

Fig. 11.5. Characteristics of balhsuc orbits of maximum range. w; optimum launch-
ing angle, initial vclocu* required Vi = y1}/g, R, apex altitude, y = nR.
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and find the very simple result:
o = -‘;’- —3o0, ‘ 23)

Note that for very small ranges, we find the well-known flat Earth re-
sult: w¢ = 45°. Other characteristics of interest are the maximum
altitude reached along-an orbit of maximum range:

/ 2 H
? _ "l—-‘}'( (I—Vl——y:)
T —R=R — : (24)
r
80
| !
SEEmEE |
T.
3
50 !// .
s
- 45 /

l"z .
? :
LA I
‘ L
A1 N
e |
i
o 30° 80°  S0° 120 BE, . 180°
280

Fig. 11.6. Mass ratios required for ballistic range (impulsive burning). The curves .
correspond to effective exhaust velocities ¢ = bl/g R with b; = 0.35, be = 0.30, by =
0 25. For g, = 9.81 m/sec and R = 6370 km the corresponding specific lmpulscs
. " are approximately 280, 240 and 200 sec.

References p. 771 -



724 OVERALL ROCKET PERFORMANCE 11

and the distance between foci which is found to correspond to:

b4 b4

1—e 1+e

— Recos b,

Consequently, while the centre of the earth is always one focus of an
orbit, the sccond focus of a ballistic orbit of maximum range lies on the
line joining the launching site and the impact site. Figs. 11.5 and 11.6
illustrate the results obtained from egns. (22), (23) and (24) and the
ideal relationship between range and mass-ratio. These valués are to be
corrected for gravitational losses during the propulsion phase and aero-
dynamic drag losses. The latter are relativ cly ummportant for the
]ong-rancrc large-sized rmssxlcs.

11.6. TuE ELEMENTARY SATELLITE LAUNCHING PROBLEMS

The problem is again idealized by neglecting drag, Earth rotation and
burning time. A first impulse, communicated at launching, places the
missile in a transfer orbit. Unless the energy of this orbit is high enough
to cause the missile to escape from the attraction of the planet (£ > 0),
it will return to it. In both cases, it is necessary to modify the velocity
vector by a second impulse at some transfer point so as to place the
missile in the desired external elliptical orbit it should follow as a
satellite. The programme would thus consist of:

I° an impulse at launching, boosting the velocity from y1 =0
to some value y. The characteristics of the transfer orbit which results
are its reduced energy

.

ha=3%ys—1 ' (25)

and a reduced areal velocity 0 < az = y2 cos wz <y, depending on
the orientation of the impulse. ;

‘

L

2° a coasting phase ending at some ’ti‘axisfer"'poir’:.t 3, where the re-
duced distance g3 lies between the values ¢ and 8 of the final orbit.
At this point the reduced velocity y4 and the angle ws required to
describe the final orbit are known from its energy % and areal velocity a,
as from eqns. (12’) and (13')

»
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. - 1
e 1 : o
Yyi— =h (26)
Ql - ’ _ ‘,, . .
PigsCOSws = a _ o 27

3° the velocity of the missile along the transfer orbit at the transfer
point is projected orthogonally on the direction of 73 and a direction
perpendicular to it. From these projections 3’ and y3", the energy and
areal velocity of the transfer orbit may again be calculated: *

v

. B A ) e ha : (28)
(g cos ws — ¥y sin qu)ea =as " x (29)

The impulse necessary to pass from one velocity vector to the other is
resolved in two components at right-angles; one must absorb the trans-
verse component y3’’, the other the difference y; — y3'. Applying the
impulsive thrust in the direction of the vectorial difference in velocities,
the mass-ratio required will be given by:

c 4‘[3 n "
In— = Yy, —7)? + 7"
L Ve.R My

and the mass ratio required for the initial impulse

c 1 M1 _
Ver M

Since the masses M, and Af3 at both ends of the transfer orb_it are equal,
we obtain, by summation, a relation involving the total mass ratio

[2

T =

2t (0, =7 + ) (30)
Ve.R M, .

This expression should be minimized with respect to the admissible
variations, in programming. Since a and A are given, the parameters
(72, a2, ka2, 73", y3”'; ¥, 03 and wy) are connected by the five eqns. (25)
to (29). There are three degrees of freedom in the choice of pro-
gramming. Let us first choose a fixed transfer point that is an admissible
value of g3. Then w4 and y, are also known and fixed by eqns. (26) and
(27). We next choose a fixed value of y3" and consider 73" as the third
References p. 771 ‘



726 OVERALL ROCKET PERFORMANCE 11

variable parameter. If then we transform the ﬁrst term of eqn. (30) by
eqns. (25) and (28):

T= Vz———+r +yp2 4+ Y0, —7,)’+r’"

it appears, since y3'’ varies indcpcndently in this expression, that a
minimum occurs for 3" = 0. The first rule will thus be that the trans-
fer from one orbit to the other takes placc tangentially. Withys"" =0
and y3' = ys, we now have:

—_ |
T=Vam b1y 4y, provided 5, >,

The partial derivative of this expresswn with respect to ys (gs and
hence y4 being kept constant) is always negative:

3T 73

dys ye

—1<0

since from the energy eqns. (25) and (28)

1
v =r—2(1——) &)
and y3 < y2 because g3 > 1. The largest possible value of y3 will then
make T a minimum for a given g3. The possibility that ys > y4 must
be ruled out as will now be shown. The fact that the satellite is on an

orbit of the type contamed in region 2 of F1g 11.3 results in a set of
inequalities

2% +2—at <0
k<0 702
© 1+42a%>0

They are most easily obtained by observing that the corresponding
equalities represent the equations of the three boundaries of the region;
respectively the straight line x = 1, the a? axis and the envelope or
locus of circular orbits. The first inequality combined with eqns. (26)
and (27) gives
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Y Py ‘ 1 :
74(1 — o3 cos®ws) + 2 (l —-T) <0 (32)
3
while from eqns. (31) and (29)
. ' 1
y:—a? = y}sin? wz~= 731 — el cost wi) + 2 (l —?-) 4(33)

Substitution of w4 from this into the inequality gives

1 3 . 3
2(1-——)( LAl —1) > ("‘7’ sinw:)
es/ \ vp s

and since g3 > 1 there follows y3 < y4. In fact the maximum value
of y3 is for ag = y3 or we = 0, t.e. for a tangential launching:

1
2 (1_ )
2 03 ',':(2 +2h—7:)
3 = —

b4

g’ cos2wg— 1 . az—y'

T = y303COS g + Pa—ys = ¥4 + b ]/2 +2h—y’

and this is a minimum for the minimum of 74, which oc¢curs at the
apogee. It is convenient to express the resulting minimum in terms of
reduced perigee and apogee distances. From eqn. (27), we get at the
apogee where wg = 0.

Yaa =@

and from eqn. (26)
Vi——=2 -

whence

a 2(a—1 -
-2y f V Gl .
and finally, substituting a from the second of eqns. (19):

=V___2.f__+(a—.1)y—(724_—17; | (34)

. a(a + ) a
References p. 771
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This absolute minimum of T requires a tangential launching, a coast-
ing period along one half of the elliptical transfer orbit, and finally a

second small tangential impulse when touching the desired orbit at
the apogee (Fig. 11.7). '

-

\
1
'
'
'
[
!

1

!

Fig. 11.7. Transfer orbits for lauri;:hing an artificial satellite.

For circular satellite orbits (8 = «) the numerical value of T does
not increase steadily with «, but, curiously enough, passes through a
maximum for @ = 7, i.e. for an orbit of radius equal to seven Earth
radii. This maximum value is 4/ V7, or about 1.5. It afterwards de-
creases again to an asymptotic value of }/2. This last value corresponds
to the escape along a parabolic orbit tangential to the Earth surface.
It is of interest to note that both impulses are directed along equipoten-
tials of the gravity field. Consequently, if we replace impulses by pro-
pulsive periods of finite time, i.e., if we use engines of a normal size,
the gravitational losses will remain small and the formula (34) is still
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a good approximation. However, while the use of a very small engine
for the final impulse is fully justified, a finite burning time for the
initial propulsive phase makes a tangential take-off difficult. It would
require a launching ramp of great length and the achievement of
orbital velocity at low altitude with enormous kinetic heating effects.

It is therefore logical to examine the penalty incurred for launching
with a given initial angle w,.

- The result y3” = 0 still holds true, and from eqn. (30) we proceed
to minimize

T Y2 + ya—ys

We replace a2 = y2 cos wz in eqn. (29) and climinate g3 cos ws w1th
eqn. (27)

yipe = COs wg (35)
We also eliminate g3 and Az between eqns. (25), (26) and (28):
| Pyt =y +2+2 ©(36)

Combining the last two results:

2
(ya+y)?=22+2+22 +
cos @

and consequently

T=—ys + V(‘}’s +

a 2
) —w
Ccos _w;
where

a2
2

—2—2h

cos? we

According to the first inequality u? is certainly a positive quantity; if
T is now differentiated with respect to ys, the only remaining variable,

s

a
¥s +
dT= cos wg —1>0

dys 3
) V(J«'a + 2 ) — p®
. cos w2

and the minimum of T, with given w2, occurs for the smallest value
References p. 771
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of y3. To find this value we eliminate y2 between eqns. (35) and (36):

)
gt 2H2Zhi—7 cost
T (cos? wa)y? :

The analysis of this expression shows that when y4 varies from its lowest
valuc reached at the apogee, to its highest value reached at perigee,
7’3 increases and passes through a maximum to decrease again. Hence
the minimum of ¥3 is reached when transfer is either at the apogee or
at the perigee. For transfer at the apogee we obtain, putting gz =
and using eqns. (19), p. 718.

72_=lﬂ:_l')—" y3=c°sw= -1’2» 7‘=‘L (37)

a? —cos?wy u a(a + B)
28 -
T= T(a, ﬁ) = _u(a-f-—ﬂ)_ (!1 COs (.)z) V u(uz — cosz)wz) (38)

For transfer at the perigee we simply have to exchange « and.§ in these
expressions. There may exist a critical angle w. for which T(e, 8) =
T(B, @) and it is indifferent to transfer at g3 = « or f. This critical
angle is easily obtained by equating the two minimum values of y3;
this yields after reduction:

cos? we = af —a?(f— 1) — f2(a — 1') (39)

If w, exists, the absolute minimum T occurs for a transfer at the apogee
if we < we and at perigee if we > wc. The formulae (37) and (38) are
illustrated on Fig. 11.8 for the case ¢ = 1.3 and f = 1.2, where cos? w,
= 0.79. To provide absolute figures for the velocities and mass ratio
we have adopted the values

Yek _,,

c

V&R = 7.9 km/sec and

It is seen that up to launching angles of 30°, the penalty on the mass
ratio is not unduly severe. The transfer orbit is shorter, terminates at
the perigee, and therefore offers advantages for tracking and radio
communications up to the end of the launching phase. Moreover, since
the rocket will emerge sooner from the dense atmosphere and with a
substantially lower velocity, the kinetic heating problems are simplified.
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The main drawback of such a choice of transfer orbit is the gravitation-
al loss incurred by finite burning time. Many problems of interplane-
tary flight have been studicd elsewhere, and an interesting account of
these by Lawden!? also contains the principal references to the subject.
Three-dimensional problems of this kind are dealt with by Bossart!1.

M

V km/sec ’ . M
0 —— 200
: 190
S ' 180
V, | 170
) 2 ' __|e0
| il )/ 150 .
7 Vit —[] luo
(R Y 744}
. \IS! :‘ D -
i [
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] ';i _[\_41 ~ l"'z 100
i My %0
4 ! 80
I 7
3 ; ! 60
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2 ; 40
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1 E Vs 20
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0 L. |

0 16 20 30 & S0 60 70 80 S0
W, W,

Fig. 11.8. Characteristics for optimum launching of a satellite as a function of the
initial launching angle w;. Perigee and apogee of chosen orbit are respectively 1.2 R
and 1.3 R. For launching angle smaller than critical (we = 27.275°) optimum
transfer is at apogee, higher, at perigee. }7; velocity of initial impulse, Vs velocity
at transfer point, V4 — V3 velocity boosting required at transfer poiat. Overall mass
ratio computed for specific impulse of 240 sec.

LN

11.7. STRUCTURAL OR MERIT INDICES

Before returning to the problem of optimum engine size, something
must be said about the concept of structural index. The initial mass M;
of a single-stage rocket is conveniently split as follows

References p. 771



M= My + M, ' . (40)

where M} is the mass after burnout and M » the mass of the propcllant.
My itself is split into

.

M AM+M. . (a])

with A, the structural mass, A, the rocket-engine mass, ‘Mu. the useful
mass or payload. It is not always clear to which of these subdivisions
a given componcnt of the rocket belongs and the classification finally
followed is never entirely free of conventional decisions. This, however,
should not critically affect the \alue of preliminary optimization pro-
cesses, now to be outlined.

In order to obtain a maximum performance of some specified type,
various configurations must be investigated by modifying the relative
sizes of the rocket components. In cach configuration the structural
weight and engine weight can be estimated by careful detail analysis.
But, in order to reduce the number of configurations to be analysed
in detail, a first approximation to the optimal design can generally
be obtained by using structure and engine weight formulae of an
elementary type. Such formulae, permitting the optimization to be
carried out analytically, have been proposed by various authors. They
are mostly based on elementary theoretical considerations though in
the future they should preferably rely on a statistical analysis of actual
designs.

A formula for combined structure and engine weight is provided by
Vertregt’s definition of a structural ratio3.4

M. '
g MM+ My )
, M, + M. .

When solved for M, 4+ M. this definition actually considers the sum
of structure and engine mass to be proportional to-the mass of pro-
pellant. The structural factors introduced by Engels and Weisbord®
imply the same type of proportionality and so.are not fundamentally
different. Separate formulae for structural weight and engine weight
were suggested by Williams?.

(43)
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p— ‘M‘
== M‘ .

B

(44)

In the absence of actual data another reasonable assumption is to-

consider the structural weight to be proportional to the take-off weight
asinref?®
M,
g =
M;

(43)

In the same reference, the engine weight including the feed system, was
taken to be proportional to the maximum thrust.:

Fimax _ '
K=ot W

Optimizations carried out under this last assumption show that the

values obtained for ¢ are far from being constant. The numerical values

adopted for the structural factors s, { or ¢ and the engine factors ¢ or K
are to be considered as ‘“‘merit indices” indicative of the degree of
perfection attained in technological execution.

11.8. ENGINE S1zE AND GRAVITATIONAL LOSSES

The necessity of a compromise regarding engine size became apparent
as soon as gravitational losses showed the necessity of short burning
times. Once a given size of engine is adopted, it is clear that in order
to reduce the losses, it should develop its full thrust or mass flow
throughout the powered flight (this statement may however have to be
amended when drag is taken into account, see Chapter 12, p. 795).
With m a constant maximum and assuming gs to be either constant or
replaced by some average value, eqns. (2), (3) and (5'), pp. 712, 713,
give us the difference between the velocity at burnout (¥V») and the
initial velocity (Vy):

M,
My

tu.

