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1. INTRODUCTION

The numerical calculation of static influence coefficients for a complex
structure is necessarily based on simplifying assumptions. The results
of such calculations are of value if the accuracy of the approximation
is known. Within some measure of probability a quantitative estimate
of the accuracy can be gained through previous experience with a
similar structure. A theoretically more satisfactory situation arises if
the calculation procedures are such that both upper and lower bounds
are obtained for the coefficients. The maximum possible errors are
then known quantitatively and no further investigation is needed
should they lie inside the margin acceptable to the designer. Should
this margin be exceeded, further refinements are required in the
structural idealization.

The analytical procedures leading to upper and lower bounds are
well established for the small deflexions case. It is not mandatory,
though preferable for obvious reasons of economy, that the two pro-
cedures be applicable to the same idealization of the given structure.
For the sake of completeness a short account of these procedures is
given in the Appendix A of the present paper. Their chief character-
istic is that they should be “pure”. By ‘“‘pure” is meant that no
assumptions are allowed that would violate both the compatibility
conditions and the equilibrium equations.

The approach yielding lower bounds must be purely compatible
and, to this purpose, built on a continuous single-valued field of small
displacements. The approach yielding upper bounds must satisfy
everywhere the equilibrium conditions.

One must here distinguish carefully between

(1) the structural decomposition into elements: plates, beams . . .
assumed to behave in accordance with simplified displacement
or stress fields,

(2) the assumptions involved in the procedures for connecting the
elements together, especially with regard to continuity of the
displacements or stresses,

(3) the procedures adopted for solving the redundancies.
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The terminology ‘“‘displacement method” and ‘“force method” used
in the literature too often refers only to the last aspect of the overall
problem and is not entirely relevant to the distinction made here
between a “purely compatible approach’” and “a purely equilibrium
approach”. ’

A displacement method of solution, or stiffness method, can be used
to solve the connexion problem between elements and still violate some
continuity of displacement between panels. A force method of solution
can be applied and still violate local equilibrium conditions.

The important consideration to apply, if one wishes to be certain
that the coefficients are upper or lower bounds, is to ensure that the
geometry of the elements, their assumed displacement or stress field
and the geometry of their connexions produce either a purely com-
patible overall field or a pure overall equilibrium field. Once this is
ascertained it will be seen that, in either case, both the force method
of resolution or the stiffness method are generally applicable, though
perhaps with different degrees of efficiency.

2. DUAL TREATMENT OF THE TRIANGULAR PANEL

The subdivision of panels in triangular elements is an attractive pro-
position for complicated geometries (taper, sweepback, skew ribs . . .).
The triangular panel is also the natural shape for the purely compatible
or purely equilibrium connexions between uniform stress—strain fields.

2.1. Uniform Field

A linear two-dimensional displacement field

u=a-+ xe, +})(%ym[ - w)
v=>0+ x(%?’:w + w) + ey

depends on six parameters: two translations a,b, a rotation w account-
ing for the rigid body displacements, and three uniform strain com-

ponents (&4 Vays €,)-
The corresponding uniform stress field is given by

(2.1)

v =M\ e, (2.2)
Ty Ve
with a stress—strain matrix M, which for isotropic panels is
1 v 0
1

M _E |7 0 (2.3)

1 —»? 0 0 1 —w

—5—
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The reciprocal relations are

&\ g, 1 —v 0 \ {
&g | = M1]o, M= —v 1 0 E (2.4)
Vay Tey 0 0 2(1 + ) (2.5)

Retaining the assumption that there are no body forces, the uniform
stress field satisfies the internal equilibrium equations [see Egs. (A.6)].
So, with regard to its own interior domain, the uniform stress—strain
field is both purely compatible and a purely equilibrium field.

The duality between compatibility and equilibrium arises solely
when such uniform fields are edged and pieced together.

2.2. Compatible Net of Triangular Fields

Along any straight boundary line both the  and v components vary
linearly and are entirely determined by the values taken in two
different points. Consequently, if two linear displacement fields of
type (2.1) are made to coincide in two points, they are coincident along
the whole straight line joining these points. This property leads to the
construction of a compatible net of triangular fields by enforcing the
coincidence of the displacements at each common vertex. A natural
requirement for such a construction is then that the parameters of each
field be expressed in terms of the six displacement components at the
vertices. Let the vertices be numbered (p,¢,r) in a counter-clockwise
sense. Then

1L % 9,
4=|1 X Do | =ro¥ar — *rplar (2'6)
1 % o

is equal to twice the area of the triangle, where

Xpg = %, — X, e€tc.

An elementary calculation yields for the strain components

€

¥ 1

e | =5 Nu (2.7)
Yy

where N is the rectangular (3 X 6) matrix

Yoo I I O 0 0
N = 0 0 0 —x, —%x, —%, (2.8)

—Xar —Xpq Jdar Iro Jna

and u the column matrix of displacements, whose transpose or row
matrix will be written

—Xrp

u' = (u, u, 4, v, v ) (2.9)
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The strain energy of the panel of uniform thickness ¢ is conveniently
obtained from Clapeyron’s theorem (see Eq. (A.5) for the energy
density) '

. o
1 4 ¢
U=§t§(sm &y ymy) Oy
Tay
Substitution of Egs. (2.2) and (2.7) gives
U=t wNMNu= tuKu (2.10)

T 44
with K = (¢/24) N' MN a symmetrical (6 X 6) matrix (2.11)

The elements of the # matrix are to be considered as generalized
coordinates for the field. The corresponding generalized forces (or the
so-called corner forces) are obtained from Castigliano’s formulae. If
f denotes their column matrix, the variational procedure equivalent to
Castigliano’s theorem gives

0U = $6u'Ku + 3u'Kou = ou'Ku = éu'f
Hence

f=Ku (2.12)

and K is the so-called “stiffness matrix”’. When formula (2.11) is
expanded the identity of K with the forms given by Turner or Argyris
can easily be checked. The elements of the f matrix will be denoted
as follows
J = (H, H,L H, V, V, V)

The relations between stresses and displacements follows from Egs.
(2.2) and (2.7)

Oy :
g, =ZMNu (2.13)

Ty

and from this can be derived the equation

O’af
f=Ku= o N'MNu = é N, (2.14)

Tay
yielding an interpretation of the generalized forces. For example, it is
found that

H:

P

(Uw.yqr + TE!IxTG)
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It can then be stated’ that each generalized force at a vertex is equal
to half the resultant of stresses acting on the opposite edge or to the
resultant of stresses acting on half of the adjacent edges (Fig. 1).

q,

r

Fig. 1

Obviously a compatible net of triangular fields is not an equilibrium
field. The equilibrium equations between adjacent fields are of a
global character; they state that the vectorial sum of all generalized
loads meeting in a common vertex is equal to the external load applied
there. They do not prevent the stresses to vary discontinuously across
a common edge.

