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Abstract —

Canonical Transformations and the Thrust-Coast-
Thrust Optimal Transter Problem. Various formulations
of the optimal steering and cutoff-relight programs for
minimum fuel expenditure of a limited-thrust rocket in
a central gravitational field are investigated. They are
derived from a basic formulation in polar coordinates by
canonical transformations of the PONTRYAGIN hamiltonian.
The so-called (k, u,v) formulation is convenient for
eliminating multipliers and obtaining explicit differential
equations for the steering program and the switching
function. The proof that there are no optimal inter-
mediate-thrust arcs, if neither the time taken to describe
the trajectory nor the polar angle it subtends are specified,
is also carried out in this formulation. A canonical
transformation by which the optimal steering control
becomes a state variable is used to investigate the general
case of intermediate-thrust extremals. The fundamental
algebraic relations governing such extremals and first
discovered by LAwDEN [2], are obtained by repeated
differentiation of the chattering condition on the thrust
switching function. Moreover LAWDEN’s integration
constant 4 can be identified as the isoperimetrical
constant associated with a specification of the polar
angle subtended by the trajectory. The so-called orbitally-
linear formulation is convenient for complete integration
of the adjoint differential equations during a coasting
phase. It is used to establish in the simplest case (sub-
tended polar angle and trajectory duration unspecified)
rules for jumping over a coasting phase. To this purpose
the values of all variables and multipliers at engine
relight are given as algebraic functions of their values
at the preceeding engine cutoff. Any result obtained in
one formulation can be carried over into another by use
of the appropriate canonical transformation.

Résumé — Zusammenfassung

Transformations canoniques dans le probléme du
transfert optimal avec extinctions et réallumages. Diverses
formulations du contréle optimal & exercer sur 1’orien-
tation de la poussée et sur le programme d’extinction et
réallumage sont examinées en vue de minimiser la
consommation d’ergols d’une fusée & poussée limitée
dans un champ de gravitation central. Elles découlent
toutes d’une formulation de base en coordonnées polaires
par transformations canoniques du hamiltonien de
PonTRIAGIN. La formulation (h, u, v) est pratique pour
éliminer les multiplicateurs et obtenir les équations
différentielles explicites gouvernant les programmes
d’orientation et d’extinction et réallumage. Elle permet
aussi de prouver ’absence d’extrémales & poussée inter-
médiaire, quand ni la durée de la trajectoire, ni I’angle
polaire qu’elle sous-tend, ne sont imposés. La recherche
d’arcs & poussée intermédiaire, dans le cas général, est

menée & partir d’'une transformation canonique qui fait
du contrdle optimal d’orientation une variable d’état.
Alors, les relations algébriques fondamentales le long de
tels arcs, découvertes antérieurement par LAWDEN [2],
s’obtiennent directement par différentiations répétées de
la condition de réticence sur ’extinction et le réallumage.
De plus la constante d’intégration A, introduite par
LAWDEN, peut étre identifiée avec la constante isopéri-
métrique de I’angle polaire sous-tendu par la trajectoire.
La formulation ,,orbitale linéaire“ est commode pour
une intégration compléte du systéme adjoint durant une
phase non-propulsée. Elle permset ainsi dans le cas le
plus simple (durée et angle polaire non spécifiés) d’établir
des régles de transfert pour de telles phases. Dans ce
but les valeurs des variables d’état et des variables
adjointes au moment du réallumage sont fournies
explicitement en fonction des valeurs des mémes vari-
ables & l’extinction précédente. Tout résultat obtenu
dans une formulation se laisse transposer dans une
autre & l’aide des transformations canoniques.