Vo— Vi = c(ln —i};—(M(—Ma))

It is convenient to introduce the following notations

M;
My

r= the mass ratio -

References p. 771
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a= the gross acceleration factor at burnout

» &M
and to rewrite the equation for the velocity gain as

aVv &s f_l

_=lnr—.——

£, a

(47)

The engine size will be determined by the value of e. The best com-
promise depends on the kind of optimum performance which is re-
quired. One may for instance require the payload ratio

M.
u =

- (48)

.t'o be maximum for a given velocity pcfformanée AV. Assuming the
validity of (46), using eqns. (40) and (41) and the definitions of , e and
a we obtain

a
= 4
& = (49)
and :
L+1 a
y= r  ° Kr (30)
or v
1 - a
T e g— -—— w,
“ r ‘ Kr (0

according to the definition adopted for the structural factor. The maxi-

~mum of u with respect to the variables r and a, connected by eqn. (47),
is obtained by elementary methods. In the case of eqn. (50) the opti-
mum value of e turns out to be:

[1+lﬁ+4

A set of related optimum values is found by choosing a mass ratio,
calculating « from eqn. (51), the performance 4V from eqn. (47),
e from eqn. (49) and z from eqn. (50). Repeating this calculation for
various values of 7, one may finally establish the results with 4 Vjc as
the independent variable. In the case of eqn. (50’), the result eqn. (51)
holds true with { = 0, and the optimum value of a does not depend on

a =

8 8o K(r—1) (¢ + 1)] (s1)
8o I'Q
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the structural factor o. This is otherwise obvious from eqn. (50°), where
the maximum for « and the maximum for the sum u 4 o are seen to
be identical problems. The calculations might still be performed in an
elementary way under the more refined assumption that ¢ or { depend
on the acceleration factor at burnout a.

Another and perhaps more logical requirement would be to make u
a maximum for a given total energy gain. For the total energy gain

026

u+6
0.24

U+§ \4=0
022

020

o1e

015

ou

012

010

02 04 06 08 1 2 14 16 1?3 2

Fig. 11.9. Optimization of engine size for single-stage rocket in vertical flight thh;

zero initial velocity. Horizontal scale: total specific energy at burnout converted t

equivalent \«ClOCl‘V ratio. Vertical scales: relative engine weight ¢ based on mcr3

index X = 40; sum of relative payload and structural weight z + ¢; mass ratio
ideal mass ratio rig.
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witﬁout gravitational losses one has: '

F(Vo—Vi) =1} 4ve+ V.-AV:%W '+ Viclnr
The real énéygy gain follows by subtracting from this the gravitational

energy loss. This was calculated (egn. 9, p. 715) when g,/m is constant,
as it is in the present problem, and the real energy gain is found to be

JE ¥ rlnr—r a1
~ _-—‘lnr—!-llnzr—- g THOTTT (52)
c? c F- a
, 13
K=40 12
=0
1
= 0
L
18 ?iAY
16
14] 028
12] 024
1 020
a8 o
04| 0.08 | ; ' : 2
i.tzz 0.06 | 5, ‘
D% . T v T
. : | . y ¢ 0
: 0 02 04 06 08 1 12 14 16 18 2

Fig. 11 QO Same Hhorizontal scale as in Fig. 11.9. Vertical scales; net acceleration
factor a} take-off y;, at burnout ve; reduced velocity at burnout V/c; reduced alti-
. tude gain at burnout 4y g /c3.
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Instead of being tied by eqn. (57), the variables 7 and « are now tied
by eqn. (52), and the maximum of u, as given by eqn. (50), occurs for:
S . : ‘ o

oo r—1 R . T
a=;—y—'—~-—[l+}/1+4 & (rlnr ;:’ )(-—‘+1nr)1<(c+1)] (53)
o _! +1nr i g‘ (f—) ) 3 . .
(2

Again, the corresponding result for eqn. (30°) is obtained by putting
¢ = 0. The initial velocity ratio ¥y/c appears here as a new parameter
influencing the engine size. o -

Figs. 11.9 and 11.10 illustrate this type of optimization in the case of
vertical flight in a uniform gravity field (g, = g,) starting at zero
velocity (Vi = 0) and for a merit index K = 40. The factor ¢ was used
to characterize the structural efficiency and since (¥ 4 o) is optimized
no numerical value was assigned to ¢. In both diagrams the horizontal
scale is given as VfA—E/c, which is a kind of reduced equivalent velocity.
Fig. 11.9 shows the decrease in the optimum value of (u 4+ o), the
engine ratio ¢ and the mass ratio r necessary to obtain a given 4E per-
formance. The interrupted curve gives the mass ratios when gravita-
tional losses are neglected. Fig. 11.10 shows the initial net acceleration

0.10
0.08
0.08

0.06 W S, T,

005 — (/7 ‘ :——1— = == =
0.04 .._./7 N’-‘...;_____

003/ :

0.02|_ -

001} '

NS

N

H

v
01234567829 110N 1213115117 1B1920 K

Fig. 11.11. Correlation between relative engine weight ¢ and gross acceleration

factor at burnout a for three types of optimization of relative payload in vertical

flight: 1° for velocity gain only, initial velocity unimportant; 2° for total energy

gain, zero initial velocity; 3° for total energy gain, initial velocity equal to effective
exhaust velocity. Engine merit index X = 40.
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factor y; = a/r —1 and the same factor at burnout y» = a— 1. Also,
the subdivision of the energy gain between the kinetic and potential
forms may be estimated from the curves giving the reduced velocity
at burnout and the reduced gain in altitude. -

Fig. 11.11 illustrates the correlation between the engine ratioc eand
in the three different cases of vertical flight and for ¥ = 40:

1° When optimizing (« + o) for a given velocity gain alone.

2° For a given energy gain with ¥y = 0.

3° For a given energy gain with Vi =c¢.
The dashed lines passing through the origin correspond to constant
mass ratios.

11.9. OpTiMAL Mass RaTios FOR MULTISTAGED ROCKETS

A substantial increase in payload ratio may be obtained by rocket
staging. In this technique, masses which have become useless are aban-
doned step by step and the chemical energy that would have been spent
to accelerate them up to the final velocity is recuperated. Itis conven-
ient to distinguish between a step-rocket and a sub-rocket and to
index them in the order indicated by Fig. 11.12. Each sub-rocket is
divided in the same manner as expressed by eqns. (40) and (41), p. 732

L

Min = Mon + Mpa (54)

Mbn = Mm + Men + M-n (55)

It is further considered that the useful mass of a given sub-rocket is
made of the next sub-rocket

Mun = My + 1 (56)

except of course for the last sub-rocket (» = ), which contains the
real payload: . : :

Muw'= Munsny =M™ (57)
Denoting by u, the partial payload ratio

My Min + 1)

n = = 58
“ Mlu Ml- : ( )
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the overall payload ratio is

u= Ms _ M- M‘N Mﬂ.
CMn My Mux-n Ma
or ’
U=ux-uy-1...m ' (59)
gwb-rodwt n*l ‘ o
/ S sub-rockat A . .
—

n th step rocket /

Fig. 11.12. Definition adopted for N-staged rockets in series.

K

An interesting problem consists in finding the optimum distribution of
mass ratio between the successive sub-rockets in order to maximize the
over-all payload ratio. Certain assumptions must be made regarding
the use of merit indices for the structures and the engines and several
will be tried and discussed in the next section.
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11.9.1. Rocket staging neglecting gravitational losses

It is assumed that for each sub rockct the parnal boost in velocity
follows the ideal law" .

(4 V).. =c¢a In Ta | : (60)

where ¢, denotes the effective exhaust velocity of the engine of the
step-rocket and r, the partial mass ratio.

- 61
v (€1)
The total velocity performance’is
AV =2 ¢nlnra ' - (62)
i i .

To maximize « with respect to the distribution of mass ratios, we need
to know how a partial payload ratio u, is affected by the mass ratio r,.
If a structural factor s,, as defined by eqn. (42), p. 732, is assumed for
each sub-rocket, we find from eqns. (54), (55) and (58)

1 sa—rs (63)
Uy = ——— ——————
* fn  Sa—1
It is equivalent to maximize In u instead of u itself, and from eqn. (59)
this amounts to stating the problem in the form:

N
¥ In u, maximum

1
The variables are not independent but are connected by the perform-
ance condition eqn. (62). Following a procedure first applied by Ver-
tregt, we use a Lagrangian multiplier »—1 to make the variablesinde-
pendent and obtain the modified problem:

N : 1 N
U=2Z lnup———(4V— I ¢qIn 7z) maximum (64)
1 v T

We then substitute expressions (63) for the u, and derive the conditions
3U[dra = 0 for 2 maximum; they yield:

‘,,=(1_‘” ) n=12...,N (65)

Cn
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11.9.1 NEGLECTING GRAVITATIONAL LOSSES

5o that the optimum mass ratios are determined once the value of the
Lagrangian multiplier is known. It is sufficient for this purpose to sub-
stitute eqns. (65) back into the performance condition (62):

AV=if.'c,.[xns,.+1n(1— :)] )

where everything is known except z. In general, the value of 7 satisfying
this equation can only be found by a method of successive approxi-
mations. There is however one case where the solution of eqn. (66) is
elementary; it is that of equal effective exhaust velocities. If

Cn =¢ n=12,...,N

then
1 v 1 ( 4 V)
c s ik N
e : ;
' !
i
: !
0= DN
o E
|
10
N\
2.0 _ N.AV
0 1 2 3 4 s C
Fig. 11.13. Payload ratio versus velocity performance for multistaged rockets. Op-
timization neglecting gravitational losses and using same overall structural efficienty
factor of Vertregt s = 4.7.
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where s is defined as the geometrical average of the sa:

1 N~
ln:=‘-ﬁzl: In sa
Then
on av '
. = — . . 67
& 4 s cxP(.Nc) &7

S 7S N PR B Pe—

As a further specialization, when all the structural factors are identical
(5' = 3):

| X -——AV —1 "
si=["p((,__1f‘)) ] (68)

Itis clear from eqn. (67) that in this last case all the partial mass ratios
are identical, and then, from egn. (60), that the velocity increments are
equally divided between stages. Formula (68) is illustrated by Fig.11.13
with a hypothetical value of s = 4.7. It-will be observed that the in-
crease in the number of stages is beneficial to the overall payload ratio,
in the whole performance range. This naturally provokes consideration
of the upper limit which could be obtained by subdivision into an in-
finite number of stages. Taking the logarithm of « in eqn. (68) and
applying L’Hospital’s rule with respect to the limit & — oo, we get

. —s5 4V
Inu =

i (69)
.f

In the diagram Fig. 11.13 this equation is represented by the upper
straight line. Inasmuch as the theory takes no account of the additional
components required to effect the separation of stages, this last result
is unrealistic but may serve for purposes of comparison with other theo-
ries. The significance of eqn. (69) is also clear when derived from consid-
erations of continuity, which will prove useful in other cases where
no definite limit is obtained by going to an infinite m%mber of stages

s—1 ¢
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From eqn. (42), p. 732, there follows:

9 1
Ms +M¢=
s—1

M, "i'z

Instead of considering M to be the total mass of propellant at take-off,
we now assume this relation to hold at any time during the powered
flight. It implies that the rocket is continuously losing engine weight
and structural weight in proportion to the propellant consumed The
rocket mass at any time is then

e

M=M, + M, + 1 M» (70)

. _
Mp = My +

s—1 !

and

dM =

s :

oY dM, |

whilst only the mass. ﬂow of pr ropellant is active in determining the

eng1ne thrust L :

mdt = — dM,

The equation of motion in the absence of gravity is thea:
s—1

s

. MAV = medt = —cdMp = —c¢ a (707)

When all the propellant is consumed, the mass of the rocket reduces
to M, by virtue of eqn. (70), so that the integration of eqn. (70) be-
tween M = M;and M = Afu Jeads to :

s—1 1

In —
s u

4V =¢
in accordance with eqn. (69).

Instead of using an overall structural factor of the type eqn. (42),
p- 732, separate merit indices of type eqn. (44) and eqns. (43) or (45)
may bé"used. However, as shown by the analysis of section 11.8,
(p- 733) a definite value of &, is really determined only by the gravita-
tional losses incurred for the production of a definite (4¥)5/cs, or a
definite energy gain.

Thus the choice of specific 4 valuesreally implies that some consider-
ation be given to gravitational losses. But then the gravitational losses
References p. 771
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should really also be considered in the overall performance equation
tying together the variables r,; in other words, the use of eqn. (62) is
difficult to justify. The same considerations naturally apply to the
theory based on the use of the s, coefficients, in which the choice of en-
gine size is contained implicitly.

Before trying to analyse the problem taking full account’ of gravity
losses, we may try to restore some logic into the approximation neg-
lecting these losses by introducing the idea that the gross acceleration
factor reached at each burnout of a stage rocket is limited to a definite
value for structural or other reasons (like integrity of the guidance of-.
instrumentation equipment). This approach has the advantage of
offering a better guarantee to the significance of the ¢ or { structural
factors, should they depend appreciably on this acceleration limit. The
acceleration factor at burnout is

F _ F Mc Mt
gMs g M. M; M,

a =

Assuming again that the engine weight is proportional to the maximum
thrust it can deliver (eqn. 46, p. 733), we obtain:

a = eKr (this is naturally the same as eqn. 49, p. 734)

-so that for a fixed a, & really becomes inversely proportional to the
mass ratio. Such a relation is expected to hold for each sub-rocket:

.lMc Gn
gy = {——] = 49"
€ ( My )u Kara ( )

Let us now see how u, depends on r,, using the structural factors {a
as defined by eqn. (45), p. 733. We find for the 1n1t1a1 mass (dropping
subscript n)

' M.=M.+——a——M(+(I +t)M,

replace M,, by (My— Ms) and divide by My
a 1
(‘i'T,) = (4D (‘—7)

This is eqn. (50) again and it is assumed to hold for cach sub-rocket
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1 + “ﬂ'— IKI
u,=_¥_g, (1

Ta
We substitute this in eqn. (64) and find as optimum conditions

1 du, 1

e =0
Up dfg-l 2

‘or after reduction,

Heremg) o

Cn ”

Lata = (l —

Again 7 is known through back substitution in eqn. (62):

AV=ET:,.[1n(1+C,—;:)—ln£g+ln(l— :. )] 73)

n-!
N —
~N
o= A\ N @
« =
| | AV
& | | —_
2.9 rq
0 1 2 3 4 5

Fig. 11.14. Payload ratio versus velocity performance for multistaged rockets. Opti-

mization neglecting gravitational losses and using same structural efficiency factor

{ = 0.12, same engine merit index X’ = 40, and same limitation to gross-acceleration
factor at burnout a = 8.
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This equation is again easily solved when all ¢, are identical. The
overall payload ratio, when all ¢z, K'a, an and {5 are identical, is found

to be . »
I

Itis only logical to find that small values of & are beneficial to . Indeed,
since gravitational effects are ignored, there is not the slightest advan-
tage of using the large thrust enginesrequired to producelarge a values.
But if too low values of a5 are used in the presence of gravitational
effects in the present theory, the values found for # will become much
too optimistic. :

The diagram Fig. 11.14 illustrating formula (74) shows that a given
number of stages is now superior to any other number in some specific
range of performance, and it is immediately seen from eqn. (74) that
for AV = 0 the value of u decreases with increasing N since 1 — a/K <
1. One should not expect therefore to find any significant limit perform-
ance by going over to Y = o or to a continuous case. Similar cal-
culations using a structural factor of the type o defined by eqn. (43)
would replace eqns. (71) to (74) by the following:

=t (1)L )
D))
refufulim ) mesnl—t)] o
DT o

11.9.2. Rocket stﬁging including gravitational losses

Let us consider the influence of the retarding component of the gravity
field, denoting it by ga for the portion of trajectory described during
the operation of the nth stage. This value is either a constant or should
be evaluated as a suitable average. Eqn. (60), p. 740, is now replaced
by an equation similar to eqn. (47), p. 734:
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En s — 1

(4 ?’),. =calnrn—cn (75)

8o a"‘

and the problem is modified from the form (64), p. 740. to the fol-
lowing form:
N

1 —
U= 1nu.———(AV—..;c.lnn.+E on 22 —"—l-)max (76)
1 v 1 an

Again we use eqn. (71) to represent the partial payload ratio as a
functon of r, and a,. We may now take two standpoints. As in the
previous section, we may consider the a, to be specified constants and
be content to derive, as optimal conditions, the equations:

W

s

=0, n=12...,N (7

As one can verify, eqns. (77) are quadratics in r,. The appropriate root
is easily determined from the condition that it should reduce to eqn.
(72) when g, is made to vanish. By giving several values to the La-
grangian multiplier, the r, are determined and the corresponding 4V
may be calculated. However, the new formulation offers the more in-
teresting possibility of determining the best acceleration factors as
themselves. It is sufficient for this purpose to -add the set of optimal
conditions

W

as

=0 ~n=12,..., N ) (78)

Indeed one easily recognizes in this procedure the application to a
staged rocket of the type of optimization developed for a single rocket
in the first part of section 11.8 (p. 733).