2.3. Equilibrium Net of Triangular Fields

In this case it is the continuous transmission of stresses that is
required and this can only be achieved by relaxing compatibility
requirements. The equilibrium requirements are met by taking as
generalized displacement coordinates the displacements at the middle
of each edge of the triangle. The mid-points define the vertices of a
“skeleton triangle” (hatched in Fig. 2), whose area is four times smaller
than that of the real panel:

%A = Dro¥er — xr@yqr (2'15)
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Otherwise the theory of par. 2.2 applies without modifications and,
keeping the definition (2.8) of the N matrix, one obtains the stiffness
matrix -

8t

K* =ZN'MN (2.16)
and the relationships
& 4 (6
& | =7 Nu and f=2tN'|o, (2.17)
Yay Ty

From this last result follows that each generalized load applied to a
mid-point is the resultant of the stresses acting along the corresponding
side (Fig. 2).

Whereas in the compatible net a vertex nr node is common to several
fields, a node of an equilibrium net is only common to two panels.
The global equilibrium condition is, barring external loading, equiva-
lent to stating that the generalized forces at the node are equal and
opposite (Fig. 2). In view of the fact that the stresses are constant
along each edge this implies that the stresses are transmitted continu-
ously as was required. Any external load, represented by a generalized
resultant applied at a node, will really have to consist of a uniformly
distributed load along the edge.

If local equilibrium is satisfied in an equilibrium net, compatibility
is now generally violated for two reasons:

(1) the strain along a common edge can have different values in

each panel;

(2) the orientation of the edge can be different.

This possibility of rotation of one panel with respect to the adjacent
one leads to peculiar difficulties to be discussed later.

3. THE STIFFNESS METHOD OF RESOLUTION

The essential steps of the stiffness method of resolution are briefly
recalled:

(1) Addition of the stiffnesses of the individual elements in a stiffness
matrix for the complete structure. This step expresses the single-value
of the displacement vector at a node where the elements are assembled
and the additivity of the corresponding internal generalized loads,
balancing the external load;

(2) Elimination of externally unloaded nodes, where deflexions are
not to be determined. Suppose Eq. (2.12) has been extended by step 1
to represent the relations between the external loads matrix f and the
displacement matrix « for the complete structure. If the ith element
of f'is zero, we have

2 Kiu; =0
J

12 171
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This equation is used to express u; as a linear combination of the other
displacements. The jth column of the original stiffness matrix is
thereby modified by the addition of the ith column multiplied by the
factor —K,;/K,. The ith column itself becomes a column of zeros
and is deleted together with the ith row from which Eq. (2.18) was
derived.

Steps 1 and 2 can be taken progressively as an intertwined process
of growth and reduction until the complete stiffness matrix K, (free-

‘structure matrix) is obtained for the loaded nodes.

(3) Elimination of all rigid body modes to produce a final non-
singular stiffness matrix K, (supported structure matrix). This step
consists in prescribing certain displacements to be zero in order that
the structure be at least isostatically, or even hyperstatically, supported.
Rows corresponding to the suppressed displacements are deleted in the
equation f = Kyu. They are used afterwards to know the reaction
loads due to the remaining independent loads.

(4) Inversion of the non-singular matrix K, to produce the matrix
of influence coefficients.

No difficulties are encountered in implementing those steps in the
case of compatible triangular fields associated to beam elements or,
more generally, in the case of fields where the displacements are defined
at the corners. The treatment of equilibrium fields is by no means
restricted to the use of the dual “force” method and there are some
obvious advantages to be gained from attempting to solve them also
by the stiffness procedure. The same basic programme can be used in
the computer and the sometimes delicate choice of convenient self-
strainings is avoided. To achieve this, however, some care must be
exercised with respect to the addition of beam elements and the
elimination of rigid-body modes:

(a) Addition of a beam element (Fig. 3). The total load g, applied by
the fields (and possibly by an external source) to the isolated beam

‘p
Fig. 3

element is in the form of a uniform shear flow g,/c,. There are also
end loads g,, and g, with conventional positive sense identical to the
sense chosen for the end displacements v,, and v,. The internal tension
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T in a cross-section positioned by the non-dimensional coordinate
—1 < & < } is to be calculated by equilibrium considerations

T= —8m — %gw - ‘fgp (3'1)

The (complementary) strain-energy of the beam, assumed ‘here for
simplicity to have a uniform cross-sectional area, is

4 b ¢ 1
U= Q_E”Tq,LTz dé =5 [(gm + 3g,)% + ﬁgi] (3.2)

A simple application of Castigliano’s formulae yields

oU c

_ Y _ L 1 '
n agm ES (gm + 2g17) (33)

U — U

as relative displacement of the end-sections, and

Y — _3U__ Cp
? " 0g, 2ES

(gm + 385 (3.4)

It should be noted that v, is not the displacement of the mid-span
cross-section; it is a generalized displacement corresponding to the
uniform shear flow. It is equal to the ordinary average of all cross-
section displacements as calculated by integration of the strain. A
best fit in compatibility is reached when this v, is identified with that
belonging to the field edges which are loading the beam. In that
respect it would have been more appropriate, when discussing the
equilibrium nets of triangular fields, to define the displacements as
averages along each edge. However, since the field is uniform the
average is identical with the displacement of the middle of the edge.
While the addition of a beam segment to a compatible net introduces
no additional nodes, in the present case the end-sections of the beam
are new points where displacements must be introduced and where
concentrated external loads can be applied. To obtain the component-
stiffness matrix due to the beam, Egs. (3.3) and (3.4) are solved for g,
and g,; the result substituted in Eq. (3.2) yields the strain-energy

_2ES

P

U

(0% + 02 + 302 + 0, — 30,0, — 30,0,) (3.5)

The other Castigliano’s formulae give the load-displacement relations
expressed by means of the required stiffness matrix in the form

&m 2 -3 1 Om
& | = QCES -3 6 —3].|v (3.6)
&n ? 1 -3 2 U
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These equations are also directly obtainable from Eqgs. (3.3) and (3.4)
together with (3.1) for £ = } and T = g,. It should be noted that at
the point where beam end sections meet together equilibrium will
automatically be satisfied by the stiffness addition process.