Kanonische Transformationen und das Problem des
optimalen Bahniibergangs mit Schubunterbrechung. Es
wurden verschiedene Formulierungen iiber optimale
Lenkung und BrennschluB-Wiederziindungsprogramme
fir minimalen Treibstoffverbrauch einer schubbegrenzten
Rakete in einem zentralen Gravitationsfeld untersucht.
Sie wurden von einem Grundausdruck in Polarkoordi-
naten mit kanonischen Transformationen von der
PonTRIAGIN-HAMILTON-Transformation hergeleitet. Der
sogenannte (h, u, v)-Ausdruck ist zur Eliminierung von
Multiplikatoren verwendbar und man erhilt explizite

- Differentialgleichungen fiir das Lenkprogramm und die

Schaltfunktionen. Der Beweis, da hier keine optimalen
Kurven fiir mittleren Schub existieren, wenn weder die
Zeit fir den Ubergang noch der dazugehérige Polar-
winkel angegeben sind, wird hier erbracht. Eine kanoni-
sche Transformation, bei welcher die optimale Lenkungs-
steuerung variiert wird, wird fiir die Untersuchung des
allgemeinen Falles der' Extrema fiir mittleren Schub
verwendet. Die fundamentalen algebraischen Beziehun-

‘gen, die solche Extrema bestimmen und zuerst von

LAwWDEN [2] entdeckt wurden, werden durch wiederholte
Differentiation der Schaltbedingungen der Schubschalt-
funktion erhalten. AuBerdem kann LawpENs Inte-
grationskonstante 4 als die isoperimetrische Konstante,
verbunden mit der Angabe des Polarwinkels des Uber-
ganges identifiziert werden. Der sogenannte orbitally-
linear-Ausdruck wird zur gesamten Integration der
damit verbundenen Differentialgleichungen wiahrend der
Freiflugphase verwendet. Es wird im einfachsten Fall
(Polarwinkel und Ubergangsdauer nicht angegeben) zur
Festsetzung der Regel zum Uberspringen einer Freiflug-
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phase verwendet. Zu diesem Zweck sind die Werte aller

Variablen und Faktoren bei Triebwerksziindung als .

algebraische Funktionen der Werte des vorhergegangenen
Brennschlusses gegeben. Jedes Resultat, das in einem
Ausdruck erhalten wurde, kann in einen anderen mit
Hilfe der passenden kanonischen Transformation ver-
wandelt werden.

1. Canonical Transformations

The equations for optimal trajectories are derived
from the variational formulaticn

6[J+§(”‘z,.dq,._ﬁdq.,)]=o

A
a 1

1.1)

where g, is the independant variable,

q4=1(¢,9qs--- ¢, the vector of state
variables,

A= (4, Ay ..., A,) the vector of adjoint
multipliers.

n
H= z 2;9; (¢, go; 0), the hamiltonian of the system,
1

depends on a set of free controls 0 = (6,, 0, . . ., 0,,).
In a parametric representation of the trajectory:

4=q (), gg=¢qy (@), A=A4A(x), 0=0(x),a <z <b
P

the function J=I1+4+3>u,U, (1.2)
1

contains a function of terminal phases to be minimized

I=1(q(a), g(a); g (), go () min. (1.3)
and the terminal constraints of the problem
(1.4)

U,=U,(q(a) g(a); (), 9 () =0
y=12...p )

The vanishing of the first variation produces the
following differential equations and transversality
conditions:

H H
dg; =2—1‘dqo dd; = 2% a4,
G=1,2...n) (1.5)
H
dH=2—%dqo ‘ (1.6)
A3 dJ
O =@ A0="um
G=12...n) (1.7)
0T ¥J
o=@ #0=5%®m 9

Moreover, for a continuous behaviour of state variables
and multipliers, the principle requires continuity of
the hamiltonian at points where discontinuities occur
in the controls. The optimality conditions resulting
from the vanishing of the first variation

YH

22 9

30, r=1,2...m

(1.9)

are superseded by the condition
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60 = argsup H (1.10)

whereby at each point the controls must be chosen
80 as to give the hamiltonian its maximum value. In
the problem under consideration, guidance can be
expressed in terms of free controls and (1.10) is
justified by the strong variation criterion. This
maximum principle has been extended by PONTR YAGIN
to the case of bounded controls.