From the conditions eqns. (77) and (78), one may conclude that
eqn. (51), p. 734, remains valid for all sub-rockets and, if the 7, were
known, would determine the a, independently of the value of the
Lagrangian multiplier. The equations that may be formed by elimina-
tion of the a, are unfortunately of the third degree in the r, and the best
procedures to solve the set of optimal conditions again appear to be
of the semi-inverse type. We may for instance rewrite the eqns. of
type (51) in the form '
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—_— én
=1+ an(a” £ ) o 9)
Y Ka(l +Cn)

°

and derive another set to compute the multiplier

En
o @ &o:
P =l—f,| +fnm (80)

The procedure may then consist in assuming aa, computing r, from
eqn. (79) and v from eqn. (80), repeating and interpolating until 7 has
the same value from each stage. The corresponding 4V is then deter-
mined by the addition of eqns. (75). For a required 4V, the whole
process must be repeated with different values of , until a safe inter-
polation can be made. Account may be taken of a possible dependence
of {» on a, by incorporating the differential coefficients d{/das in
conditions (78). Corrections may also have to be made for the assumed
gn values from examination of the trajectories obtained.

As a numerical example take a three-stage rocket in vertical flight
(gn = g,) with the following characteristics:

= 2.3 km/sec K1 =30 ¢ =0.10
= 2.5 km/sec K.=40 £z =0.12
—21kmfsec  ~ K3=25 ¢s = 0.15

Fig. 11.15 shows the three values of a, related to 7, through eqn. (79).
Fig. 11.16 shows the relations between the ¢, and the Lagrangian multi-
plier v derived from egns. (80). From this diagram an optimum set of
an is obtained for each common value of v; the corresponding set of 7y
is then given by Fig. 11.15 and the corresponding 4V may be cal-
culated. The result is a relation between AV and v as illustrated by

Fig. 11.17. It should be noted that from conditions (77) and (78), we

also have

v —gn/go ratin
Cn an(l + Cu)

s that the partial payload ratios vanish for v = 0, this last value giving
the highest 4V performance of the staged rocket, which corresponds
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at burnout against value of the Lagrangian multiplier.-
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to zero payload. For posmvc values of o, there is a positive payload.
For instance for » = 0.38, we obtain

13 = 0.0400 (4V); = 2.935 km/sec

r1 = 5.00 =12
re = 4.94 az =138 uz = 0.0369 (4V)2 = 3.280 km/sec
r3 = 3.65 as = 9.2 us = 0.0642 (4V)s = 2.114 km/sec

and finally # = uyuus = 0.9476:10-4 for AV = 8.329 km/sec.

We also observe that no optimum set exists for values of » larger
than the maximum on the a3 curve of Fig. 11.16. This value is about
1.075 km/sec and corresponds to

a1 = 7.6 rn = 2.527 (4V); = 1.670 km/sec uy = 0.235048
as =96 re = 2.848 (4V)2 = 2.135 km/sec . us = 0.189000
as = 3.8 _ rg = 1.375 © (4V)3 = 0.462 km/sec - us = 0.575818

or u = 0.02558 for AV = 4.267 km/sec.
The reason is presumably that, for such a low performance, better
overall payload ratios are obtainable from a two-stage rocket. Indeed,

discarding the third, and worst, stage and taking » = 0.96 km/sec, we
find: \

a 71 = 2.939404 (4V)1 = 1.955 km/sec ° uy = 0.177834

re = 3.232160 (4V)a = 2.401 km/sec ug = 0.145302
or u = 0.02584 for AV = 4.356 km/sec.

8.
0.

W

1

Av km/sec

12

1

10

9

8 ~
. ’ \\ N

[ \

5 SN
4 I~
3

2

1

0

: v
03 Q38 05 06 a7 08 Q9 1 1075 101 km/sec

Fig. 11.17. Same conditions as in Figs. 11.15 and 11.16. Velocity gain as function of
‘ the Lagrangian multiplier.
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Consequently the useful part of the ey versus v curves is limited as
indicated. '

For equal values of gn = g5, Kn = K, ¢x = cand {» = {, the multi-
plier plays no part. All the a, evidently become equal and the rs
likewise. For an /N-stage rocket

4 —
4V =N(1nr— g T IA)
¢ £o a

and
_ 1+¢—a/k LA
- Lty
These are parametric equations for the u zersus A V/e curve, the con-
nection between « and r being given by eqn. (79). The case of vertical
flight (gs = g,) with K =40 and ¢ = 0.12, is illustrated in Fig. 11.18
for N = 1, 2, 3 and 4. Again each number of steps has a superior per-

1/-‘1':

= — , : ;
=\t i -
_;_dhi
A\

10-t } AN
1 - 1 - N
- ! S
— TR - —\i .
] 1\ R
w0-? L i\\@ T
: . ‘ ==\c)
. : v
2.%0-# l ¢
0 1 2 3 4 5

Fig. 11.18. Payload ratio versus velocity performance for multistaged rockets. Opti-

mization for imposed velocity gain as reduced by gravity in vertical flight. Same

structural efficiency { = 0.12 and engine merit index X = 40 for all stages. Dashed

line is absolute limit obtained from analysis of continuously staged rocket (in parallel)
with same efficiency factors.
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formance in a given range, and no limit performance is to be found by
assuming an infinite number of steps or a continuous case. On the
other hand, as will be shown in section 11.9.4 (p. 757) such a limit
does exist when the rocket staging is done in parallel instead of in
series.

Up to now, we have tried to optimize rocket staging for a given increase
in velocity alone. We may try, more correctly, to optimize for a given
increase in total specific energy, as was done in section 11.8 (p. 733),
to determine the best engine size in a single stage. Though the equa-
tions to be solved are easily derived, the amount of numerical work

- clearly becomes quite considerable. The difficulties arise mainly from
the fact that the partial encrgy gain from a single stage depends on
the initial velocity at which this stage begins to operate. Indeed, re-
ferring back to eqn. (52), p. 736:

(dE)a = caVialnra + 3 f:]nzfn—C: gn ralnr—ra 1 (n=12,...,N)(81)

&o Un

Clearly, given 7, and @, (4E), will increase with Vi,, and allowing
velocity reached at burnout of a stage to drop by waiting some time
before firing the next stage would be detrimental to the performance
of the latter. The best initial velocity of a stage is thus given by the
burnout of the previous stage and, according to eqn. (75), we shall
assume

g rtn—1

8o an

Vimsny = Vin + cnlnrn—caq n=12,...,N) (82)

the initial velocity Vi being known (and equal, say, to zero). To take
into account the performance condition

"4E = E (4E)a

we use a Lagrangian multiplier 4, and for condmons eqns. (82), a
set of (N — 1) multipliers 285, and formulate the problem as one of
making maximum the quantlty BT

N - s — 1
U= E lnlln + ).E (AE)u + ).Z ﬁn(— Vt(n+!) + V(u 4 cx lnfn—cu gn T )
1 1 1 .

8o dn

with respect to afbitrary values of the 2V unknown (ra, ¢,) and the
N — 1 unknowns Vin (n = 2, 3, ... N). In the expression of U, the u,
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are replaced, for instance, by cqns. (71), p. 745 and the (4E), are
given by eqns. (81) The conditions 2U/d Vin = O are 51mp1e they yield

Brn-1=F8a +calnr, (n=2,3,...,X) (83)
The other conditions dU[dr, = 0 and dU[das = 0 are:

1 dQuUgn - &n l
+ Zen 2 pr “fea(ralnra —re + 1) + Ba(ra —1)] =0 (84)

°

Un rn -

1 Via 1 . 1
= =+ Xa(calnra +ﬁ.)( SR )—_-o (85)
Tn & an/

Un  dan s

The 2N equations, together with the (2N — 2) eqns. (83) and (82) and
AE = f‘f (4E)a (86)

form a set of (4N — 1) eqns. for the (4N —1) unLnowns (72, @xs Vin, Bn
and 2). We may observe that for the last stage, since By = 0, the pair’
eqns. (84) and (85) yield, on elimination of 4, a quadratic in a5 whose
appropriate root is that given by eqn. (53), but such a type of equation
may not be used for the other stages. There is no straightforward solution
to the system and any method involves some amount of trial and suc-
cessive approximations. One such method might run along the following
lines. First assume a plausible set of optimal (rs) values. Compute the
Ba in succession from eqns. (83) starting from the last. Take the pair
of eqns. (84) and (85) for n = 1 and, since Vi is known, eliminate 4,
and solve the quadratic in d; to obtain this value. Substitute this in
eqn. (82) for » = 1 to calculate F;;. This procedure may then be re-
peated to calculate az and Vi3 from eqns. (84), (85) and (82) forn = 2,
n=3, etc ... Once these calculations, which require no trial and errcr
procedure, are done, take cgns. (84) or (83) or any convenient com-
bination of them to examine the values obtained for 4. Ifall those values,
which we will denote by Z,, are the same, the set is optimal for the
resulting value of AE = (4E),, w h1ch may however be different from
the required 4E. If the values are ‘not the same, apply a pcrturbatlon
procedure, which will essentially consist in giving to each r, in suc-
cession a small increment 6r,, and run through the calculation again
to find the 62, and 64E. We may thus compute the approximate
differential coefficients
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L7 An S4E Q4E
and
Orm Mrem Orm AMm

If t}ié corrections needed are small enough, we shall have:

).+E

6r.. =1 (1=12...,M

(4E), ~L§ 24E
1

orm = AE
I'm .
and these are (N + 1) linear cquations for thc n corrections 4 7y, and
the common 2 value. :

11.9.3. Step rockets in parallel

Another possibility for increasing the payload would consistin a sub-
division of the rocket in elements arranged in parallel instead of in se-
ries. The main advantage of such an arrangement is a reduction in
gravitational losses owing to the fact that all the engines may be used
to give their full thrust from the beginning, instead of being fired in
succession. The rocket is, however, likely to be bulky and the drag
penalty may be severe except for very large rockets, where the energy
loss due to drag is insignificant compared to the gravitational losses.
Another drawback is the reduction in nozzle efficiency of the engines
which are used for propulsion after dropping the first stage. If these
engines are used from the start, their nozzle-expansion ratio is limited
by the high-density atmosphere at low altitude; in the series arrange-
ment their expansion ratio may be adjusted to the reduced density
prevailing at the altitude where they are fired. The analysis of the
optimum staging of the parallel scheme is no more complicated than
the series scheme if all the effective exhaust velocities of the engines
are assumed to be identical, an assumption which is likely to be verified
because the nozzle expansion ratios will be similar. Let F; denote the
total thrust available at take-off, F; the thrust remaining after dropping
the first step (which may consist of several tanks and engines wrappcd
around a central body) and in general by F, the thrust remaining after
dropping the (n — 1)th step As before, let a5 and r, be defined by

o
L o= Mtu
‘ gth,. Mpya

(87)

M, being the mass Jusi after dropping the (n — 1)th step and My,
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the same mass after consumption of the propellant in the nth step tanks
(all the engines working at the time are assumed-to be fed by these
tanks alone). Then

|  Min = Min + Mya
and, when the nth step is dropped
Min + 1) = Mon— {aMpn — Men
the second term being the mass of the tanks which are dropped. If Ky
is the merit index of the engines dropped,

Fn—Fn+l

lwen = Kgg

The nth partial payload is defined as

ﬂl«(_- +1)

= 1"[“

‘and, from the preceding fclations, we find

u,;(M:'_;,)(l_ n 41 )-’l (n=:1,2,...,.N~—'l)(88)

s an(n +1)

Forn — N we have exceptionally, because F(x+1y = 0 and Myn+1 =
M, the true mass of payload,

u 1 —an/K
uy = M, - + an/. N—CN . (89)
Af{, N-1 . - ™

Moreover, on the assumption that the effective exhaust velocities of
all the engines are the same, the velocity increment given by each step
keeps the simple form

@ =cflnrn—E= 1) =128 (90)
where gravitational losses are included. Comparing eqn. (88) and
eqn. (71), p. 745, itis immediately apparent that, all other things being
equal, the (N — 1) first partial payload ratios are higher for the paral-
lel arrangement. Since as before

M,

q =
My

= U3 e o o UN
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the problem of maximizing u for a given total veloc1ty gain may be

set up as follows:

~ 1 + &n—an/K, N-1
U=Zln( + 0/ -—Cp)— l“(1_ Qn + 1 )+
1 n 1 Karn 41
N o —_—
+_c_}:(lnr.— g T l)max
v o £&o Cn o

The conditions for a maximum
W . '
=0 (r=12,...,N)

W -0,
. orn oaa
reveal that for n = 1, eqn. (79), p. 748, remains valid
ne=14+ a1(a1 — g1/g.) o1
—E1(1 + 21)

but for the remaining values of n, we have (elimination of 7)

(Ku-l—Kn) an —

(Ka-s + tor —5“7“—)—) ar— £

(n=23,...,N) (92)

B KaKn-1(l + &) (m—1) =0

There is only one positive (appropriate) root for this quadratic in e,
and we may note that if K,y = K, it becomes remarkably simpler:
S = K (92)

an

&o

Other combmatxons of the optimal condmons ylcld relations of type
eqns. (80), p. 748, valid for all n: ' i

: +¢n '
) (1—-L—T-) C (=12,...,N) (93

2 (1 &
3 8o2n

1+ {a
jl), (92), and (93) is exactly

The procedure for solvmg the eqns. (
like that for the series arrangement. 1\Iumcncal example:
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‘Vertical flight of a two-step rocket with K3 = K3 = 40 and {; = {2 = 0.12.
A common value of v/c = 0.1348 is found to correspond to

14 11 = 5.062 (A7) = 1.33165 ¢ uy = 0.03454
14.2 re = 5.041 (47)2=1.33333 ¢ u2 = 0.03175

giving finally z = 1.0968 - 103 for 4V/c = 2.665.