(b) Elimination of rigid body modes. The possibility of relative panel
rotation already mentioned is generally checked by the presence of
connected beam segments. The case can, however, arise of structural
deformation modes due to panel rotations without strain energy. They

~will be called rigid deformation modes and are best determined by
inspection of the kinematics of the skeleton triangles.

Two cases must be distinguished. In the first, passing from the free
to the supported structure, the nature of the support prevents the rigid
deformation modes as well as the rigid body displacements and no
special treatment is required.

In the second case some rigid deformation modes remain even after
the structure is supported. They are characterized by non-zero dis-
placement vectors satisfying the matrix equations

K(s)w(r)zo 721,2...t

The theory of linear equations systems gives as necessary and sufficient
conditions for solving f = K,u that the loading f verifies the virtual

work equations
w'nf=0 (3.7)

" Suppose now that the rigid deformation modes are just suppressed by
preventing the first ¢ displacements (this will generally require a re-
numbering of the displacements and is only advocated for simplicity
of exposition). The first ¢ components of f and u are now isolated in
submatrices fi;) and u(,, their complements denoted by f,) and u,,
and the matrix K, subdivided in four component blocks so that

Jouy = Kyugy + Kppugs
Sy = Koy + Kopugp)

By making ;) = 0 we have, since K,, is by assumption non-singular
ug =0 U@ = Kis'fea (3.8)
Jo = K12K2_21f(2) (3.9)

The last equation furnishes the reactions in the rigid links suppressing
the u(,, displacements as linear functions of the independent loads of
the f(,) matrix.

A unit load on the structure is now considered as a group formed by
a unit vector of the f,) matrix associated with the corresponding set
of f;) loads so that the reactions in the links disappear and the u,
displacements can be freed. Under this circumstance the general
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expression for the displacements contains arbitrary contributions from
the rigid deformation modes

t
Ug) = g a,W ) (1)

t
-1
U = K" fia) + ? 4, W ) (2)

The analysis shows that the situation is unsatisfactory except for those
influence coefficients that would happen to be independent of the
arbitrary coefficients g,.

4. THE QUADRILATERAL PANEL SUB-DIVIDED BY DIAGONALS

A remarkable case where the relative rotations between panels does not
affect the loading possibilities and constitutes a convenient new
building block is the quadrilateral panel sub-divided into four triangular
fields by the internal diagonals (Fig. 4). The four skeleton triangles

articulated in points I, J, K and L, form a kinematically deformable
chain. Yet the 2 X 4 load components applied on the outside vertices
E, F, G and H are only restricted by three conditions expressing their
statical equivalence to zero (rigid-body equilibrium).

One proof consists in obtaining 2 X 4 — 3 = 5 independent states
of loading which can be transmitted through the kinematical chain.
Four of them are obvious and consist in the equal and opposite force
pairs numbered from 1 to 4. The transmission is here based on the
fact that the sides of the skeleton triangles are aligned two by two to
form a skeleton parallelogram.

A fifth independent state of loading has been analysed for clarity
on Fig. 5. The pair of forces numbered 5 can be transmitted through
the sides IJ and KL, keeping each skeleton triangle in equilibrium,
provided the extensions of the lines IJ, KL and HG intersect in a

175



B. M. FRAEIJS DE VEUBEKE

Fig. 5

common point 0. Suppose this to be true; then by Ceva’s theorem
applied to the triangle FGH cut by the transversal KLO:
GO LF KH _
GH LG KF ~
Again from Ceva’s theorem applied to the triangle GHE cut by the
transversal 1JO:

1

GO JE IH 1

GH JGIE ~
Whence a necessary and sufficient condition that O be a common
intersection is that we should have

LF KH JE IH

LG KF ~ JG'IE
This, however, is true since LF = IH, LG = IE, KH = JE and
KF = JG.

Another way to look at this property of the quadrilateral is to prove
that the kinematical deformability of the chain can take place with
each skeleton rotating about the outside vertex. The geometrical
proof is similar. There follows that no virtual work of the loads
applied to the outside vertices is ever involved and no other restrictions
placed on them than static equilibrium with respect to rigid body
motion. For the purpose of building up the structure the skeleton
parallelogram of the quadrilateral can be considered as rigid.

Obviously a sixth state of loading is provided by a pair of opposite
forces along EF. This is, however, easily seen to be a linear combination
of the preceding states.

176



UPPER AND LOWER BOUNDS IN MATRIX STRUCTURAL ANALYSIS

5. THE FORCE METHOD OF RESOLUTION

A drawback of the stiffness method, as applied to equilibrium fields, is
a relatively large increase in the number of nodes requiring a corres-
pondingly large number of eliminations. Experience should tell
whether the accuracy of the computations is thereby seriously affected.

The opposite situation occurs when one wishes to apply the force
method of resolution simultaneously to compatible fields and equi-
librium fields. We shall here assimilate the force method to the comple-
mentary energy method and, since the prescribed displacements are
usually zero, it will further reduce to the minimum principle of the
strain energy expressed in terms of stresses.

The stress field is built up by adding a convenient particular equi-
librium field with a unit load, ignoring the compatibility restrictions,
and a complete independent set of self-strainings. The most convenient
self-strainings are those confined to a minimum number of elements.

In that respect the compatible triangular nets are very simply dealt
with. A complete set of independent self-strainings is obtained by
considering the interactions between pairs of triangles (Fig. 6) or
between a triangle and a beam segment (Fig. 7). The effect of such

AV

Fig. 6
Fig. 7
p
i—‘_ 3
] |
Jd |
| ‘U' hp
o
Fp @ o TR
Fig. 8
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a self-straining on a triangular field is to produce a state of simple
traction in a direction parallel to the interacted edge. This is easily
verified by Eq. (2.14) with the relation (Fig. 8)

ith,s = F,

Turning to the cartesian axes of reference, we find

- QF()
© =

__2F, ( _yq,)
% = th,

_2F, ( ar yar)
Ty — t}l p

Adding the effect of the self-strainings F, and F, along the other edges
and substituting into

U =328 (0 + o+ 2, — Do, — )

The following standard form of the strain energy is obtained

1 ((Fye, + Fy, 4 F,)? F,F, F[F, F.F
Et{( P€P+ j:a—l— ’I‘c‘l‘) 2A(1 _l_v)( P l.'l+ a 7‘+ T P)}

P q cq("r CTCP
The use of this standard form in adding together all the energy contri-
butions implies that the particular equilibrium field be locally resolved
in a (F,,F,F,) system. In that case each force of this system is the sum
of a component from the particular equilibrium field and one hyper-
static unknown.