For a canonical change of variables from (g, ¢,, 4, H)

tO (Q, QO» A, I{)
S Adg, — Hdgy= 3 A,dQ; — K dQy + dF (L11)
1 1

Only canonical transformations of MATHIEU type will
be considered; they are such that F is identically
zero. A particular case of such transformations are
those generated by a function V (g, ¢o, 4, K)

LW g3V oAV oV
h=xg H=—74 @=3z %="3x
(1.12)
we find
n
W, N, AV

F=V—(Kﬁ+}AjTA—j (1.13)

1

and F vanishes identically provided V is linear and
homogeneous in the adjoint variables 4; and K. In
that case the new coordinates (@, @,) are only func-
tions of the old (g, g,) and the canonical change
furnishes the linear transformations from the old
multipliers and hamiltonian to the new. Similarly,
for a generating function V (@, @, 1, H)

v v 2V 134
“=3z ®="3m 4=3g K=
n
P4 14

=

vanishes identically if V is linear and homogeneous
in the variables 4; and H. In the application to the
thrust-coast-thrust problem the canonical transfor-
mations are established directly from (1.11).

2. Dimensionless Variables and Parameters

All variables and parameters of the problem are
made non-dimensional by reference to the following
units:

9 conventional unit of distance from
the attracting center,
g* acceleration of the gravitational field

at the distance r*,

]/r* g* orbital velocity at the distance r*,

Vr*/g* unit of time; 27 units equal the
period required to describe the
circular orbit of unit radius,

M* conventional unit of mass of the

vehicle; in most applications it is
the mass at departure.
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The notations for dimensionless quantities are:

r distance from attracting center,

0 polar angle measured from fixed
reference,

11 ’ time,

u, radial velocity,

Ug tangential velocity,

W= M*M reciprocal of instantaneous mass,

v angle of thrust orientation above

local horizon, a control variable,

a= *LM* acceleration factor, ratio of maxi-
g mum thrust F to reference weight

of vehicle, a parameter,
c= Ve/]/r* g* ratio of effective ejection velocity
V, to reference velocity, a parameter,
& a control variable for thrust in-

tensity.

For a fully throttlable engine the thrust {F can
be adjusted anywhere between zero and full thrust;
hence £ can take any real value between zero and one.
If the engine can only be cutoff or relighted, & can
only take the discrete values 0 and 1.

However the two cases need not be distinguished
from the theoretical point of view for, in the limit,
a fast sequence of cutoffs and relightings (Chattering)
is equivalent to thrust modulation. In any optimal
solution where intermediate thrust values are involved
the alternative between chattering and a throttlable
engine is a technical decision.

3. Formulation in Polar Coordinates

In the classical polar coordinates, the hamiltonian
of the problem is

H=Hy+afpH (3.1)
where H, is independant of the control variables

ug 1 U, Uy
r ey ug

Ho=l,.u,.+).9uo/r+l,,r(

(3.2)
and H, depends only on the control ¢

. 1 :
Hy=2,smy+ d,c089+—Aupu (3.3)

In order to apply PONTRYAGIN’S maximum principle,
H, is first maximized with respect to the control y:

sinp =14, [A cosp=2A4A A=|X +7,

(3.4)
giving i
— 1
(Hymax = Hy = A+ —pdy (3.5)
The choice of & for maximum H is then
E=0 if H; <0 (3.6)

The case H, =0, if instantaneous, means only
commutation from zero to full thrust or conversely.
If this case can persist for some time, £ is as yet
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undetermined, and possible intermediate thrust arcs

‘must be investigated. This investigation will be

carried out with another set of variables in section 6.
The equations of motion are obtained from

dr__H do__ »H
dt — 24, dt  dle
" (3.7)
du, dH dug _ dH dp _H
dt — 4, dt T dl, dt T
The adjoint system, governing the multipliers, is
di, _ dH dd _ _H _
dt — o dt — 0
d , _ _2H d , _ _H
dat " Ddu, de T T Dy,
d H
to which can be added as a consequence
dH H
=50 (3.9)

Because the hamiltonian does not depend explicitly
on 0 and ¢, the adjoint variables 1y and H are isoperi-
metrical constants. Their values depend on the
constraints imposed respectively on the polar angle
subtended by the complete flight path and on its
duration.