11.9.4. Step rockets in parallel — Continuous case

For any given 4V performance, the payload ratio increases with the
number of step rockets in parallel and there is a definite upper limit
reached by letting this number tend to infinity or by passing to a con-
tinuous case, which is equivalent. This is in contrast to staging in series,
where the payload ratio passes through a maximum for a certain
number of stages and decreases again for a higher number. It is not
without interest to know the absolute ‘upper limit of u given by the
continuous case of rocket staging in parallel and this we now proceed
to evaluate. The total mass of the rocket at any time will be analysed
as follows

M=M,+ (1 +0)My+ (94)

Ke,
-The second term represents the mass of propellants and tanks at the
instant considered; the tanks are expended continuously at the rate
of propellant consumption. The last term is the instantaneous tngine
mass, which is kept proportional to the thrust delivered. Since no in-
active engine weight is involved (all the engines still carried by the
rocket are active) the equation can be considered effectively as a
limiting continuous case of the arrangement in parallel.

The optimum continuous variation in engine thrust will apparently
consist of two phases. In the first, the total thrust will remain constant
and only propellant and tank masses will be continuously expended
until the acceleration reaches a sufficiently high value. From then on,
during a second phase, engine thrust will decrease and consequently
engine mass will also be continuously discarded. Let F; be the engine
thrust of the first phase from values Af; and Vi to Af» and V.. Then
the equation of motion:

Fy
M

‘dV=( —gs)dl
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the equation of thrust

dM,
d:

Fi=—c

and the differential of eqn. (94)
dM = (1 +8) dM,

yield, after elimination of d¢ and dAf, and integration: ’

1+¢ £12

(Ve—m V1) =Ilnrg— (n—1) (95)
where .
A M, & ¥ S U ’
rn = M ay = 2 . (96)

and g2 an average of g, for this phase. For the second phase, of variable
‘thrust, we introduce the instantancous gross-acceleration factor

F
| f=—i (@7)
transforming eqn. (94) into
B
(1 _E) M=M +(1+20)M, (98)

Between the two phases, we allow for a finite reduction in thrust from
F, to F3, implying a change in mass due to engine loss

Fi—F,

M, — My =

°

This equation, by virtue of definitions (96) and (97), may be written as

* s
(-F)wm-—F =)
where g, is the initial value of B in the second phase:
. C s = F" R
- 8.M3
Using the thrust equation
F=—c¢ M
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to climinate df and eqn. (98‘) to eliminate M3, the equation of motion
may be obtained in the form:

din [(1 —-%) {f—‘] = —#f(ﬁ) av
2

where

B

T =) O=5i5)

(100)

Now let the required velocity performance be AV = V3 — ¥; and
integrate between 1 and V3 (where M, = 0):-

M, 1+t .
" M (1—— ;’) e IV.f(ﬁ)dV .

From this result and eqn. (99), we finally get

. Vs
nu=m2 o )—hm—l—tif f(Bydv  (101)
K ¢ v,

T M

=1n(1_

-

The payload ratio depends on the parameters a;, }7‘1 and V3, which are
connected by eqn. (95), and on the unknown g (here considered as a
function of the velocity) in the interval Ve < ¥V < V3. Given 1 and
a3, and consequently Vp, the.maximum of In u, as a function of B,
exists and is simply given by local minimum values of f(8). Those
minima are reached for

gt = 8 K where Smin = (l — V;—')— ’ . (102)

&o Eo

and depend on the local slope of the trajectory with respect to equipo-
tential surfaces of the gravitational field. Because g1z and g (the value
of gs at the beginning of the second phase) depend on r; and ay, it is
a more delicate matter to examine the maximum of In u with respect
to those values. By the assumption that the first phase occurs in vertical
flight, we avoid the nccessity of analysing the trajectory and find as
maximum conditions with respect to variations in the parameters e,
References p. 771
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r. and ¥, as connected by eqn. (95) with g1 = g,:

n=l+ al(alK_ . (103)

ay = fa
Since gz = g, we also have _
| pr=x (104)

Consequently there is no discantinuous reduction in thrust when pass-
ing from the first to the second phase. If the second-phase trajectory
remains vertical, the thrust is continuously reduced to keep the accel-
eration factor constant and equal to }/A. If, however, the trajectory
is curved, the thrust is still further decreased to allow for the reduction
in gs. For K = 40 we have

a1 = B = 6.324555 r; = 1.841886
and if

¢
1+¢

© P1=0, V. = 0.477676
The altitude reached at the beginning of the second phase is found
: 2 — —1\2 ; 2
a—a=(157) i[" - ——l—(" 1) —1“"] -(+=) L 0.02768
14+¢/ g, ay 2 ay L@ 1+287 g,

If the performahcc required is equal to V3, the payload ratio would be

a1

K

lnu=1n(l— )—lnfr

or

LA | ax ’ -
Tet g mmeem [ ] — = 0.457078
“ ( K ) 0

For ¢ = 0.12 this performance point in the diagram of Fig. 11.18 (p.
751), lies very slightly above the curve of the single-stage rocket. For
higher performances required in vertical flight, since .
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dlnu 1+4¢ 2

l -—

avs ¢ (1 - VK‘)
the performance points lie on a straight line (dashed line of Fig. 11.18).
For instance u = 1.612:10-2 corresponds to 4 ¥Jc = 4.

11.10. INTEGRATION OF VERTICAL TRAJECTORIES

More exact estimations of rocket performance require the inclusion of
terms previously neglected to facilitate the analytical treatment of
certain design optimizations. A more correct equation of motion in
vertical flight is the following: '

MV =F—Mg—D : ‘ (105)

The behaviour of the variable mass M, variable thrust F and drag
term D will now be briefly considered. Under conditions of constant mass
flow of the propellants, the thrust is still increasing with altitude be-
cause of the reduction in ambient pressure (see section 2.4.4, p. 93).
At the altitude y, :

oo (=52 am

where the coefficient of pressure thrust kr is theoretically equal to:
y=1
1 2‘}’ De L4 De be :
—= — —1 107
ke y—1 [( be ) 1} £4(0) O aon

with ps(Y) ambient pressure at altitude y
$a(0) ambient pressure at reference altitude y = 0

Pe chamber pressure
De exit pressure ' .
¥ specific heat ratio of exhaust gases. !

&~

If ¢(0) denotes the effective exhaust velocity at zero altitude:
F(0) = —c(0)M (108)

an equation from which the instantaneous mass of the rocket is easily
derived. The drag is essentially a function of velocity and altitude
References p. 771
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D(y, V) and for flights to very high altitudes even the acceleration of
g;avity should be regarded as a function of altitude

3
£0) =&, ( ) (R the Earth’s radius)

R +y
The numerical integration of eqns. (105) and (108) must then nec-
essarily proceed togcther with the equation for the altitude gain

j=V (109)

To simplify the integration, the time may be eliminated and replaced
by the altitude as the independent variable. Denoting by an apostrophe
the differential coefficient with respect to altitude, we then obtain the
system

,_1[F)=DGV)
V== [———M(J) gm]
.1 F(©) A
TV )

The rocket mass may also be taken as the independent variable and
this choice is particularly interesting during a take-off phase because
it removes a singularity at ¥ = 0 and because, in the beginning, the
variations in mass are more important than the variations in velocity.

11.11. Zero-LiFT TRAJECTORIES

In the relatively dense atmosphere prevailing at low altitudes, a curved
flight path is preferably obtained by steering the rocket along a zero-lift
trajectory. The rocket then has no angle of attack, which means its
axis of revolution remains tangential to the flight path. Except for a
winged missile, an angle of attack would involve a large amount of
induced drag for a small amount of lift. If the thrust vector remains
aligned with the rocket axis the curvature of the flight path is produced
by the gravitational ficld and depends on the initial conditions. The
rocket will then describe a perfect trailing turn. If y denotes the angle
of thc: tangent to the flight path with the horizontal, the intrinsic

cquatioris of motion of a zcro-lift trajectory in a uniform gravity field
will b
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MV =F—D— Mg_siny

- (110)

Vy = —g,cosy »
By considering the rocket as a point mass, we evidently neglect the
inertia forces involved in the continuous change of orientation of the
rocket axis. In practice these forces must be balanced either by aero-
dynamic forces or by the action of vernier engines or a disalignment
of the thrust vector (gimballed rocket engine).

In the next section it will be shown that the corrections 1nv01ved
in egns. (110) are gencrally small enough to be neglected. In the in-
tegration of eqns. (110) and (108) a difficulty is encountered at the
start, where V = 0 and y is nccessarily equal to =/2.

To investigate the nature of the singularity at this point, and to
obtain a convenient mcthod of integration, we begin with a special
case of integrability in closed form. Introducing the gross-acceleration
factor B defined by eqn. (97), p. 758, and neglecting drag, eqns. (110)
are rewritten:

dV =g, (f—siny) dt
Vdy = —g, cosydt

and the case of a constant § is considered. With the change of variable

2r ) 1—1r? 2dr
r=Tyr T Trpc Y= 7Trm O
we obtain :
1—17
= —_— ) dt
av ~ & (ﬁ 1 +I’=)
Vdr = gol"dt ' }

Eliminating d¢ between the two and 1ntegrat1ng, we ﬁnd
V =g HI#Y(1 + I'?) - (112)

and a second integration gives for the flight time

4t=H

(ns-: _ Ian ) 113

p—1 " p+1
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H is an arbitrary constant of integration, whose significance is asso-
ciated with the value of the velocity 2¢g./, when the flight path reaches
its apex (I' = 1). Despite thc fact that for ¥ = 0 the flight path always
starts vertically (I" = 0 and y = =/2) there is one parameter family of
curved trajectories such that the thrust vector remains tangential to
the flight path. It is interesting to observe that the rate of turn of the
path (or of the rocket axis)

dy }2! r*# (1 + ra)-e (114)

dt

is infinite at the origin if 8 > 2, zero if § < 2, finite and equal to
— 2/H if § = 2. This indicates that because of the inertia of the rocket
about a transverse axis it will be difficult to steer it along a perfect
trailing turn if its initial gross-acceleration factor is higher than two.
The altitude gained by the rocket and the horizontal range covered
are also easily found to be respectively '

. Ir2s-2 I28+2
4y = gH? — 115
V=8 ( 26—2  26+2 ) - (115)
28— I28+2
Ax = 2gH? 1
[Ax=2g (2,3—2 +2B+2) (116)

—_

To integrate a zero-lift trajectory in general we may now re-define

F—D

="

(117)
and subdivide the interval of variation of I"into portions along which
B will be assumed to remain constant. Along each subinterval from I',
to I's41 the formulae (112) to (116) are applicable with suitable values
of f = fn and H = H,. The value of g, is estimated from (117) at
the origin of the subinterval. Then, applying (112) at the origin

V=g H T (el

and, since V, is known, this equation determines H,. Alternatively,
from the same equation applied at the end of the previousinterval,

Va = g HaaTnl* 17 (1 4+ I
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and by comparison

Ha = Hooy TPn-17n

Next, fa and Hy being determined, eqns. (112) to (116) applied for
I' = I'py, yield the values Vg1, fas1), ¥m+y and x@+y. The value
of Afy411s then obtained from eqn. (108) and all the initial data for the
next subinterval are known. The value H;, chosen arbitrarily for the
first subinterval, is the parameter for the family of zero-lift trajectories.

11.12. ErFects oF THE RoTATionaL INERTIA DURING STEADY-STATE
Gravity Turns

Allowing for a deflection angle ¢ of the thrust vector with respect to
the rocket axis, the equations of a perfect (zero-lift) gravity turn are:

MV = Fcos 6—D— Mg, siny
MVy = Fsin 6 — Mg_ cosy .
. Ij =—Fpsiné
The last equation expresses the equilibrium between the rotational
inertia effects during the turn and the moment of the thrust with re-
spect to the transversal axis through the centre of gravity. The turning

moment of aerodynamic origin is neglected as being of a smaller order
of magnitude. Eliminating sin ¢ between the last two equations

I . .
—pr—-/ + Vy +g,cosy =0 . (118)

Moreover, since 4 is small (as verified a posteriori), the first equation can
be written

MV =F—D— Mg, siny - (119)
Except for the first term in eqn. (118), we have the same system as

described by eqgns. (110). If the rotational inertia term is really neg-
ligible, the rate of turn will be given as before by:

‘ §=— __g; cos y ' (120)
Differentiating,

. . gn ’ gn L .

_ y=-—V;-cosyV+—V-ysmy
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and resubstituting for the approximate rate of turn and for the tangen-
tial acceleration -

g, cosy [F-—D

- — —2g°siny]' a2y

y =

We may now check on the relative importance of the rotational inertia
term by taking the ratio of this term to the last (gravity) term in eqn.
(118). This ratio appears to be:

9) 0g, [F—D 94 ]
+ V?[Mg. 7

where p is the radius of gyf;xtibn as defined by:

I = Mp?

The ratio og,/V?2 governs the order of magnitude of this expression,
which is generally very much smaller than unity, except for very large
rockets turning at very low velocities. Finally, the deflection angle of the
thrust is obtained from the equation of rotational equilibrium:

. e\ ez, (F—D . Mg, cosy
sind = — (-;—) Ve (—TE‘,— —2sin }') —F— (122)

As may be verified by numerical examples, this angle is generally very
small, its order of magnitude being also governed by the same charac-
teristic ratio. It is also observed to change sign according to whether
the gross-acceleration factor f, defined by eqn. (117) is smaller or
larger than 2 sin y.

The equations (120) and (122) may be considered as the character-
istics of the steady-state perfect gravity turn. It is usual for a rocket
to be steered along a purely vertical segment of trajectory at take-off
before being deflected on its true course, The original differential
equations of the perfect gravity turn show that from the initial con-
ditions Vi # 0, y¢ = =/2, 3¢ = 0, prevailing at the end of the vertical
segment, the unique solution is ¥ = #/2. Thus, in order to initiate a
perfect gravity turn, we must allow 2 transient phase with an aero-
dynamic angle of attack. This phase is critical and the programming
of the thrust deflection to minimize the angle. of attack during the
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transient phase is an interesting problem in itself, but it falls outside
the limited scope of this Chapter.