The beam energies are of the type (¢,N?%)/(2ES) where the traction
load N is the sum of a component fixed by the particular equilibrium
state and unknowns from the interaction with adjacent fields.

The disadvantage of a large number of self-strainings is partially
offset by their simplicity and the possibility of eliminating them
gradually before the structure is completed. Indeed a self-straining
intensity X can be eliminated by a Menabrea type of equation
oU/0X = 0 as soon as the elements concerned by this self-straining
have been added to the structure.

The equilibrium net of triangular fields contains fewer self-strainings
but of a more complex character. One example is shown on Fig. 9.
As already observed® the setting up of the simplest independent self-
strainings by the computer itself represents a major step in the auto-
mation of the computations.

The state of stress in a triangle can this time be regarded as a super-
position of three F states (Fig. 10) similar to those of Fig. 10 used in
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the compatible case. By virtue of Eq. (2.17) we have here th,o = F,,.
Hence, with the exception of a numerical factor the strain energy of
the superposed fields is the same as before.

_ L {(chp + Fch + F'r"'f)2
T 4F; A

F F, EF EF
a4 (B B ERS)

P7q

Colr 6y

To make use of this standard form, both the particular equilibrium
and the effects of the various self-strainings to which a triangle would
happen to be subjected to must be resolved in an F system. Note
incidentally that the partial derivatives of this expression would yield
the elongations of the skeleton triangle sides under the F forces. The
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strain energy of a beam segment as a function of loads was already
dealt with. The loads appear again as linear combinations of a term
due to the particular equilibrium condition considered and the self-
straining terms.
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APPENDIX A

Principles for the Determination of Upper and Lower Bounds to
Influence Coefficients*

I. LINEARIZED THEORY
The principles apply only to the fully linearized theory of elasticity.
This means that
(a) Rotations and strains are small enough to justify the linear

relationships

_3u o _3u+3v
& = 87_6 7’@11_5 ox

ox
between strain components (g,,¢,,y,,) and displacement vector (u,v).
No distinction need be made between Lagrangean and Eulerian
coordinates: the cartesian coordinates (x,y) are either those of the
initial reference state or those of the deformed state.
(b) The strain energy density W (eg,y.,.c,) relating stresses and
strains

(A.1)

W 0w W

Oe, Tay = 5)—/:” %= 3_61,

* For simplicity the two-dimensional case is considered. The extension to three dimensions
is trivial.

(A.2)

Oy
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is taken to be a quadratic, positive definite, homogeneous form. The
stress—strain relations are thus of the homogeneous linear type (general-
ized Hooke’s law).

(c) The complementary energy density @ (o,,7,,,0,), whose general
definition is through the Legendre contact transformatlon

D =o0,6, + ToVay + 08, — W (A.3)

is also a quadratic homogeneous form (in the stress components). This
is an obvious consequence of the assumption of a generalized Hooke’s
law.

Differentiating Eq. (A.3)

a’(D=( M)d +( —%)%
y,

aa: xy

4+ (ay — %/) de, + ¢, dog, + y,, dr,, + ¢, do,

and using Egs. (A.2) there follows

oo od oo
&y = 3_0_2 VYay = aTM &y = —3_0'; (A4')
Equations (A.4) are dual to Egs. (A.2); they state again the generalized
Hooke’s law, resolved this time with respect to strains. Euler’s theorem
on homogeneous quadratic forms is applicable both to W and to ®.
In each case, by virtue of Egs. (A.2) or (A.4), the same result is
obtained:

W=0= %(Gwsz + TavYay + 0’”81,) (AS)

This is conveniently referred to as the local form of Clapeyron’s
theorem: the energy densities are both numerically equal to half the
sum of the products of stresses by corresponding strains.

(d) The internal equilibrium equations

+ “’—|—X—O BT””—|———|—Y_O (A.6)
and the surface equilibrium equations
lo, + mr,, = p Ity + mo, =¢q (A.7)

are linear. Here (X,Y) and (p,q) denote cartesian components of body
forces and surface forces, while (/,m) are the direction cosines of the
outward normal at the surface.
(e) As a consequence of the linear character of all equations the
principle of superposition applies.
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2. SCALAR PRODUCT OF TWO FIELDS

By ‘““field” is implied an arbitrary field of stresses and corresponding
strains, related by the generalized Hooke’s law. This field need not
satisfy either the compatibility conditions Eqs. (A.1) or the equilibrium
Egs. (A.6) and (A.7). It should, however, be integrable in the sense
that the total strain energy:

%." I (O'a:sa: + ToVey + 611811) ds

should exist.
If two fields are distinguished by the subscripts 4 and B, consider

the following mixed expression
(A’B) = j.f(aw,Asw.B + Toy, 4Yzv. B + Uy.Aev,B) ds (A'B)

The integrand can be transformed as follows:

L] oo L]
1=%.Aéa+ :m/Aa +Uu,AE
x, v,

Taey, B

The last member is clearly the bilinear form attached to ® and is
equivalent to
oo 0P oo

I:GmBa + 7 m/Ba A+G%BFA
Tay, Y,

Hence we obtain the commutativity property.
(4,B) = (B,4) (A.9)

which is recognized as a statement of the Betti—-Rayleigh reciprocity
principle. On the other hand if « and # denote scalar multipliers we
obviously have:

(a4,8B) = «p(4,B)
and also

(4,B + C) = (4,C) + (B,C)

Expression (A.8) has the properties of a scalar product, it is conveni-
ently referred to as the scalar product of the two fields.
By virtue of Clapeyron’s theorem the norm of a field

(4,4) =0

is equal to twice the strain energy; it vanishes if and only if the field
itself vanishes.

3. POTENTIAL ENERGY AND COMPLEMENTARY POTENTIAL
ENERGY OF THE EXTERNAL LOADS

The following notations will prove to be useful by their concision:
C will denote a particular compatible field. This implies that the strains
can be derived from continuous single-valued displacement functions
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(u,v) according to Egs. (A.1) and that those displacements take
values
u=4a v=7 on ¢, (A.10)

prescribed on parts of the boundary.