The following is an example of a set of constraints
specifying completely a problem and its transversality
conditions:

(1) Departure from an orbit of known energy ¢ (a)
and known angular momentum % (a):

L _ 4@ =0 3.10)

o=@ +u @] -

(3.11)

Equivalent constraints are the specification of apo-
center o (@) and pericenter § (a) of the orbit since
these determine the energy and angular momentum
through the formulas

¢y =r(a)up (@) —k(a) =0

_ 1
q(a)— _a(a)+ﬂ(a)
__2a(a)B(a)

B =@+ @

(2) Arrival on an orbit of specified energy and
angular momentum -

6 =5 [0 0) + BB — 55 —a(B) =0 (314)

ca=1r(b)us (b) —k(d) =0 (3.15)
with analogous relations for apocenter and pericenter
values o (b) and S (b).

(8) Specification of the vehicle mass at departure.
This is simply formulated by defining M* to be the
departure mass and gives the constraint

(3.12)

(3.13)

cs=u(@—1=0 (3.16)

(4) The orbital transfer should be optimized with
respect to propellant expenditure:

4 (b) minimum (3.17)
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The transversality conditions yield the initial and

final values of the adjoint variables. They are derived -

from the function of terminal values to be minimized,
(3.17) in the present case, to which the constraints
on terminal values are added by means of unknown
constant multipliers u, .

J = ﬂb)+2m

we find in succession

J J
Jo@ =55 =0  4®=—555

=0 (3.18)

and as a consequence the isoperimetrical constant

Ao =0 (3.19)
Also
dJ dJ
HoO=—g5rg=0 HO=5p =0 620
and as a consequence the isoperimetrical constant
H=0 (3.21)
Next we consider
A0S
A, (@) =@ r,'u—(la)-huzua (@)
- dJ
lu, (a) = D, @) M u, (@) (3.22)

dJ

Tw @ ~fate (@) + ps 7 (a)

)‘uo (@) =

and eliminate the unknown multipliers u; and u,
between them. The result, combined with (3.18),
turns out to be expressible in the simple form

Hy(a) =0 (3.23)
In the same manner there comes the result

H,(b)=0 (3.24)
after elimination of w; and u, between equations

¥J dJ
A, (b) = — o7 (b) Ay, b) = — 2, (b)
dJ
and consideration of (3.18).
Finally
- dJ
| A (@)= 5y = Hs
which gives no real information, and
2J -

This last result is very important, even if for con-
venience the A variables are scaled differently than
suggested by eq. (3.25), the end value of 1, must be
negative.

Equation (3.19) is a consequence of the absence
of specification concerning the polar transfer angle
and provides a considerable simplification of the
analysis. If the polar angle were specified to be 0, we
would have to add the constraint

B. FRAEI]JS DE VEUBEKE
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cg=0(0)—0(@—6=0 (3.26)
and we would obtain the transversality conditions
g (@) = Ao (b) = — pg

The actual value of the isoperimetrical constant As
would have to be determined by satisfaction of the
constraint (3.26). _

Also, instead of (3.23) and (3.24), we would have

ug (b)
r (b)

Hy (@) — 2 218 _

r (@)

H,(b) — =0 (3.27)

Equation (3.21) is a consequence of the absence of
specification concerning the transfer duration. Should
this duration be required to be 7', the following
constraint would have to be added:

=t(®)—t@—T=0 (3.28)

and would yield the transversality conditions -

H(a) =H (b) = u,

The actual value of H as an isoperimetrical constant
would have to be determined from the constraint
(3.28) itself.

As we shall see in section 6, the existence of
intermediate thrust extremal arcs depends entirely
on the isoperimetrical constants.