11.13. THE EQuaTion oF MoTioN oN RoTATING EARTH

In the study of more general three-dimensional trajectories, the follow-

ing simplifying assumptions are made:

1. The mass of the rocket is negligible in comparison with the mass of
the Earth.

2. Axes passing through the centre of the Earth and pointing to fixed
stars form a Galilean system.

3. The atmosphere is entrained with the rotation of the Earth.

4. The Earth is a perfect spherical body.

Let r be the distance of the rocket to the centre of the Earth, 6 the

longitude and @ the latitude. The square of the absolute velocity of

the rocket is then

2 =72 + 12 coszd-"(é + Q)2 + radt

where @ is the angular velocity of the Earth with respect to the fixed
stars. The components of the absolute acceleration in polar co-ordin-
ates are then:

d da da
= — —_ 7 — 2 |
=T ( oF ) o T ?(g +9)

1 d(ba

Y= s D dz w)=2"cos¢(9+9)—2rsm¢(6+D)¢+rcosa>6 (123)

. 1 d da da .
=— — = 2r i + Q)3
ag r[dt (aqb) 345] i@ + rP + rsin @ cos P(6 + Q)

Draw an axis Ox; from the centre O of the Earth to the instantaneous
position of the rocket and let Oz be perpendicular to Ox; in the
meridian plane. The anglé between Oz, and the polar axis Oz is then
equal to the instantaneous latitude @. Consider the plane through
O and normal to Oz and rotate it about Ox; through an angle a
(positive if clockwise looking from O) until it contains the velocity
vector ¥ of the rocket relative to the Earth. The rotated plane will be
referred to as the instantaneous relative orbital plane and the normal
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to it makes with the polar axis an angle » related to a and the latitude
as follows:

cos v = cos a cos P (124)

In the instantaneous orbital plane let z/2 — 8 be the angle between
Ox; and the relative velocity vector. Then

#=Vsinf ’ T (125)
frcos @ = Vcos fcosa : (126)
&r = Vcos Bsina (127)

. The time derivatives of 7, # and @ may now be substituted from these
expressions in the formulae (123). Moreover, the acceleration compo-
nents are taken:. '

1. In the direction of the relative velocity
ay = a,sin f + cos fi{agcosu + ag sin a)
" 2. Normal to the relative velocity in the instantaneous orbital plane
an = a; cos f —sin B(az cos u + ag sin a)
3. Normal to the instantaneous orbital plane
e ' e, =—agsina + agcosa
After performing the calculations and reductions, we get:
ay = V 4+ 022r cos O(sin D sin « cos § — cos D sin f)

: Ve _
an = VB ——cos f— $2%r cos P(cos @ cos f + sin Psin f sina) —2 2Vcos P cosa (128)
7 ,

V32 '
a, = Vacos f§ + —tan @ cos?f cos « + 22rsin P cos P cos a
r

— 20V (sin ® cos f — sin f cos P sin a)

Taking now the components of the radial gravitational force and noting
that the drag D(V, r) is opposed to the relative velocity vector, whilst
the thrust is assumed to act in an independent direction, the equations
of motion may be rewritten

R2 1 )
ay +g°,_25inﬁ =ﬁ(FcosecosC—D) (129)
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R 1 . :
cas f =jTIFsmccos€ (130)

" a + g, pr

a, =::2F5int ' (131)
The modulus of the thrust and the angles ¢ and { are steering variables.
The variables a, 8, ¥, r and @ are governed by the differential system
(125), (127), (129), (130) and (131). Equation (126) is not coupled
with the others and serves by a simple quadrature to determine the
longitude. We may note that the first two terms-of @, may be written
in the form '

Vecos 8 d

- Sin_ucos—a- & (COS a cos ¢) (132)

and disappear if the angle between the polar axis and the instantaneous

orbital plane is kept constant. This is the case if the { angle is so chosen
that

Fsinl = MQ%rsin @ cos v — 22 VM (sin P cos § —sin f cos d5sina)'

and the orbital plane remains fixed relative to the earth. The intcgraﬁox'l
may then proceed with egns. (125), (127), (129) and (130) only, the
angle a being related to @ by the auxiliary equation

cos a cos P = cos ¥ = const. (133)
In the particular case of an equatorial orbit:

vy=0, ®=0, a=0, (=0

and the expressions for the acceleration components are considerably
simplified. At altitudes where drag has a negligible infiuence on certain
characteristics of the motion the use of variables connected with relative
motion is unnecessarily complicated. To change the description to
absolute motion, it suffices to put 2 = 0in eqns. (128).and to re-define
V as the magnitude of the absolute velocity, /2 — f as the angle
between the absolute velocity vector and the axis Oxyand #/2 —a as
the angle between the meridian plane and the instantaneous absolute
orbital plane. The acceleration components are then defined in the
corresponding absolute directions. In particular, a, is now the acceler-
ation component normal to the instantancous orbital plane and its
References p. 771
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expression reduces to (132). Consequently if { = 0, eqn. (133) is valid
and the absolute orbital plane remains fixed.

In computing the long-time effects of drag on the life of artificial
satellites, the assumption is generally made that the drag force is tan-
gential to the absolute path. This conflicts with our second assumption.
If we keep the assumption of the atmosphere entrained by the Earth’s
rotation, the drag terms affect all three of the equations of motion in
the absolute description. Except for equatorial orbits, drag will cause
a slow rotation of the absolute orbital plane. The same phenomenon
and other related ones are caused by the Earth’s oblateness?2. It is not
difficult to extend our description of the equations of motion to include
the effects of the Earth’s oblateness since the gravitational potential is
most easily expressed in terms of the distance and the latitude. In
general, if U (r, @) is the specific potential energy of the gravitational
field, the first terms of the cgns. of motion (129), (130) and (131) are
respectively

+ W, 1 U . 8
a —
v - sin 8 + . 2 sin a cos
W S |
_an + - cosﬂ———r— P sinasin g
1 U
a"+—r—_bd§ cos a

In first approximation for the Earth12

R

3
7S

1 D RS .
(—3- — sin2¢) + = 2 (355int® —30 sin?® + 3) ]

R
P R —
v & [r +J 35 s

where R is the equatorial radius (3441.69 nautical miles) and

- F=1637-10"3, D =106-10-¢
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CHAPTER 12

Variational Methodsin Optimizing Rocket Performance

12.1. GuipaNce VARIABLES AND THEIR PrRoGrRAMMING

In most problems the parameters describing the behaviour of a given
system are connected by differential equations or non-holonomic con-
straints and the motion of the system 1s obtained by integrating these
equations with a comprehensive set of initial conditions. In many cases
the number of independent variables is larger than the number of
constraints and.the motion is not properly determined unless some
“program” is assigned to a group of variables representing the extra
degrees of freedom. Such variables are appropriately called “guidance
variables”. In most cases they can be identified by the fact that their
differential coefficients, or time derivatives, if time is taken as the
independent variable, do not appear in the equations of constraint.
In aeronautical engineering the guidance variables are precisely those
subject to pilot action; in guided missile engineering, those monitored
by the command link. '

The arbitrariness in the programming of guidance variables vanishes
when additional requirements are introduced such as the stipulation
of maximum performance of some sort, coupled with prescribed initial
and terminal conditions. The quest for a programming to achieve the
optimal performance belongs to the realm of the calculus of variations.
In this quest two different approaches may be used.

In the first, the quantity to be maximized, or possibly a related
quantity which is simultaneously maximized, is expressed as a func-
tional to which the elementary rules of the calculus of variations are
applicable. This method requires eliminations and changes of vari-
ables, generally inspired by physical intuition, and is intimately con-
nected with the reduction of a Pfaffian system to an appropriate ca-
nonical form. When it succeeds, it generally provides the answer in
the simplest form and also facilitates direct proofs of the maximum
character of the solution®. Some extremal arcs, which are part of the
complete solution, may be lost in the elimination process but are gen-
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erally easily retrieved as expressing physical limitations in the guid-
ance variables. To take examples: if the thrust of a variable thrust
rocket engine is limited by the lower value zero and some maximum
upper value, the maximal arc may comprise, in addition to a pro-
grammed thrust arc indicated by the solution of the functional, a zero
thrust arc and a maximum thrust arc. If the rocket has a lifting surface
with an angle of attack subject to programming, physical limitations
on the angle of attack, imposed by stalling, may zesult in the embodi-
ment of extremal arc flows with maximum positive or negative angles
of attack. A similar situation arises when the limitation is in the trans-
versal acceleration that the missile structure can take. Orientation of
thrust with respect to the instantaneous velocity vector is also a form
of guidance variable; it can be subject to similar limitations requiring
the existence of special extremals. -

A second approach consists in using a set of Lagrangian parameters
‘and treating the problems as one of Mayer’s type. This method furnishes
immediately a set of complementary differential equations and end
conditions. The connections between extremals of different types are
generally indicated by the so-called Weierstrass-Erdmann corner con-
ditions and if some ambiguity still remains concerning the proper syn-
thesis of the optimal path it is generally removed, as the examples will
show, by an appeal to the Weierstrass criterion of strong variation.
Generally, the true maximum or minimum character of the perform-
ance investigated is sufficiently clear from physical intuitions to make
.this additional, and difficult, proof unnecessary. In pa;’ticular cases,
investigated by Miele4, this proof is of elementary character.

The method of Mayer?, whose applicability to aeronautical and
astronautical performance problems was first systematically pointed
out by Cicala?, has the advantage of providing a standardized approach,
whereby the skill of the operator is reduced to setting up a correct
statement of the problem, including all the side conditions. It is there-
fore unnecessary, and it would indeed be difficult in the limited space
available, to review all the optimal performance problems considered
or even satisfactorily solved in the extensive literature of today.

The examples which have been selected are intended to supplement
existing knowledge and are thought to be sufficiently representative
of the possible situations encountered to provide the reader with the
techniques to use in new problems. Some unification of the field and
References p. 812
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more symmetry is achicved by applying Mayer’s method in parametric
form3. Time is then rejected as being necessarily the best independent
variable and discontinuous solutions are thereby included as regular
extremals.

12.2. VErTICAL FLIGHT OF A CoNTINUOUSLY STAGED ROCKET FOR
: Maxiyuym Pavroap Ratio

This problem was solved by clementary methods in Chapter 11. A
comparison with the present type should prove to be instructive.

The variables V(o), M(0), t(c), F(o) will be considered to depend
on the parameter ¢. As soon as they are known as functions of ¢, we
shall have a parametric description of the optimal path. The differen-
tial coefficients will be denoted as follows:

dvV . dM
= y° = M"° etc.
de do :
The parameter will be monotonically increasing from e¢; to o2 and
since time cannot flow backwards, we shall have
=0

P

The constraints between dependent variables will be put in the form
of homogeneous relations of the first degree between differential co-
efficients. For example the equation of vertical motion will be written

C[Gli = M(V° 4 g7) —F©° =0 )

To obtain all the extremals it will be esscntial to express in analytical
form that the thrust can only decrcase, as engines fall away from the
rocket, or remain constant. This is achieved by writing

[Cla=F° + 42%° =0 =~ @

where the auxiliary vanablc A can take any rcal value. The thrust and
fuel consumption are related by

Ft° = —cM,
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The instantaneous mass of the rocket is

F

M= Mt (L+ DMy + (3
where as before M, stands for the payload mass, { A, for the mass of
fuel tanks and the last term represents the instantaneous mass of the
rocket engines assumed to be proportional to the instantaneous thrust.
Since eqn. (3) is not a differential constraint, let us eliminate M from
the problem by differentiation. We obtain

C A2

= o lo - . 4
[GCla=M + F Xz t 0 ‘ 6D

The original system of constraints consists of eqns. (1), (2) and (4).
If one of the variables is considered as the independent one, we have,
in all, four dependent variables connected by three constraints. The
guidance variable, whose differential coefficient does not appear in the
constraints, is 4(¢). With the help of three Lagrangian parameters
21, Az and 73, we set up the function
G = MGls + 22[Gla + A[Gls
For any path along which the constraints are satisfied
g . ‘ .
e
I= Gde =0 -
J“Tl .
If we compare only such paths, the first vanatlon
61 =0
Working out this first variation we obtain : ... ..
[AMEV L 220M - 220F + Uél]" :
+ J" {61367 + [G]v8V + [G]roF + [G]«St +[G]A6A} do=0 (5
o L

where, if ¢ is any one of the variables,

d ( bG) i G

. [Gle = — % v

The Euler equations of this variational formulation are
[Gle=0

References p. 812
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and we assume them to be satisfied:

[Glae = M(V° +g°) — 13 =0 NG
> [Gy = —[LM]° =0 )
) [Glr=—211° + Aa +C —):=0 . (8)
[Cl=—U"=0 ' ©)
with '
' 1 A2
| U%ll({tlg—F)+Az( j‘tF+'-§) + had? (10)
Finally , ' '
—oar[ L rzl=0 - 11
[Gla = [Kg 2t ds] =0 (11)

Egn. (5) is now reduced to the “transversality condition”
q

[MMSV + 220M + AsSF + Ust)?* =0 (12)
1

We observe that there are two “isoperimetrical constants” involved in
the problem because G does not depend on ¥ or ¢ but only on their
differential coefficient. As a consequence, the corresponding Euler
equations are immediately integrable

AM = constant U = constant

and the transversality condition may be written as follows:
AMO[V(0s) — V(01)] + Ud[t(os) — t(01)]
+ A2(02)dM(02) — 12(01)61\4(01) + )3(02)5F(0’2) — Rz(al)aF(Ul) =0 ‘

We now state our problcm as that of minimizing the take-off mass
M(ay) for a given payload My and a given veloc1ty gam V(ez) — V(o).
It follows then that

o[V(ox) — Vion] =0

and since for ¢ = o3 the fucl is co}nplctcly burned and My is prescribed

3M(o2) = 7:? OF (02)
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We can transform the transversality condition into

A2(ca)
Kg

Us[t(o2) — H{an)] + [ + zs(og)] F(0s) — ho(o2)6F () —-12(01 YoM(ay) =

Since the quantities ¢(o2) — t(01), F(02) and F(o1) are not prescribed,
the transversality condition will enforce thc necessary reqmrement of
a stationary value, whlch is,

M(oy) =0 o - (13)
if, and only if, V
U=0. : o (14)
22(a) + Kghs(os) =0 (15)
As(o1) =0 . (16)
Ze(or) # 0 : B¢ Y))

12.2.1. The identity between Eulerian equations

From the general theory of the Mayer problem in parametric form3
an identity is known to exist between the Eulerian equations:

2[Gl1 + A2[Gle + A3[Gs + M [Glar + V°[G]v + F°[G] 7 +1°[G]: + A°[G] =0 (18)

As a consequence it is generally true that when all equations are satis-
fied except one, the last one is automatically satisfied also.

12.2.2. The Weierstrass-Erdmann corner conditions’

The corner conditions require that the quantitics 3G/3¢° remain con-
tinuous at any corner or junction between extrcmals. In our case these
quantities are 23, M, 2, 73 and U. The first condition will be satisfied
if we give to eqn. (7), p 776, the same integration constant throughout
the minimal path. Morcover, since the equations governing the mult-
pliers are homogencous in the multipliers, there is no loss in generality
in giving one of the multipliers an arbitrary value at some point. In
consequence we choose to integrate eqn. (7) in the form

).1M = 111(61) . (19)

which assigns to A1(o1) the value of 1. The last of the corner conditions
References p. 812
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will be satisfied by keeping U = © throughout in accordance with eqn.
(14). It follows then from eqn. (10), p. 776, that
14+¢

Az .
I(Mg — F) + = 1sF + o (hs + Kgis) =0 (20)

Finally, the remaining corner. conditions will be satisfied by ensunng ‘
the contmuuy of 72 and la

12.2.3. The constant thrust arc

Examination of eqn. (11) reveals three possible solutions, correspond-
ing to three possible types of extremal arcs. We may first satisfy eqn.
(11) by setting 4 = 0. From eqn. (2), p. 774, this is seen to correspond
to a constant thrust. Along the constant thrust arc the behaviour of 2;
will be governed by eqn. (19), and the behaviour of i by eqn. (20),
which, in view of 4 = 0, reduces to

lzljc=-——h(]‘;g —'1) ) @1

or, if the acceleration factor
F . .
f=— _ (22)
is introduccd, by
' 1+ M) (1— 1) _ M) eM(o)
‘ 8l M F

The behaviour of 23 follows from eqn. (8), which in view of eqns. (19)
and (22) reduces to .