H will denote a general homogeneous compatible field. Here the
values prescribed to the displacements on ¢, are zero. That this
field is ‘“‘general” means either that it is the most general one, or, if
approximate solutions are sought, that it contains unknown functions
or unknown parameters to be determined by the application of the
energy theorems.

According to these definitions and to the superposition principle the
general compatible field of a problem can be denoted by

C+ H.

E will denote a particular equilibrium field. This implies that the
stresses satisfy the equilibrium Egs. (A.6) and (A.7) on the comple-
mentary part ¢, of the boundary.

A will denote a general self-straining field. It is an equilibrium field
with the prescribed loads set equal to zero. It also contains unknown
functions or parameters.

According to these definitions the general equilibrium field of a problem
can be denoted by
E+ 4

S will denote the exact field of the problem, or the solution. It is both
a compatible and an equilibrium field.

In a scalar product, if one field is compatible and the other an
equilibrium field, the value of the product is expressible in terms of
the displacements of the compatible field and the external loads with
which the other field is in equilibrium. Take the case of the product
(C,E). Since C is a compatible field, the product can be written as

ou, ou, = Ov, ov
CB) = [ [{o0s Gt 7o (G2 + 52) + 0vn ) e &

If we now integrate by parts

(CE) = | (Uouis + mruy )t + (ras + m,2)0

agw E 3Tzv.E) (370:1/.E 361/,E)}
Jlle (G4 2) o (T2 552 | 00
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However, the stresses of the equilibrium field verify Eqs. (A.6) and also
Egs. (A.7) on the part ¢; of the boundary, while the displacements of
C verify Eq.-(A.10) on ¢,. Hence

(C’E) = —Pc - Qe (All)
where

P, = —ff(ch + 0, Y) dx dy —J; (pu, + qu,) ds

is the potential energy of the prescribed loads associated with the
displacements of the field C, and

Qe = _'J‘ {a(lam,E + mTam.E) + ﬁ(ley.E —I_ maw,E)} ds

is the complementary potential energy of the reactions of field E
associated with the prescribed displacements. From this result, which
has a general character, one finds immediately the following similar
properties:

(H,E) = —P, (A.12)
(€4) = —Q, (A.13)
(H,4) =0 (A.14)

This last result is specially useful and can be stated as the following
theorem: ‘“The scalar product of a homogeneous compatible field and
a self-straining field vanishes.”

In most problems the prescribed boundary displacements are zero
and the particular displacement field associated with C does not appear.
This simplification will be used henceforward. Should it arise, the
problem involving non-zero prescribed displacements can be treated
by the same techniques as presented below.

4. PRINCIPLE OF MINIMUM TOTAL ENERGY
Under the assumption that ¢ = 0, the minimum total energy principle
can be stated as follows:
p = 3(H,H) — (H,E)

takes its minimum value for H = S.

Proof: Since the solution § is also a compatible field, the difference
between § and H is a compatible and homogeneous field. This is
written

H=S§+ 0H
Substitution of this into the expression of u, expansion of the product
and rearrangement of the terms produces
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Now § — E is the difference between two particular equilibrium fields
and is consequently a self-straining field. Its product with a compatible
homogeneous field vanishes, so the last term vanishes. The two first
terms are the value taken by u when H = §. The third term is positive
unless 6H vanishes. This completes the proof.

5. PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY

Since the prescribed boundary displacements are assumed to be zero
there is no complementary potential energy. The principle states that
the true solution makes the complementary strain energy (the strain
energy expressed in terms of stresses) a minimum. In terms of a scalar
product

A=3E+ AE+ A) is minimumfor E+ A=
If we subtract from E + A the particular equilibrium field § we
obtain a self-straining field; this can be written
E4+A=5+44d4
Substitution of this into the scalar product and rearrangement produces
A= 3}(S,8) + 4(04,64) + (S,64)

Again the last term vanishes as the product of a self-straining field and
a homogeneous compatible field. The first term is the value taken by
Afor E+ A =S. The second term is positive unless d4 vanishes.
This completes the proof.

6. CLAPEYRON’S EXTERIOR THEOREM

Since §' is a homogeneous compatible field and § — E a self-straining
field we have
$§S8—E)=0

This can also be written in the form
3(S,8) = H(S,E) = —3P (A.15)

the last equality following from property (A.12) so that P denotes the
potential energy of the prescribed loads under the displacements of
the true solution. This is also the usual theorem of Clapeyron according
to which the strain energy is equal to half the virtual work done by
the loads under the true displacements.

7. UPPER AND LOWER BOUNDS TO DIRECT INFLUENCE
COEFFICIENTS

From the principle of minimum total energy and Clapeyron’s theorem
(A.15) follows
$H(HH) — (HE) = §(5,5) — (S,E) = —4(5,5) = 4P
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From the principle of minimum complementary energy follows
3}E + 4,E + 4) > §(5,5) = —$P
Hence by changing signs and the sense of the last inequality
MHH) — (HE) =3P > —3E+ 4, E+4)  (A16)

Under restrictive assumptions used for displacements in some approxi-
mate but compatible approach, the left-hand side of the inequality
will be the value estimated for half the potential energy; denote it by
1P. Denote similarly by P the right-hand side which will be the value
estimated under restrictive assumptions for the stresses in some equi-
librium approximation to the same problem. The free parameters or
functions contained in the approximations are naturally determined
by the minimum principles themselves in order that the bracket for P

P>P>P
be as tight as possible.
If the load consists of a single force F with corresponding displace-
ment w, the influence coeflicient ¢ is defined by

w = cF
and the potential energy can be written
P = —Fw = —cF? (exact solution)
In a compatible approximation we would find
P = —¢F? (compatible approximation)
In an equilibrium approximation
P = —C¢F? (equilibrium approximation)

Insertion of these expressions in the bracket for the potential energy
produces after cancellation of the common factor F? and a change of
sign altering the sense of the inequalities

c>c>¢ (A.17)

Thus an approximate compatible approach produces a lower bound
and an approximate equilibrium approach an upper bound to a direct
influence coefficient. »

8. UPPER AND LOWER BOUNDS TO CROSS INFLUENCE
COEFFICIENTS

Let
wy = ol + cpF
Co1 = (12
Wy = Coufy + CookFy
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be the (exact) displacements associated to the two loads F; and F,.
If (¢qq, €195 Co2) are the approximate influence coefficients resulting from
a compatible approach and (¢4, ¢y, C5;) those resulting from an
equilibrium approach, previous results enable us to write