A final important remark is that 4,  and 4, cannot

vanish simultaneously for a finite period of time.
Hence the optimum angle g is never but locally
indeterminate. The proof of this statement relies on
the examination of the adjoint differential equations
(3.8). If 4, and 1, remain zero for some finite time,

we conclude from

dh,,
ai

= - lr + luo uo/r

that A, also remains zero. Then from

u? 2 Uy U,
_)'0 +}'“r( a_FJ_ Uy 7.20
that Ay has to vanish. With these results
dhy _
dt 2'0_—2}'“rr+}"“o'r

is identically satisfied. But the differential system for
(> R0, Ay,

» Ayg) is homogeneous in these variables.
Hence, by the requirement of continuity of the
multipliers, these adjoint variables will be zero
throughout the trajectory and so will be H,. Finally

the differential equation for 4, will reduce to

G _2ogpdy  with Hy=Lpk

and we can verify that w?A, = constant. Hence
either 1, remains positive, we have a single full
powered flight, but it is impossible to satisfy (3.25);
or A, remains negative and we have a single coasting
flight, in which case the problem is of course meaning-

less.
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4. Canonical Transformation to the (%, u, v) Variables

In [3] a convenient set of state variables was
used to simplify analytical results for impulsive
thrust.

The change from (r, u,, 4) to (h, u, v) is defined by

1 .u u,
h=—' U = L vV = (
r r

(4.1)

The corresponding change in adjoint variables is
readily given by the canonical transformation '

Adr + 2, du, + Ay, dug = Ay dh + A, du + A, dv
(4.2)
Replacing in the right hand side the differentials by

their values taken from (4.1) and identifying with the
left-hand side, there comes

1 . q %,
b= — iy — o A — i Ay
1
Ay =—Ay (4.3)
1
)'uo = ry }'v

with the help of (4.1) and (4.3) the hamiltonian
(3.1—3) can be expressed in the new variables:

Hy=—uhbl,+vig+ (*—u2—h¥) 1, —2uv i,
(4.4)

Hy=h(i,siny +d,0089) +ouky (45)

The optimal choice of thrust orientation can be
obtained from

sin1p=2,uv//1
A=VETR=r2

5. Differential Equations for Control Variables
From eqgs. (4.6) we can write

cos p = 4,/4 (4.6)

(4.7)

d o di, YH
ar Asiny) =5t =——4
d _di, _ H
ar (A eosy) =7 W

or, explicitly

sin zp%+Acoszpz—?=hlh+2uﬂu+2”1p

coszp%—/lsinqp%: — A —2v4,+2ui,
combinations of those equations yield, in view of (4.6)
id’tl= hi,siny — peosy +2ud  (5.1)
,A‘;—f:hlhcoszp—l—lo siny +2v4 (5.2)

Instead of the angular velocity of thrust orientation
relative to the local horizon, let us introduce its
absolute angular velocity

24

© =g
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where (Fig. 1)

x=0+5—v
so that
d do '
d—'f=w-—w=v—w (53)
Substitution into equation (5.2) gives
—wAd="hA,cosyp+ gsiny +vA (5.4)

This equation cap again be differentiated and the
differential coefficients of the state variables and
adjoint variables replaced by the corresponding

K////W

n
Fig. 1. Motion in a central gravitational field. 6 + 5 p=x

canonical equations. For the derivatives of A and v,
use can be made of eqs. (5.1—2). The end result turns
out to be

— A—c-f-;;’—=2w(hlh»si1np—lacosw+uA)—l—

(5.5)

Complete elimination of the adjoint variables is
possible at this stage if the assumption is retained
that the polar transfer angle is unspecified. Then we
have A9 = 0 and eqs. (5.4—5) are homogeneous in
the adjoint variables A and 4,. They yield a com-
patibility condition

dw
dt

+ 3 13 A sin y cos p

=20 (w+v)tany —2wu —3h3siny 6031/;
(5.6)
Equations (5.3) and (5.6) provide now a differen-

tial system to calculate y and w together with the
canonical equations of motion:

dh _ H _

o = an vk

do _ dH _

dt  di

du _ YH _ , 2 3 .

= Mu_v—u—h +abpuhsiny  (5.7)
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dv YH

TRV =—2uv+afuhcosy
du _ H 1 2

dt =34, — G O5H

In fact, if w is eliminated between (5.3) and (5.5),
one obtains a second order differential equation,
which can be identified with the one discovered by
FavurpEers [1]

dy dy \ (dy
W__2(W“”J (W

+ 3h3siny cosy + a S puhcosy

While FAuLDERS’ assumptions included constant
vehicle mass and minimum transfer time, his result
is seen to remain true for variable mass and any
optimality criterion but essentially for free polar
transit angle.