(23)

&gM(a1) e

#=—E2

(24)

Then, in view of the identity eqn. (18) and the fact that M° 5 0 along
the constant thrust arc, the last of the Euler cqaatxons namely eqgn. (6),
p- 776, is automatically satisfied. :

12.2.4. The consta.nt acceleration arc

We also satisfy eqn. (11) by putting

A2 + Kghs =0 . (25)



12.2.5 THE DISCONTINUOUS SOLUTIONS . 779

In this case the multiplier 7; is still governed by eqn. (19) and 4, by
eqn. (23), since eqn. (20) again reduces to eqgn. (21) by virtue of eqn.
(25). Eqn. (24) also remains valid, but the thrust law along this arc
must be such that eqn. (25) remains satisfied. This thrust law is imme-
diately found by differentiating eqn. (25)

;.s + Kgl; =0
and subsututmg 25 from eqn. (24) and 2, from eqn. (6), p.- 776

eM(o 1)

W(V° + g10) —Kg=—

°=0

Making use of eqns. (1), p. 774, and ( 19) this reduces to

o F 8]
gt°M(o1) [ﬂ Mg - F] =0
This equation can be satlsﬁed continuously (° # 0) only by the con-
stant acceleration law

We may note that eqn. (6), used in deriving this law, is automatically
satisfied by virtue of identity (18) M?® £ 0.

12.2.5. The discontinuous solutions

The last possibility to satisfy eqn. (11) by putting
©°=0 (27)

should not be overlooked. This equation states that the time does not
vary along this type of extremal, whercas the parameter o does, and
it corresponds to a discontinuity whose nature will be examined. The
possibility of including discontinuities of technical significance as reg-
ular extremals is another specific advantage of the parametric rep-
resentation. '

If we keep the guidance variable A4 finite along this extremal, the
original constraints eqns. (1), (2) and (4), pp. 774-775, readily show
References p. 812 :
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that ¥V, F and M remain constant and no physical discontinuities occur.
The discontinuous solution is then meaningless. But if we let 4 tend
to infinity in such 2 manner that

lim A4%° =a? finite

then we shall still have

Ve=0

i.e. no discontinuity in velocity, but now

a!
Kz

Consequently, dﬁring the interval 4o of this type of extremal

. 4t
AF = — a%40 AM = —.
Kg

yalod

and, if we refer back to eqn. (3), p. 775,
AMy =0 - .

There is no fuel consumption during the extremal and the variation
in total mass is due entirely to loss in engine mass. Consequently, the
discontinuous solution represents the possibility for a finite amount of
engine mass to separate from the rocket at a given time. While 4; is
still given by eqn. (19), eqns. (6) and +3,, p. /76, reduce to

J2=0 13=0 (28)
and eqn. (20) must now be understood in the sense that

1+4¢

T
lim 42
m [ %

+ la] = — Jy(Mg—F)— AsF (29)
which implies that eqn. (25) holds true also along the discontinuous
solution. : . o

Besides the fact that it will in general be rvled out by the inidal
conditions, there is no sense in beginning the path by a discontinucus
solution. However, such a solution may-be appropriate at the end of
a constant thrust extremal or of a constant acceleration extremal. In
both cases eqn. (21), p. 778, will be satisfied at the beginning of the
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discontinuous arc and the right-hand side of eqn. (29) will be zero. It
will not remain zero. The value it takes afier the discontinuity is
obtained by noting that 7, will retzin the value given by eqn. (23) at
the start of the discontinuity and using eqn. (19). This value is:

g3 (01) AM AM ]
S e e kKIS (B—1
BM + AM) [’31 + K5 =D
where the subscript i indicates the start of the discontinuity. Hence,
unless

M B—K -
- T EeE—n <Y ' (30)

the right-hand side of eqn. (29) will differ from zero at the end of the
discontinuity and eqn. (21), p. 778, will no longer be satisfied. This
result is very important because it shows that after a discontinuity it
becomes impossible to prolong the path by a ncw constant thrust or
constant acceleraton arc. The exceptional case represented by eqn.
(30) requires that 8¢ > }/KTand will be ruled out by the strong varia-
tion criterion of Weierstrass.

12.2.6. Stationary paths

The constant thrust arc is the only one for which the initial conditions
(16) and (17) can be simultaneously satisfied. Conscquently, any sta-
tionary path of our problem will begin with a constant thrust solution.
Let ¢* denote the value of ‘the parameter at which that initial arc
possibly branches in one of another type. Then, taking {{¢1) = 0 with-
out loss of generality, eqns. (19), p. 777, (23}, and (24), p. 778, give

. M(c1) .
11 (g*) = A 31
- M@ =25 1)
RN . M(zy) Mloy) .
A7 - + (32}
¢ Fale®) &TF T Ade®) 32)

Mo

Jal*) = —e Diery (33)

¥.forences p. 812
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While integration of eqn. (4), p. 775, with 4 = 0 and constant F yields

1+¢
c

M(o*) = M(oy) — Ft(a*) (39

To branch off in any of the other extremal arcs and since 7 and 23
must remain continuous, condition (25) must be satisfied at the end of
the constant thrust arc. With the help of eqns. (32) and (33) this con-
dition is transformed into

B(o*) =1 4+ Kx(c*) (35)

where x stands for the reduced time variable

.

¢ (36)

With the same notation eqn. (34) is transformed into

Bloy) = B(o*) _ 1 4+ Kx(c*) 37)

1 + x(o*) B(o*) 1 + x(0%) [1 4+ Kx(o*)]

A plot of eqns. (35) and (37) is given on Fig. 12.1. The initial accel-
eration factor passes through a maximum

. Bloy) = —£—-——' (38)

2 YK —1

for the value

 x(c*) = V’;-"‘l | @)
at which - |
e ey =VE @)

It then decreases again, returning to unity for

K;‘ at which  B(o®) =K ' (41)

x(o*) =
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At the maximum point 8{c*) has exactly the value required by eqn.(26)
and all conditions to branch over to a constant acceleration arc are
satisfied. Moreover, since eqn. (25) holds true along the constant ac-
celeration arc, we may extend it until the final velocity gain is obtained
and meet the end condition (15). Hence one of the possible minimal
paths is established. We shall now proceed to show that no other solu-
tion is obtained by a further branching.

/4-\%

s L LU

At any point of the constant acceleration arc it appears permissible
to branch over again to a constant thrust arc since eqns. (17), {23) and
(24) are common to both types of arc and the multipliers may be kept
continuous. (Infact, since F remains continuous, even 25 will remain

References p. 812
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continuous). However, eqn. (25) will not be satisfied after that, a
circumstance which prevents any further branching and also prevents
the end condition (15) from being satisfied. Conscquently, this type of
further branching is ruled out.

At any point of the constant acceleration arc it is also permissible
to branch over to a discontinuous solution, since it shares eqn. {25)
with the constant acceleration arc and eqns. (28) merely require 42
and 73 to remain constant. We have scen, however, that a further
branching is then ruled out and the exceptional case does not apply
since at the end of thc constant acceleration arc we have ¢ = JX.
It must then be concluded that the path cannot be extended beyond
the discontinuity. It may well terminate with the discontinuity because
eqn. (25) is verified at any point of it and this meets the terminal
requirement (15). This new possibility of a constant thrust—con-
stant acceleration—discontinuity path does not differ in reality from
the previous solution where there is no discontinuity at the end. For
no velocity is gained along the discontinuity, no fuel is burned, and
the only difference is that the engincs still remaining when the pre-
scribed velocity is acquired are separated in part or in tofo from the
payload.

The last possibility is to branch over from the initial constant thrust
arc to a discontinuity. It appears possible at any value of the reduced
time x(o*) provided eqn. (25) be satisfied, and this occurs, according
to our previous calculations, when the initial acceleration factor is
related to x(¢*) by eqn. (37). Further branching is possible if condition
(30) can be satisfied. However  would therefore have to exceed VK
and this will be shown to violate the strong variation criterion of
Weierstrass.

Consequently, this type of path terminates either on the constant
thrust arc itself or after a subsequent discontinuity, the distinction be-
tween the two possibilitics being once more irrelevant.

After this somewhat lcngth) discussion we are faced with only two
distinct stationary paths: the constant thrust 4 constant acceleration
(+ discontinuity) type ’zmd the simpler constant thrust (+ disconti-
nuity) type. One of the two will be the minimal path with respect to
take-off mass. The cho1ce may be decided by direct comparison only
because of the possxblllty to calculate directly the take-off mass per
unit payload. This will Prst be done in order to furnish tangible results.
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It will later be shown that the same choice is dictated by the Weier-
strass strong variation criterion.

. 12.2.7. Integration along the stationary paths
Integration of eqns. (1) and (4), pp. 774-775, along the constant thrust

arc up to the value o*, produces the general results

MOD e 1
e T S TG &

L M%) — Viow] =In-
—— [V(e*) — V(o)) = Py TR

x(o*) (43)

Along a constant acceleration arc we have, because of the constant
acceleration g( YK — 1)

1+¢
[

[V(os) — V(e*)] = (V& — 1) [x{o2) — 5(c*)] &)
On the other hand, if we differentiate eqn. (26), p. 779
.F° =g VI?M °

and substitute in eqn. (2), p. 774, to find 42, then introduce in eqn.
(4), p. 775, with F = /K Mg, we obtain

M K
M -— dx
M ;/}? —1

This becomes upon integration

M(o*%) ) K
g = | e —x(e*)])

. ' K 1 . X

| = exp [— 2 ey —ve)  49)
(YE—12 ¢

Finally, from eqn. (3) at t‘(az) when the fuel is burned out

(O‘z) _ K
My K—B(o)

(46)
References p. 812
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From the same eqn. at ¢(gy) = 0

a+p 2 TG A, W)

12.2.8. Results for simple constant thrust path

In this case we have to take o* = o2. Since condition (15), p. 777, is to
be satisfied in the end, g(a1) is given by eqn. (37), p. 782,

1 + Kx(o3)
1+ x(a2) {1 + Kx(02)]

B(o1) =

Substitution in ch. (43) yields

I'+¢
¢

[Vlo2) — V(e1)) =In {1 + %(a;) i+ Kx(az)]} — x(02) (48)
whereby x{02) is determined by the required velocity gain. From eqgn.
(42) 4

"M(ay)
M(oz)

=1 + x(02) [1 + K=x(03)]

From eqn. (35), p. 782,
Bloz) = 1 + Kx(os) -

and from eqn. (46)

) M(O‘z)' K
M, K —1—ZXx(os)

It follows therefore that

Ml _ 1 (o) [ 4 Kefos) (49)
M, K — 1 —Kx(oq)

The payload vanishes for f(o2) = K or x(02) = 1 — 1/K, the value for
which (o) reduces to unity.
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12.2.9. Results for constant thrust—constant acceleration path

The transition is given by the values eqns. (39) and (40), p. 782, from
which

My _ 2 VE—1 (50)
M(c*) VE

Consequently

L4 oy — Vo) = a2V E=L - VE
23

This last result establishes the value of the transition velocity. The
right-hand side of eqn. (43) is then known and since ﬁ(og) = p(c*) =
"K eqn. (46) ylelds

on.

Mos) _ %3 ' o

M.  JEK—1

Finally, combining eqns. (50), (45) and (52) we get

(52)

M(ol)_zl/;:—-lcx { K P42

M, YE—1 (JE—1r ¢
Naturally, in this solution V(c2) should be higher than ¥(¢*) and then
the value of eqn. (53) is always smaller than that of eqn. (49) and is

the absolute minimum we look for. For instance, when X = 36 and
V(o1) = 0 we find from eqns. (39), p. 782, and (51)

1+¢

(Vo0 — V@)]  (3)

V(o*) = 0.46724 .

x(g*) = 0.13889
' Bor) = 3.273
The velocity requlrcment for which the payload vanishes in the con-
stant thrust path is given by eqn. (48) with

x(a2) = 35/36

or

+{
Vicz) = 2.61134
References p. 812
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For the same velocity requirement the minimal path gives
M, = M(cn) - exp (_ = (2.61134 — 0. 46724)) = 0.02084 M(a)

The ratio of initial thrust to pay}oad is given by .,

Floy) M(cn) K ( K 1+¢

= B(o1) ; [V(o2) — V(e2)]) (54)
gM. Y Vif—l (YE—1? ¢ ’ o )
which in this example takcs on the value

Floy 36
= 2 esre = 300.2
eMe 5 09:2

Finally, the rgx.tio of fuel weight to payload is from eqn. (47)

R B

s T (Vo) — Vie]) —1 (5)

In this particular case
| 20378 — 1 =849

An interesting variant of the problem consists in dropping the assump-
tion that the tanks are expended at the rate fuel is being burned.
Eqn:(3), p. 775, is then transformed into

F :

M = M. + M+ tMp(o1) + Xz (39

and ¢ is put equal to zero in eqn. (4) and also in all the Euler equations

of the problem. Eliminating A{;(c1) between eqn. (3') for ¢ = o1 and
for ¢ = oz we get '

3 1 1 r 1

M(o2) ———+-— M(o1) + ——-_;?M,, + ——F(Uz) T+¢ K—F(ax) 37

Hence the substitution of dM(c2) in thc transversallty condition pro-
duces the modified end condmons

z F-z(dz) + Kgla(cx) =0 (167

7 2a(os) — z;({n) %0 (17
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while egn. (15), p. 777, remains valid. We note that, since from egns.
(16") and (17") Z2(61) 4+ Kgla(c1) # 0, the minimal path must again
begin with a constant thrust solution. The transition conditions to the
constant acceleration arc must, however, be worked out differently
with the help of eqn. (16’). Also, the relationship between the overall
payload ratic and the overall mass ratio is different; it follows from

eqn. (3”) if it is divided by M(o1)

M(o2) ( _ 1 )_ I (1_ 1 ) , 1 M,
M(o1) 3 Tl +¢ EB(oy)) T 1 +{ Mo
The detailed solution involves only algebraic manipulations.

12.3. VErTIcAL FLIGHT OF A CONTINUOUSLY ‘STAGED ROCKET WITH.
OTHER MiINnaL REQUIREMENTS

Instead of minimizing the total take-off mass for a given payload and
velocity gain we may require 2 minimum of fuel consumption. Thus
we should try to enforce the condition

61M;(U1) = 0
which, by virtue of eqn. (3) is equivalent to
8F(c1) = KgdM(a)

Through substitution of this in the transversality condition we obtain
the condition

22(c1) + Kghs(o1) = 0 _ (167)

as replacing our former condition eqn. (16), p. 777. This is satisfied by
a constant acceleration arc. A discussion similar to the one given shows
that a single constant acceleration path satisfies all the requirements
of a minimal path. From eqns. (45) and (46), p. 785, with

v =a (o) = 0 Blo) = Blea) = VK
we obté.in C : -
M) VK

M. l/f—l.e- ((;/_%—1

References p. 812
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o N\
and from eqn. (47) we get
Mp(a1) -

exp (-2
M, (YK —1)2

Fo) _ K (
T M. VE—1 (;/' —
In view of the difficulties of production of large engines and their cost

another significant minimal requirement should be that of minimum
initial thrust. When we enforce the stationary condition

a+0 [ V(oz) — V(01) 1) -1 (51)

Finally

[ Vios) — Vo 1) (54)

8F(c1) = 0
in the trahsx'eréélity condition, we obtain the initial conditions
lg(d’;‘) =0 . ).3(0’1) #0

which replace éqns. (16) and (17), p. 777. The only possibility for the
initial arc is a constant thrust one with the additional conditions

(1%)0 = Blon) =1

The initial value of 73, which remains undetermined, can always be
adjusted so as to satisfy the branching requirements on a constant
acceleration path, when § = VKT, and it can again be shown that this
type of constant thrust—constant acceleration path is the minimal one.
From eqn. (42), p. 785,

Al(a;) _ ' _
Men LT VE x(e*) = 1 —x(a*)
from which it fqllows that
’.ﬂ”_‘)_g V]_{ .’ and | . x(c*) __. V-R-—l (56)

. M(o*)
From cqn (39), p. 782,

L (Vo — Vo) = In VE— 3 (51)
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Eqns. (45) and (52) are valid; if thcv are combmed with eqn. (56) they
yield

M K K o ‘ .
) - exp Vo) = V) (539
M, YE—1 (YE— 1)

Since B(s1) = 1, this is also the va_lue of F(ay) /gM ». Finally '

My(o)  K—1

14+¢ >
( ) M, p’}?-l P ( (YE—12

[V(az) — V(o¥) ]) —1(557

It is interesting to compare the three minimal problems in a given
situation. Take K = 36 and supposc the velocity performancc to be
given by V(o) =0 : -

L4 pion) = 5.15

(for £ = 0.1 and ¢ = 2350 m/sec this would approximately yield the
escape velocity of 11 km/sec.) The application of the formulas yields
the following table of results, where the first column corresponds to
minimum take-off weight, the second to minimum fuel consumption,
and the third to minimum initial thrust.