Ciu =01 = Cn Cag = Cp2 = Cop (A.18)

The problem is to establish a similar connexion for the cross influence
coefficient ¢,;,. To this purpose we set

F, = iF,
and consider the potential energy P given by
—P = w,F, + wyF, = Fl(eyy + 2201, + A%y

Again from the general bracket applicable to the potential energy
there is found that

Ci1 + 24815 + 2%Cop = 03y + 24645 + _}“2522 > 1+ 24¢1p + A%

Take the first inequality and solve it for ¢, assuming A to be a positive
quantity:

1
2¢15 < 2 (€11 — €11) + 2815 + A(Cay — C20)

It follows a fortiori by virtue of Egs. (A.18) that

(€1 — C11) + 2812 + A(Cop — C39)

Dol =

2015 <

The positive A giving the smallest upper bound is readily found to be
A= V(e — cu)/ (G — o2

Sfrom which follows
12 < Cpp + \/(511 — €11) (Ca2 — Cas) (A.19)

Had we solved the same inequality assuming a negative 4 value we
would have

1
2015 > 2 (€11 — €11) + 2815 + A(Cop — €20)

It follows again a fortiori by virtue of Eqs. (A.18) that
1 _ _
26y > 2 (C1x — ¢11) + 2845 + A(Cop — Can)

A highest lower bound is obtained for the negative 4 value

A= — \/(511 — €11)/(Caa — C20)
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from which follows
€19 = Cpp — \/(511 — €11) (Caz — Caa) (A.20)

The second inequality can be treated by the same technique and
produces the new bounds

€12 < 619 + \/(511 — €11) (Cag — Ca2) (A.21)
€12 = C13 — \/(511 — €11) (Caz — Caa) (A.22)

If, as usually the case, it is found numerically that ¢;, > ¢, the best
bracket is made of inequalities (A.20) and (A.21).

APPENDIX B
Examples and Numerical Results
B. M. Fraers pE VEUBEKE and Guy SANDER

1. STRUCTURAL MODEL

The ultimate step is the analysis of a complete and complicated
structure. Very instructive results are, however, obtained concerning
the validity of the dual approach by the consideration of a rather
simple structural element.

A rectangular element, or panel, of length 24 and height 25, edged
by beams of identical cross-section S, was analysed by various methods
and the influence coefficients compared. The beams are assumed to
be devoid of flexural rigidity. The two structural parameters of the
structure are then

r=alb
R = S/(bt)

where ¢ is the constant thickness of the panel. Exploratory values of
1 and 5 for 7, and 0-4-1-0-2-0 and 4-0 for R were adopted.

The reference to Model 1 or Model 2 relates to the type of support
of the structure and is explained in Fig. 11.

The loading cases investigated are shown in Fig. 12 and referred to
as Cases I, IT, ITI or IV.

2a

2b

model 1 model 2
Fig. 11
188



UPPER AND LOWER BOUNDS IN MATRIX STRUCTURAL ANALYSIS

_ }i | Iﬁ_l-— ?E: model 1

casel casell casell case ¥
- -
[ L 0T LI mowe
Fig. 12

2. METHODS OF ANALYSIS

The methods of analysis that were compared are the following:

(1) Tension 4. This denomination refers to a subdivision of the
panel in four triangles by the diagonals and construction of a pure
equilibrium field as explained in Sections 2.3 and 3a of the paper.
It is found that the state of stress in the panel is either zero or a state
of pure shear.

(2) Tension 16. The panel is first subdivided into four equal
rectangular fields of dimensions ¢ and 4. Each rectangle is then sub-
divided in four triangles by the diagonals. Again a pure equilibrium
field is constructed.

In contrast to the “Tension 4” case there are redundancies in the
form of self-strainings. Figure 13 shows the self-strainings involved in

W\
Y

20 12
2 2

t !
t t
X type self-straining .Y .
——————
Y type self-straining
———————1
4—_. Za ‘_—-
t >
| A
Zb Zb
f f
' v
-~ 2a%,
I

Z type selfstraining
Fig. 13
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the Model 1 type of support. In the case of Model 2 there are additional
self-strainings depicted in Fig. 14.

“Tension 4 and “Tension 16> are the only methods used to provide
upper bounds to the influence coefficients.

(8) Turner 16. The subdivision of the panel in triangles is the same
as for “Tension 16”. However, the field of displacements is purely

= K2
Ve— >

W— @ 7

W type self-straining

Fig. 14

compatible. It is identical to the Argyris—Turner triangularization
method and the calculations were essentially made according to the
Turner stiffness method.5

(4) Turner 4. It is the triangularization and stiffness method
applied to the subdivision used in Tension 4.

(5) Argyris 4. The panel is first subdivided into the four equal
rectangular fields. In each field the displacement assumption is used

u=uy+px+qy+ray
v=120y+ Ix +my + nxy

The eight parameters can be expressed in terms of the corner displace-
ments. As in the case of triangular fields continuity of the displace-
ments for the whole panel is obtained by simply requiring identical
displacements at the common corners. Corner loads and stiffness
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Table 1

R=% 04 | 10 | 20 | 40 || 04 | 10 | 20 | 40
Methods Case I DQ—:A P
Tension 4 | 0-2106 | 0-1196 | 0-0893 | 00742 || 9:840 |4-113 | 2204 | 1.249
Tension 16 | 0-2038 | 0:1185 | 0-0890 [0-0741 || 9-182 | 3-989 |2-171 |1-241
Turner 16 | 0-1287 | 0-0991 | 0-0825 [0:0719 || 2:139 | 1-699 | 1-303 | 0-939
Turner 4 | 01059 | 0:0894 | 0-0767 | 0-0690 || 0-810 | 0-765 |0-561 | 0-606
Argyris 1 | 0-1099 | 0:0895 | 0-0773 | 0-0692
Argyris 4 | 0-1238 | 0:0948 | 0-0807 | 0-06945
Beam. theory | 0-0986 | 0-0813 | 0-0719 | 0-06603| 5239 | 3-068 | 1896 | 1-1630
Fict. spars | 01374 | 0-1045 | 0-0850 [0-0730 || 1:985 | 1.556 | 1159 |0-788