A useful addition to FAULDERS’ equation, or
better to the differential system (5.3—6), would be
a differential equation to decide on cutoff and relight.

This decision depends on the sign of H, or of a signal
s defined by

sA=H =hA+ph

vy
dit

(5.8)

—2v)ta,n1p—2u

when this equation is differentiated and the previous
results used, there comes

A(—Z—:—uh+2ue+%a£ys)+

+(8—h) hA,sing =0

This is again homogeneous in /A and 1, and, to be
compatible with (5.4), where 49 = 0, requires

2 u(h—28)+ @+0) (s — B tany——alus

(5.9)

Integration of this equation will provide a cutoff
signal whenever s crosses from positive to negative
values, a relighting signal if it becomes positive again.

All this is true whether the transfer time is spec-
ified or not.

Let us discuss the last case first. The end values
of the signal cannot be positive for then £ =1 and
a & H, > 0, which is incompatible with (3.21) and
(3.23) or (3.24).

On the other hand s (a) < 0 means that we have
to wait in orbit untill we get a lighting signal. During
this time no propellants are used, hence, except a
difference in elapsed time which is by definition
unimportant, we can adopt s(a) =0 for the be-
ginning of the trajectory. Similarly we can end the

trajectory, without loss of significance, when s (b) = 0. -

Since § is an ignorable coordinate we can also
adopt 6 (a) =0 without loss of generality. With
p (@) = 1, the only initial values that remain to be
chosen are u (a), v (a), k(a), v (a) and w (a). They
are already related by the constraints (3.10—11) but
also by a third constraint stemming from (3.23).
Indeed, using eqgs. (4.6) ’

Hy= —uhi, +

+ A [(v® — u? — k%) sinp — 2 u v cos p]

B. FRAEI]S DE VEUBEKE
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Hence H, = 0 is a homogeneous relation between
A, and A; its compatibility with (5.4) requires

%(w+v) —2uvcos®y +
+ (v® —ut — A% sinypcosypy =0 (5.10)
and this has to be satisfied by the initial values. We
see that there are finally two degrees of freedom left
in the choice of initial values. At the cutoff signal
s (b) = 0, marking the end of the trajectory, the end
values of the variables should satisfy the constraints
(3.14—15), this would in principle be allowed by the
two initial degrees of freedom.

Although (3.24) indicates that the end values
must also satisfy (5.10), this is automatic because
(3.9) is only a consequence of egs. (3.8). Once H (a) =
= 0 has been enforced by s (¢) = 0 and H, (a¢) = 0,
H will automatically remain zero and enforce
H,(b) =0 when s (b) =0.

Let us pass to the case where the transit time
is specified.

This has no meaning unless we fix the state of
the system from which we start to count the time.
Hence the initial state variables & (a), u (a), v (@)
must all be specified and not only be limited by the
constraints (3.10—11). This removes the transver-
sality condition (3.23).

This time y (@), w (@) and s (a) are three degrees
of freedom. The constraint (3.24) remains, hence
(56.10) and (3.14—15) must be satisfied when the
integration is stopped at the specified end time.
Those three final constraints correspond in principle
to the three initial degrees of freedom.

On the basis of the preceding results it is easily
proven that, if neither polar transit angle nor du-
ration are prescribed, there are no intermediate
thrust extremal arcs. The possibility of intermediate
thrust hinges on

H=0o0rs=0 (5.11)

being - satisfied during a finite time interval, so that
the application of the maximum principle leaves &
undetermined. The level of thrust is actually de-
termined by exploring the consequences of (5.11);
first on (5.9) that reduces to

% = (w -+ v) tan p (5.12)
This, in turn, reduces (5.6) to
d .
T‘;’=—3h3smzp cos ¢ (6.13)