TABLE 1
1 11 111
2+ s 0.46724 . 0.95843
¢ o« . : :
Mla1) 1867 - 1995 3011
M, .
a+2) M”("‘) 1696 C 1661 2926
.
( . . . L - o
Flos) 6110 11969 3011
g.ﬂl. .

From this table it appears that the minimum take-off weight is a good
compromise. The reduction in fuel consumption in case I1 is slight and
is obtained at the expense of a large increase in initial thrust, whereas
the minimum initial thrust requires a tremendous increase in fuel.
References p. 812
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12.4. APPLICATION OF THE WEIERSTRASS STRONG “~VARIATION TEST
Consider the Weicrstrassian excess function defined by

?
2g°

E = G(g,9°) —G(g,9°) — z @—9) G(g,9°)

where G(4,7°) is obtained by a finite change of the guidance variable
A into 4, the other variables undergoing associated changes compatible
with the original constraints. Thus M, F and ¥ do no change, but M°
changes into .{1°, F° into F°, V° into P° and # into # according to the
laws :

M(P° + gi®) —FI° =0

i o
ﬂ°+l+cFl°+ —{° =0
c Kg
Fo 4 A° =0

derived from eqns. (1), (2), and (4), pp. 774-775. G(3,d°) is then ob-
tained by multiplving the left-hand side of these equations by 4;, 4z and
43 and adding the results. Because of the homogeneity of G(g,4°) with
respect to the ¢°, we may write

Gg.¢) =X ¢ °F G(g,¢°)

and the excess function can be simplified into

2

E=G6GT)—3 T3

G(g,9°)

After pcrformihg all calculations and reductions we find

E =141 —4) ( ;;g ;gs) (57)

To apply the test to a minimum problem we must also consider the
coefficient of the variation of the quantity to be minimized, as it ap-
pears in the transversality condition. A necessary condition for a path
to be minimal is then that at all of its points the excess function should
vanish or should have a sign opposed to. that of this coefficient. In the
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case of a maximum the sign should be equal. If we look into the problem
of minimizing A(o1) the coefﬁcmnt ofiits variation in the transversality
condition is

— Aa(o1)
For the stationary paths discovered, the first arc is of the constant thrust
variety. From eqn. (23), p. 778,

- 1)
—12(01)—- l—l—c(l_ ﬂ(o’l)}

Since f(o1) > 1 this coefficient is negative and the test to apply is
E>0

There is no difficulty along a constant acceleration arc, for which, by
virtue of eqn. (25), p. 778, E = 0. Along the initial constant thrust arc
A = 0. Since #* > 0, the test reduces to

22 + KgAs >0

From eqns. (23) and (24), p. 778,

1+4¢ L M@) 11 14t
et e = By By ¢
Since further
M=M(.0'1)— ! +CF‘

we find, using the reduced time defined by eqn. (36), p. 782,

L ST SIS e o -
(%2 + Kgha) = T— o) Bl =,

to be satisfied for any x from zero to the end of the constant thrust arc.
The equality sign defines a curve (01). = f(x), which is of course the;
same as the lower curve of Fig. 12.1 and is reproduced for conveniencd
in Fig. 12.2. This curve is entirely to the left of the curve

B(o1) = 271

References p. 812
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and so in the region for which -

1—x(oy) > 0

In this region the condition can then be put in a form analogous to
eqn. (37), p. 782, . .

' 1+ Kx
B . Blo1) = T sk Al + KA

Fig. 12.2

It should be clear that the reverse inequality holds in the shaded
region of Fig. 12.2, which is then a forbidden region. For a constant
thrust arc with a given f(o1) the representative point moves, as x in-
creases, along a horizontal line. The end of the arc is on the curve,
either in B, where transition is possible to the constant acceleration
path, or on some other point in order to satisfy the end condition (15),
p- 777. The path 4B satisfies the Weierstrass criterion and corresponds
to the constant thrust—constant acceleration solution. A path PQ also
satisfies the criterion and corresponds to the simple constant thrust path
with a velocity requirement smaller than that which would already
be reached in B. A path PR, however, violates the criterion by entering
in the forbidden region. Hence the alternative solution of a simple
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constant thrust path giving the same final velocity as the constant
thrust—constant acceleration path must be rejected. This was already
confirmed by direct calculation.

12.5. Tue ProBLEM oF THRUST PROGRAMMING ALONG A CURVED PATH

The consideration of aerodynamic drag, which may be important in
denser layers of the atmosphere, indicatcs the desirability of programm-
ing the engine thrust to strike the best compromise between gravitation-
al losses and aerodynamic losses. In this problem we consider the flight
of a rocket in a vertical plane and uniform gravitational field. The
engine mass is not subject to continuous variation as in the former
problem (i.e. the rocket is not continuously staged) but the rocket
engine propelling the stage considered is capable of yielding a variable
thrust. '

If y denotes the angle of slope of the path with respect to the hori-
zontal direction and the thrust acts tangentially to the path, the equa-
tion of motion along the tangent is

[Gls = M(V° + gt°siny) —Ft°* + Dt° =0 ~ (58)

where the drag is assumed to be a function of velocity and altdtude
D(zV) -

The equation of motion normal to the path in the absence of lift is

[Gle= Vy* +gt°cosy =0 . (39)

The engine thrust is taken to be |

F =rme

where ¢ is the effective ejection velocity of gases and m their rate of
mass flow. Since the variation in rocket mass is solely due to m, we also
have ~ : )

M =—m® : (60)
so that the equation of conservation of mass can be written

F
[Cla=M"+—=0 (61)
References p. 812
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Since the altitude enters in the problem through D, we must also
consider the equation of altitude gain

[Cla =2°— Vt°siny =0 (62)

Since the thrust is variable, we consider F to be a function of a param-
eter a. Explicitly we may take3

1 + tanh :
F = Fpyg —— 2220 (63)
2
Hence F varies continuously from zero, for @ = —0, to Fmax the

maximum thrust the engine can deliver, for ¢ = + c0. In this case «
is the actual guidance variable. If we consider again the function

G = M[G)s + 2[Clz + 7[Gls + 24[GCla .

built up with the help of Lagrangian parameters, the Euler equations
of the problem are

[Cly = — [MM]° + Lt°Dy + J2y° — pat®siny =0 (64)
6}, =— [R2V]° + A1 Mgt° cos y — 2ogt°siny — 24Vi° cosy =0 (65)
[Clar = — 25 + L(V° +g°siny) =0 " (66)
[Gle = — 23 + Aut°Ds (67)
[Gle=U"=0 - (68)
1 dF
3 — — ° — 0 9
16 [.}'l+cl;‘]t da (6%)

where

D ; . : 1
U = M(Mgsiny + D) + Zagcosy— AiVsiny +F(—11 +713) (70)
and ‘
' {

~——

The transversality c:!ndmon is

o,
/thSI!!' + 22V8y + AdM + Az + Uét]: =0 71)

1
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12.5.1. The sustaining phase

The sustaining phase is the extremal arc along which there is a con-
tinuous thrust programming. Its characteristics are obtained when we
satisfy eqn. (69) by taking

cA—As =0 (72)

No restriction is imposed on the duration of flight; then, since U is
constant by virtue of eqn. (68), the arbitrary variation of the flight
duration in the transversality condition requires U = 0. Hence from

eqns. (70) and (72)
M(Mgsiny + D) 4 Azgcosy — A4Vsiny =0 (73).

A third homogencous relation between multipliers is obtained by
differentiation of eqn. (72) and substitution of all derivatives with the
help of the Euler equations and the original constraints. This furnishes

— (@D + VDy) + Jagcosy + AVsiny =0 (74)

where w = VJc. This relation does not involve the thrust (or the guid-
ance variable) nor have eqns. (65) or (67) been used. It is therefore
advisable to repeat the differentiatiori procedure on eqn. (74). After
simplifications the result may be put in the form

F—

D .
— C/hT + 2 (A— B)siny + Ai1Mgcos?y — 224V costy =0 (75)
g .

where
Vz ..
A =20D + (2 + ®)VDy + V2Dyy — ——[(& — 1)D; + VDy;] — Mgsiny
. I'4
B = (w + 1)D + VDvy

C=(0?+w—1)D + (1 + 2w)VDy + V2Dyy — Mgsiny

Eqns. :(73), (74) and (75) are homogeneous in 21, 2, and 43 and their
compatibility condition furnishes an algebraic relation to be satisfied
between the original variables:

F—D 1

= — (4 siny — B cosec y) (76)
Mg

ol

References p. 812
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This expression actually yields the thrust programming along the sus-
taining phase and allows the numerical integration of the equations of

motion to be carricd out. If we consider drag to be given by the usual -
law

D = Ko(2)V? - - an

with a constant drag coefficient X, we have

.

VDy = V2Dyy =2D  D;=——5rD

where

4

SR Ve = —-Qg"ae— : (78)

is a velocity characterizing the gradient of the atmospheric density. In
standard atmosphere this velocity is slightly less than the velocity of
sound. The quantities 4, B and C are then given by the much simpler
expressions:

. ) V 2 .
4= [6 + 4o + (-T,:) ( + l)]D—Mgsiny
B=(3+o)D R , (79)
C = (w* + 40w + 2)D — Mgsiny .
Another important consequence of the system of egns. (72) to (75)

is that the multipliers are entirely determined along the sustaining
phase, except of course for a scale factor.

12.5.2. The maximum thrust arc

Another way of satisfying equation (69), p. 796, is to take @ = o0, a
value of the guidance-variable for which ' '

is equal to zero. The thrust remains equal to its maximum value and
the system of original constraints is to be integrated under that as-
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sumption. Eqns. (64) to (67), p. 796, may be used to integrate the
multipliers, starting from a set of known values. If the algebraic relation
U = 0 is satisfied by the set of initial values at the start of the integra-
tion, it will remain satisfied afterwards. This is an immediate conse-
quence of the identity between Euler equations. Since ¢° = 0 along the
arc and provided the original constraints are satisfied, this identity
reduces to

V[Glr + ¥°[Gl, + M°[Glsr + 2°[Gle + £°U° =0

Once eqns. (64) to (67) are used to calculate the multipliers, U° = 0
follows and consequently U remains equal to its initial value. An alter-
native procedure consists in using three of the equations (64) to (67)-
and determining the fourth multiplier from U = 0.

12.5.3. The zero thrust arc

dF/da is also zero for ¢ = —oo, which corresponds to zero thrust or
coasting phase. The calculation of the multipliers follows the same
procedure as in the case of the maximum thrust arc. This exhausts
the possibilities of the differential system. For the solution ¢° = 0 of
eqn. (69), p. 796, does not involve any real discontinuity because F
cannot become infinite. :

12.5.4. The Weierstrassian excess function

After calculation the Weierstrassian excess function reduces to

E=0I(F—F) (% 23— 11) | | ' (80)

12.5.5. Minimal paths

Now that the nature of the extremals is determined we must state the
precise problem in order to solve and analyse the composition of the
minimal path. Among the various optimal performance problems
associated with the original set of constraints let us choose the follow
ing one: Proceed from an altitude z; and velocity V7 to an altitude z»

velocity V. and inclination yz with a2 minimum of fuel consump‘doni
Refsrences p. 812
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the final burnout mass Af; being known. The absence of restriction on
flight duration already led us to use the result U = 0. We now have
to put

82(0) =0 V(1) =0  bz(o)) =0  &V(a)) =0
dy(o2) =0 6M(o2) =0 “
in the trénsvcrsality condition (71), p. 796, reducing it to
— 12(01) V(o) 87(03) — Aalon)8M(e) = 0

We suppose V(tn) =V # 0'so that the arbxtranness of y(o1) leads us
to take

Ja(o) =0 G

and the statlonary condition 6 M (01) = 0 (M(a:1) should be a mlmmum
for minimum fuel consumption) is enforced provided

13(01) # 0
We shall assume that the arbitrary factor affecting the multiplicfs is
so chosen that 23(01) is positive, in which case the Weierstrass criterion
' E>0 (82)

Along a sustaining phase the criterion is automatically satisfied by
virtue of eqn. (72), p. 797. Along a maximum thrust arc F can only
be smaller than F and I, > 0 and the criterion reduces to

1 o
—A3— A1 <0 ' maximum thrust (83)
¢ . .

Along a coaéting ﬁrc;’ F=0, F can only be positive and
1

- Aa— 2120 coasting . (84)

The Weierstrass-Erdmann corner conditions require the continuity of
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the multiplieré and of U. It follows from this that at any type of corner
we have

1
—A3— A =0
¢

If one of the arcs joined at the corner corresponds to a sustaining phase,
this is obvious from eqn. (72), p. 797. If the corner is between a maxi-
mum thrust and a coasting arc, it expresses the condition under which
U remains equal to zero without dlSCO'lUIlLlhy in the multipliers, de-
spite the discontinuity in thrust.

We now have all the elements necessary for dlscussmg the synthesis
of a minimal path. The discussion will serve the purposc of demonstrat-
ing the determinateness of the problem; it should not be necessarily
considered as the best method of integration.

At the beginning of the sustaining phase an arbitrary value may be
taken for 43 and a set of values for (z, V, y, M) can be guessed. All
variables, including multipliers, are then determined for the sustaining
phase. But first we integrate backwards along a coasting arc or a maxi-
mum thrust arc, the type being dictated by the Weierstrass criterion.
At the altitude z; the sign of Z3{o1) should be checked to determine
whether the criterion was correctly applied (normally 23 should not
change sign). The initially guessed values must be corrected untl
V(e1) = V1 and Zs(o1) = 0 so that we are left with two degrees of
freedom only at the beginning of the sustaining phasc The following
possibilities may arise: .

I) The path terminates on a coasting arc. We then integrate along
the sustaining phase up to when Af(g2) = Mo, continue along a coast-
ing arc up to z(02) = z2 and determine the two freedoms by the termi-
nal conditions V(o2) = Ve and y(o2) = y2.

2) The path terminates on a full thrust arc following directly the sus-
taining phase. The cnd of the sustaining phase must then be guessed
and this third freedom is compensated by the existence of three terminal
requirements (M, Vz, y2) at za.