wn” ],

Tension 4 | 0-1136 | 0-0454 | 0-0227 | 0-01136] 0-5681 | 0-227 |0-113 | 0-0568
Tension 16 | 00930 | 0-0415 | 0-0217 [0-0111 || 0-365 | 0-178 | 0-0999 | 0-0529
Turner 16 | 0:0545 | 0:0315 | 0-0185 | 0:0102 || 0-143 |0-103 | 0-0705 | 0-0434
Tamer 4 | 00393 | 0-0256 | 0-0162 | 00094 || 0-101 | 0-0749 | 0-0534 | 0-0349
Argyris 1 | 00413 | 0:0263 | 0-0165 | 0-00953
Argyris 4 | 0-0468 | 0:0299 | 0-0177 | 0-00982
Fict. spars | 0-0588 | 00340 | 0-0194 | 0-01048|| 0-109 | 0-085 | 0-0619 | 0-0401
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Table 2
Methods Case 111 DE - P
— P
Tension 4 0-1136 | 0-0454 | 0-0227 [0-0113 || 0-5681 | 0-227 | 0-113 | 0-0568
Tension 16 | 0-0976 | 0-0425 | 0-0220 | 0-01117|| 0-4201 | 0-1973 | 0-1054 | 0-05466
Turner 16 0-0570 | 0-0325 | 0-0189 | 0-0103 || 0-117 | 0-0895 | 0-0642 | 0-0410
Turner 4 0-0468 | 0-0291 | 0-0176 | 0-0099 || 0-0409 | 0-0370 | 0-0317 | 0-0248
Argyris 1 0-0508 | 0-0304 | 0-0182 | 0-0101
Argyris 4 0-0632 | 0-0321 | 0-0186 | 0-0102
Fict. spars 0-0588 | 0-0340 | 0-0194 |0-0104 || 0-109 | 0-0852 | 0-0619 |0-0401
Case IV D‘;l:] ~P
— P
Tension 4 0-113 | 0-0454 | 0-0227 | 0-0113 || 0-568 | 0-227 | 0-113 |0-0568
Tension 16 | 0-0885 | 0-0406 | 0-0214 [0-0110 || 0-310 | 0-162 | 0-0935 [0-0511
Turner 16 0-0520 | 0-0305 | 0-0182 | 0-0100 [| 0-169 | 0-116 | 0-0768 | 0-0458
Turner 4 0-0318 | 0-0222 | 0-0148 | 0-0089 || 0-161 | 0-112 | 0-0750 | 0-0450
Argyris 1 0-0318 | 0-0222 | 0-0148 |0-00895
Arg);ris4 0-0399 | 0-0267 | 0-0166 |0-00953
Fict. spars 0-0588 | 0-0340 | 0-0194 [0-0104 || 0-109 | 0-0852 | 0-0619 | 0-0401
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Table 3
R:.f_t 04 | 10 | 20 | 40 || o4 | 10 | 20 | 40
Methods Case I ﬁ:i ,
Tension 4 | 0-172 | 0-104 |0-0818 [0-0704 || 9803 |4-098 |2-19 | 1.246
Tension 16 | 0-148 | 00953 | 0-0803 [0-0701 || 5-345 | 3-089 | 1-903 | 1-166
Turner 16 | 0-112 | 0-0893 | 0-0767 |0-0687 || 2-131 | 1700 | 1-300 | 0-937
Turner 4 | 0-0920 | 0-0805 | 0-0753 | 0-0664 || 0-800 |0-756 | 0-687 | 0601
Argyris 1 | 0-0942 | 0-0807 | 0-0753 | 0-0665
Argyris 4 | 0-0949 | 0-0823 | 0-0759 | 0-0678
Beam. theory | 0-0986 | 0-0813 | 0-0719 | 0-06603(| 5239 | 3-068 | 1-896 | 1-1630
Fict. spars | 0-1179 | 0-0931 | 0-0758 | 0-0695 || 1-965 | 1.544 | 1-152 | 0-795
Case 11 E o p
Tension 4 | 0-1136 | 0-0454 | 0-0227 [0-0113 || 0-568 | 0-227 |0-113 | 0-0568
Tension 16 | 0:0877 | 0-0404 | 0-0211 |0-0110 || 0-365 | 0-0178 | 0-0999 | 0-0529
Turner 16 | 0-0496 | 0:0296 | 0-0178 |0-00998|| 0-140 | 0-101 | 0-0700 | 0-0432
Turner 4 | 0-0390 | 0:0255 | 0-0170 | 0-00944 0-099 | 0-0740 | 0-0530 | 0-0348
Argyris 1 | 0-0410 | 0-0261 | 0-0171 | 0-00952
Argyris4 | 0:0476 | 0:0290 | 0-0175 | 0-00963
Fict. spars | 0-0588 | 0-0340 | 0-0194 |0-01048]| 0-109 |0-085 | 0-0619 | 0-0401
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Table 4
Methods Coelll [ ) <P
— P
Tension 4 | 0-1136 | 0-0454 | 0-0227 [0:0113 || 0-568 |0-227 | 0-113 | 0-0568
Tension 16 | 0-0971 | 0-0418 | 0-0216 [ 0-0110 || 0-420 |0-197 |0-105 | 0-0544
Turner 16 | 0-0569 | 0-0324 | 0-0189 |0:0103 || 0-117 | 0-0896 | 0-0641 | 0-0410
Turner 4 | 0-0469 | 0-259'| 0-0150 | 0-0099 || 0-0409 | 0-0370 | 0-0317 | 0-0248
Argyris1 | 00508 00304 | 0:0182 | 0:0101
Kiéﬁiﬂ 00631 | 0:0321 | 0-0186 | 0-0102
Fict. spars | 0-0588 | 0:0340 | 0-0194 | 0-01048{| 0-109 | 0085 |0-0619 | 0-0401
Case IV 1 ] P
—~P
Tension 4 | 0-1136 | 0-0454 | 0-0227 [0-0113 || 0-568 |0-227 |0-113 | 0-0568
Tension 16 | 0-0783 | 0-0390 | 0-0206 [0-0110 || 0-310 | 0-162 |0-0935 | 0-0511
Turner 16 | 0-0424 | 00268 | 0-0167 [0-00963|| 0-163 | 0-114 | 0-0759 | 0-0454
Turner 4 | 0:0312 | 0:0219 | 0-0146 | 0-0089 || 0-158 |0-111 |0-0744 | 0-0448
Argyris1 | 0:0312 | 0-0219 | 0-0147 | 0-00893
Argyris 4 | 0:0390 | 0-0260 | 0-0165 |0-00950
Fict. spars | 0-0588 | 0-0340 | 0-0194 | 0-01048 0-109 | 0-085 | 0-0619 | 0-0401
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matrices are obtained by the same procedures as used for the stiffness
method applied to triangular fields®. The major difference with respect
to a subdivision into triangles is that the stress field associated with the
displacement assumption is not an equilibrium field. The equilibrium
conditions are violated continuously but smaller discontinuities in the
stresses are recorded across the common edges. This method, together
with Turner 4 and 16, must yield lower bounds. Whenever used, it
gave results between the Turner 4 and 16 methods, generally closer to
the last one.

(6) Beam theory. This refers to a purely compatible Bernoulli type
of bending theory, applicable to loading case . It consists in assuming
for the panel a field of the type

u = yB(x)
v = V(x)

The unknown functions B(x) and V(x) are determined from the
principle of variations for displacements. The value obtained for the
influence coefficient is classical

d (2a)® 2a

P 3EI ' 2btG
where
 ons 2th3
I=28p%+ 30—
is the moment of inertia of the cross-section with an increased web
contribution due to the assumption of inextensibility in the » direction.
Because of this assumption the result is poor when r and R are small.
Because the sections normal to x are assumed to remain plane, the
method applies as well to Model 1 as to Model 2.

The method provides an interesting lower bound for large values of
r. Itis seen to be very close to the Tension 16 method and consequently
both are then very accurate.

(7) Fuctitious spar theory. This is the only hybrid assumption investi-
gated that does not with certainty provide an upper or lower bound.
It consists in replacing the direct stress-carrying capacity of the plate
by fictitious edge and central spars. When one-sixth of a transverse
area of the plate is concentrated as an edge spar and two-thirds as a
central spar both the total cross-sectional area and the total moment
of inertia are conserved. The stresses transmitted by the plate are
then reduced to a system of four shear fields. In practice the assump-
tion works well. The influence coefficients it provides are located
between the Turner and Tension 16 methods, which are generally the

best upper and lower bounds.
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It is, however, recognized that in this idealization both the Poisson’s
ratio effect and sweep-back effects are lost.

It would therefore be interesting to pursue the investigations on a
model incorporating sweep-back and perhaps taper.

Note: The values recorded in the tables and compared in Figs. 17, 18, 19 and 20 are
displacements corresponding to specific values:

load P = 1000 kilos
E = 2-2 10% kilo/mm?
b = 1000 mm
= 2 mm

To obtain the non-dimensional quantities
E:
d% =f(R)

where d is the displacement corresponding to the load, the table values should be multiplied
by the factor 44. In the figures, heavy continuous lines are for lower bounds, dotted lines
for upper bounds. The thin continuous line is for the fictitious spar theory.

3. REDUCTION OF SELF-STRAINING CONDITIONS FROM
SYMMETRY CONSIDERATIONS

Sometimes advantage can be gained from the symmetries in reducing
the number of self-strainings to consider. Take for example Model 1
with loading case II. Figure 15 shows that this case can be considered
as the superposition of loading cases IV and III.

- — -
E - * “
- —> -— — - —

Fig. 15

|
|
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(a) Case IV. It is symmetrical with respect to both the x and y
axes. Hence we need only consider a self-straining of type Z when
dealing with the Tension 16 method. It is readily found by investiga-
tion of the equilibrium conditions of the triangles (Fig. 16) that in
triangles 1 and 2 the state of stress is one of pure shear:

g, =0 g, =0 Ty =2

while in triangles 3 and 4 it is the state

The corresponding strain energies (see p. 166) are

1 ab t bt
_ 2

labt { b2 a? abt (a® b2
- — —{Z2— Z2——222}=—(— ——21/)22
B 2T R iE\p T
0254
Displacements
Model .1 r=1 casel
(1) tension4
@ v 1
020 (@) Turner 16
@ Turner 4
(&) Beam theory
(@ Fict. spars
05 |

010

005

04 10 20 30 40

Fig. 17
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Adding and multiplying by 4 (the other three rectangular fields have
symmetrical states of stress) the panel energy is

U, = abt{ + + }

In half of a vertical beam the tension, computed from equilibrium
considerations, is

T = Zi(b —»)

and the corresponding strain energy for both complete verticals
2263,
UU g ES Z

In half of a horizontal beam the tension is the superposition of the
self-straining effect and a particular equilibrium state under the
external horizontal load P applied at the end:

T =P + Zt(a + x)

0125,Y

| Displacements

Model 1 r=1 casel

(1) tension 4
@ tension 16
@ Turner 16
@) Tormer 4
@ Argyris 4
@ Fict. spars
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0075

005

0025




UPPER AND LOWER BOUNDS IN MATRIX STRUCTURAL ANALYSIS

The corresponding strain energy for both complete horizontals
Un = E_?S {aP? + a*PZt + }a%*Z%

The total energy of the structure is thus found to be

z 9tbers ZP " | Proy
2 _
U= E{”bt(2+’+r2)+ 33} R T ER

From Menabrea’s theorem 0U/0Z = 0 follows

p

Z———{ 3r }
T T wBRE LY o2

and finally from Castigliano’s formula
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where d is the deflexion under each P load of Model 1. After substitu-
tion of the Z value there comes

d—Pr{Q 3r2 }
T EtR\" 3R A4+ 2 + 27

Note that in the tension 4 approach no self-strainings exist and we
would have Z = 0 with a corresponding deflexion

Lor

Et" R
This is the first term of the previous formula which represents the
elongation of a horizontal beam under the end load when the plate is
under no stress and does not participate to the general stiffness. The
second term represents the plate contribution in reducing the deflexion.
(b) Case III. 1t is symmetrical with respect to the y axis, anti-
symmetrical with respect to the x axis. It can be dealt with by con-
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sidering only the Y type of self-straining. By similar calculations there
is found

Y'—P r
T R27r 1 2(1 + 2)
R N —
d=g ol - " }
~ EtR 2% 4 R + 3R + 2(1 + 20)7°R

Again the first term represents the beam elongation in the absence of
the plate, as would be found in the tension 4 approach. The second
term is the plate effect given by the tension 16 approach.

(c) Case II. Returning to case II, it is obvious from the principle
of superposition that the deflexion under each load is the average
between those of case III and case IV.
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