3) The sustaining phase is followed by a coasting arc c and terminates
on a full thrust arc. This may happen for large terminal velocities at
low angles of inclination, such as required in satellite launching. If the
end of the sustaining period is again unknown, the coasting phase has
to end when 43 = ¢4; and is determined.

References p. 812
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We may note that the choice between the three possxb,lmes isagain
dictated by the Weierstrass criterion.

Because of the large number of guesses and corrections required, the
actual integration in a specific case is of course a lengthy process. If
we restrict ourselves to the satisfaction of “natural boundary condi-
tions” on the multipliers, in this case the sole condition Az{g1) = 0
“semi-inverse” solutions are easier to calculate. The trajectories ob-
tained are minimal with respect to the end values obtained by the in-
tegration, as if they had been prescribed a priori. When a sufficient
batch of such semi-inverse solutions is calculated it becomes possible to
make reasonable assumptions for the specific problem and to correct
rationally for them by a method of variation of the guessed parameters.

12.5.6. Boost phases? )

A very large maximum thrust will tend to reduce the variations in
altitude and inclination of the path during the full thrust phases of
short duration. A considerable simplification of the analysis will follow
if the assumption is made that the engine can deliver an infinitely
large thrust. One then obtains a limiting case of the minimal path,
which may provide useful indications for the real case of finite maxi-
mum thrust. By letting Fmax tend to infinity and simultaneously ¢° to
zero in such a manner that

im Fmaxt® =1 a finite positive quantity

a discontinuous solution of the Euler equations is found. Equation (69),

p. 796, is now satisfied by virtue of > = 0. The ongmal constraints
reduce to

expressing that neither mclmat:on of the path nor altitude will vary,
but also . . ‘ :
Co . MVe—I'=0 ‘and | M° +%=o
After elimination of I -
: M
Ve +¢ 7 =0
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an equation which can be integrated along the arc to give

' ' M,
AV =c¢ln
3 M[

where A, stands for the initial and A{ for the final mass along the arc.
This is the familiar law of ideal velocity gain, extensively used in
Chapter 11. The discontinuous solution thus represents a boost in
velocity acquired by the instantaneous burning of a finite amount of

fuel. The equation U = 0, which must be satisfied, is again understood
in the sense

1 ‘ '
lim Fanax (—;.1 +7;.3) =—M(Mgsiny + D) — Aagcosy + AgVsiny

and requires that the condition (72), p. 797, now he satisfied along the
boost phase as it is along the sustaining phase. Consequently, the boost
phase automatically satisfies the Weierstrass criterion. All the equations
between multipliers are compatible and integrable. A set of integrals
is :

K K

13 = 511 = 14 = K(

This solution contains three arbitrary constants determined by the
corner conditions. The synthesis of a boost-sustain-boost type of min-
imal path presents new features of simplicity. For the initial condition
/2(c1) = 0 can only be achieted by taking K»: = 0 along the initial
boost phase. This means that A» will still be zero at the start of the
sustaining phase; and this imposes a new compatibility condition in
the homogeneous system eqns. (73), (74) and (75), p. 797. In fact eqns.
(73) and (74) are compatible with 2z = 0 if, and only if|

(w—1)D + VDy

siny = Mz

(83)
fe
This determines the initial inclination of the path from the knowledge
of mass and velocity at the start of the sustaining phase. Consequently,
when starting the integration of the sustaining phase only two unknown
parameters must be assumed, the take-off mass and the velocity jump
of the initial boost. Carrying the integration through to final aititude
References p. 812
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and adding a second boost phase to meet the prescribed terminal
velocity, we can determine the two unknowns from a knowledge of
the terminal inclination of the path and the terminal mass. Backward
integration is even simpler since itinvolves only one unknown param-
eter, the terminal velocity jump, to be adjusted by satisfying con-
dition (85) at the appropriate point.

In the boost-sustain-coast-boost variety an additional unknown is
the duration of the coasting phase; the additional conditionis A3 = ¢ 4,
at the corner between coast and boost phases.

12.6. THRUST PROGRAMMING ALONG A VERTICAL PATH

This is a particular case of the problem treated in section 12.5. The
thrust programming of the sustaining phase is obtained from eqn. (76),
p. 797, by inserting sin ¥ = cosec y = 1. However, if eqns. (73), (74)
and (75) are taken into consideration and cos y = 0, the two first
equations already yield a compatibility condition

Mg = (w—1)D + VDy v (86)

similar to eqn. (8'5) and valid throughout the sustaining phase. On
the other hand, eqn. (75) requires the vanishing of the coefficient of
"%1. This produces the simpler fqrm

V2

wVDy. + VZDVV———[((D— l)D; + VDVg]

F—D _ g )
Mg ©?D + 20VDy + V2Dyy

of the thrust law. It is readily seen to be identical with the previous
one as modified by the insertion of result (86) in the coefficients 4 and
C. Finally, the thrust can be expressed solely as a function of velocity
and altitude. In the case of the drag law expresscd by eqn. (77), p. 798,

we find
F o (@1
uT_‘_‘H" w? + 40 + 2 [ +{ V.)] (88)
and
Mg = (0 + 1)D - (89)

After substitution in the equation of motion (58), p. 795, and elimi-
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nation of t° from the equation of altitude gain (62), p. 796, we find

do _ ol + D — @2 + o)
dr w? + 4w + 2 ©0)

where { stands for the reduced altitude

L= é z and ﬂ%(V')’

c? c

In an exponential atmosphere, where ¥, is-independent of altitude,
which may be an excellent approximation in the region where drag is
important, eqn. (90) is integrable by separation of variables:

B 2

3+ B In 0?4+ (1 —Bfw—28
2 wi 4+ (1 —fwi—28

=8 W +_y_ln[2w+1—ﬁ—7 2w1+1—ﬁ+7]
! 20 +1—8 + v 201 +1—f—7

+

(91)

with y = }/(1 + B)2 + 4 B, (w1, £1) being any pair of values known
along the sustaining phase. This result is essentially due to Tsien and
Evansé. From eqn. (90) it will be observed that according to whether
the initial value of w is greater or smaller than

1
ot =—-Hd48+7) _ (92)
the velocity will increase or decrease along the sustaining phase. The
case when it remains stationary at w* corresponds to-a constant thrust/

drag ratio

—7};—=2 + o (93)

In gencral, § is small enough to replace (92) in a good approximation
by ' ‘

. w* =28

From cqn. (89) we find then that the combination of weight, ejection
velocity, atmospheric density at the altitude considered, and drag
References p. 812 '



coefficient required to move at the constant reduced vcloc1ty w* along
the sustaining phase is

oM ¢ )t_ n '
e ( —) =128 (o)

The left-hand member represents what might be called a “perform-
ance parameter” of the rocket. It is usually much larger than one, espe-
cially for large-size rockets for which the drag coefficient increases
roughly as the square of the diameter, while the weight increases as
the third power. Such rockets will therefore require large accelerations
along the sustaining phase: It may even happen that the drag to weight
ratio required by eqn. (89) for a sustaining phase is never reached.
The minimum consumption path is then simply made of a full thrust
arc, possibly followed by coasting, and thus the desirability of a thrust
programming is eliminated.

12.7. THE Case oF A PrescriBep PaTn

We may consider the path to be prescribed if y is given as a function
of the altitude. In that case some transverse force will in general be
needed to steer the rocket on that path. When the transverse force is
produced by aerodynamic lift, the drag is affected by it and is generally
expressible in the form

D = Dy(z,V) + L*Ds(s,V) (95)

where L is the aerodynamic lift. The lift required is known from the
equations of motion normal to the path

Yoo
L=M(V D +gcosy)
Since _
LA y Vsmy where -y’ =dy/dz

T

L = M(y'Vesiny + gcosy) (96)

When eqns. (95), and (96) are substituted in eqn. (58), p. 795, for the
motion tangential to the path, the equation normal to itis automatically
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satisfied and we may take J2= 0. The modified Euier equations are

[Gly = — [AM]° + t°[Dv + L:Dyy + 4LD1MVY’ sin y] — A4t sin y= 0 (64")

[Glar = — 23 + A[V° + gt°siny + 2LD1 (' V2siny + gcos p)t°] = 0 (66"
[G): = — 23— A4ty Vcosy
4+ Aut°[Dos + L2Dy; + 2LMD;(y*V2siny + y”l’zcosy——g-y siny)] =0 (677)

while
. : i
U = 2:(Mgsiny + D) — A4Vsiny + F[— A+ — z,] =0 (@97
(4

and eqn. (69), p. 796, remains valid. Alohg the sustaining phase we
shall have '

js = Clx .

Differentiation followed by substitution of the derivatives produces the
following algebraic relation: -

A[D + Doy + cL2Dy1y + 4LcDIMVy' siny — 2LDM(y' VEsiny + g cos )]
— Jsiny =0 . (98

Eqgns. (97) and (98) are now homogcneo{xs in A anci A4 and their
condition of compatibility furnishes the algebraic relation without mul-
tipliers:

Mg(sihy + 2wLD; cosy) =
{o—1)D + VDov + L2VD1v + 2(2 — 0)MV2LDyy siny (86")

For y = /2 when L = 0, this equation reduces to eqn. (86), p. 804.
When the transverse force is produced by other means than aero-
dynamic lift, we may put D; = 0 and we obtain an extension of the
vahchty of eqn. (85) to the whole sustaining phase. The addition of
eqn. (86") to the original set of constraints is sufficient to integrate the
sustaining phase. We need only to eliminate F between eqns. (58) and
(61), p. 795. The thrust is then obtained from eqn. (61) by differentia-
tion of M. In pr1nc1ple however, the explicit value of the thrust as an
algebraic function of the other variables can be found by differentiating
eqn. (86") and substituting the denvauves of the original constraints.

szermm 2. 812



Since the expression is extremely complicated it will not be reproduced
here. ] v

The use of lifting surfaces to modify the natural curvature of the
trajectory imposed by gravitation naturally suggests the investigation
of performance problems where lift as well as thrust is programmed in
some optimal way. The main purpose of aerodynamic lift is in general
to provide an extended range. An investigation of the maximum range
problem with the lift as guidance variable and the thrust as a known
function of time will be found in ref.?.

12.8. TarUST PROGRAMMING FOR MAXIMUM RANGE

Reverting to zero-lift, naturally curved trajectories, let us briefly in-
vestigate the modifications in thrust programming brought about by
the inclusion of side conditions on the range. It will be necessary for
this purpose to introduce the horizontal distance covered by means of
the kinematic relation

[Gls = x°— Vt°cosy =0 (99)

and a fifth multiplier 4s. The equation governing this multiplier is
simply o

[G]: =—1; ==0 .

Hence s reduces to an isoperimetrical constant. A new term appears
in the transversality condition

Asé[x(02) — 2(01)] = Asddx

If no condition were prescribed for the range Ax, the arbitrariness of its
variation would impose 45 = 0 and lead back to the earlier formula-
tion. However, if the range is imposed or if it is required to be maxi-
mum, é4x = 0 and 45 in both cases is a constant different from zero.
A typical problem is one of maximizing the range for, a given payload
and fuel consumption, whereby M(s1) and M(o2) are known and

SM(o) =0 . SM(os) =0



12.8 . THRUST PROGRAMMING FOR MAXIMUM RANGE . 809

with a prescribed initial velocity V(s1) = V1 and altitude z(o1) = 21,
from which :

6V(or) =0  dz(os) =0
and a prescribed final altitude z(o2) = 22 giving
0z(02) =0

The remaining arbitrary variations, namely 6[¢(oz) — ¢(01)], d ¥{c2),
dy(o1) and dy(oz), will then impose the conditions

M(o2) =0 (100)
As(ar) =0 " (101)

Za(as) =0 ' (102)
and _ '
U= lh(Mgsiny + D) + Adsgcosy — AVsiny — A5V cosy

| +F(~n +—h)=0 o3

The Euler equations (66), (67) and (69), p. 796, are not modified but
(64) and (65) have an additional term :

[Glv = — [MM]° + Mt°Dy + Agy® — Aat°siny — Ast°cosy =0 (64")
(G, = —[AsV]° + A1Mgt° cos y — 2egt°siny — A4Vit° cos y + A Vt°siny = 0 (65)

The same types of extremal arcs exist: maximum thrust, coasting and
sustaining phase, the latter being still characterized by

As=ch (72)

Differentiation of this relation followed by substitution of the deriva-
tives produces relation (74), p. 797, with an additional term

— 21(wD 4+ VDy) + Zogcosy + A4Vsiny + JsVeosy =0 (74")

This may also be differentiated a second time to produce

) F—
IR [(A_—B) siny — C—7—

—2i4Vcos?y + 2/sVsinycosy =0 (75"

+ Mg cos? y] —_
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where 4, B and C have the same significance as before. However,
eqns. (103) (simplified by 72), (74’) and (75") contain the constant s
and no longer yield a compatibility condition As a matter of fact, when
the multipliers are eliminated, the additional relation between the
original variables is a differential equation and not a simple algebraic
one. A better procedure is then to avoid the elimination of multipliers
but to integrate numerically with the aid of the algebraic relations
obtained. For a drag law of type eqn. (77), p. 798, eqn. (67), p. 796,

can be rewritten

g
7%

i+ D =0

and from eqns. (58), p. 795, (66), p. 796, and (72), p. 797,

Med = Ay(F— D)t
The elimination of 1;D between the two yields

ge ° :
o [aM =0

-

Inthe case of an exponential atmosphere, where V, is constant, this
rclation is integrable:
g¢

| %

Ay —

MM = —kls (104)

where k is 2 new unknown constant. The existence of this additional
integral was discovered by Bryson and Ross®. When eqn. (104) is added
to the set (103), (74’) and (75') a compatibility condition may be
written and an explicit form of the thrust program follows, which
depends on the unknown constant k -

F—D
Asiny +

L I . P eV '
. , Mgcosy(}l—Z—V:) + kB |
- (105)
Mg 4

cosy —ksiny

In calculating the second member we may now use the expressions
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(79), p. 798. Bryson and Ress have given an equivalent form of this
result, which follows from the substitution

F—D 1 (dV

ig =-,-g_ de

+siny) =-;7(Vcosyi—df:- +siny)
i.e. they use it to integrate the velocity profile along the sustaim'né
phase with the horizontal distance as independent variable. The syn-
thesis of the minimal path is very similar to the one discussed in section
12.5.5 (p. 799) except for the additional unknown represented by &.
We limit ourselves to the combination of a boost phase followed by
a sustaining phase and then coasting. The initial condition A2(¢1) = 0
again implies Z3 = 0 at the end of the boost phase, and the compatibil-
ity of eqns. (103), (72), (74") and (104) at this point requires the relation
eqn. (85), p. 803. (Another possibility k¥ = cot y is ruled out by eqn.
(105) as giving an infinite thrust to begin the sustaining phase.) If the
velocity jump is taken as initial unknown, the initial angle y is deter-
mined by egn. (85). The sustaining phase is then integrated with a
second unknown & until the fuel is burned out. The coasting period
may be ended when A:(c2) = 0. The two unknowns are then deter-
mined by successive corrections to obtain the prescribed final altitude
and Z;1(o2) = 0. If only k is corrected to produce the end condition
#1(oz) = 0 the solution obtained is minimal with respect to the altitude
obtained from the integration, if such an altitude had been prescribed

a priori.

fo
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