Being satisfied during a finite time interval (5.12) can
be differentiated and all the derivatives substituted
from the hamiltonian equations of motion, (5.3) and

-(5.13). The resﬁ.lt is

w? = A3 (1 —3 sin?p) (5.14)

If, in addition to A3 = 0, we add the condition
of free transfer duration H = 0, this reduces by
virtue of (5.11) to Hy = 0. Hence (5.10) is satisfied
during the same time interval. Substitution of (5.12)
into (5.10) yields

siny cos y (w? — h%) =0 (5.15)
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The only solution to (5.12), (5.14) and (5.15) is

siny=0 =0 o?=hd

Then duf/dt =0, and from the corresponding
hamiltonian equation

v — h3
Also from u = 0 follows
~ dh
= 0 h = constant.

Finally dv/dt =0 and from the corresponding
hamiltonian equation of motion

£=0.

The only case where (6.1) can remain true for
some finite time under free polar transit angle and
free duration is a coasting phase along a circular
orbit. This agrees with the conclusions obtained
earlier in a slightly different way [3].

6. Canonical Transformation to y As a State Variable.
Intermediate Thrust Ares Under Specified Polar Angle
and/or Transfer Time

Differential equations for the angular velocity of
thrust orientation and rate of change of a cutoff
signal can be obtained directly in the general case
by the canonical transformation

Ay, QU+ Ay dug = Aduy + Ayd y (6.1)
generated by the following change of multipliers:
Ay, =Asiny 4, (6.2)

Substitution of (6.2) into (6.1) and identification
produces the corresponding transformation of varia-
bles

= Acosy

U = u, sinp + up cos Y
(6.3)
Ay = A (ug sin y — u,, cos )

It is a requirement:, of optimality that the multi-

pliers remain continous along the trajectory. Hence
the angle v, defined by the transformation (6.2) will
also be continuous. Eq. (6.1) shows that it becomes
a state variable and, by virtue of the maximum
principle, it is identical with the optimal angle of
thrust orientation. Inverting egs. (6.3)

. cos
u, = uysiny — 1, A'l’

(6.4)

sin

Ug = Uz COS P + A, -

Eqgs. (6. 4) and (6.2) enable us to express the
hamiltonian in the new variables:

Hy=2, (ulsmzp—}. cos'p)-l-____ .

.(uz cos p + A, S““”)—~ (6.5)
=2 51-:‘131[:_. + sy i A Ay? 81;1:”
H, =)~+cl/4 D (6.6)
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Among the hamiltonian equations of motion we

‘have now
dy _ H di _ H
A AR Y
while it is easily established that
d
2 (uh)=—atuH, 6.7)
so that the rate of change of cutoff signal is
dH, __ H 1
@ T T wm o tim (6.8)

This formulation is rather convenient to examine,
in the general case, the consequences of the chatter-
ing condition

H,=0 (6.9)

that leads to intermediate thrust arcs. First conse-
quences of (6.9) are: from (6.7)

<t <ty

A, = constant

then, from (6.6)
A = constant

This is a property discovered by LAWDEN [2] and
called by him ‘“‘the constancy of the primer”.

The constant cannot vanish; otherwise we would
have from (6.2) that both 4, and 1,, remain zero
during the chattering interval.

This was proved impossible at the end of section 3.

As a modulus, 4 is thus a positive constant; by
writing

A=1 (6.10)
we simply fix the scale of the multipliers during the
chattering period. Differentiation of (6.10) produces

YH
du,

cos w

= A, sinp + (A + 4y) =0

(6.11)

If this is used to eliminate A, in the hamiltonian
equations, we obtain considerable simplifications:

du;, _ dH _  Ay(e+Ay) smzp

dt A 7 sin +adu
dy dH _ g+ Ay coswp sin y
dt — Dy  rsiny Tu——t Al —
dly _ _ dH _ u;(he + Ay) 4. o8y
Y] rsiny 73

We differentiate (6.11) again in the form

cot 1p -0

A+ (Ao + Ay)

and replace all differential coefficients to obtain after
reduction

siny (1 —3sin2yp) = r (g + Ay)?  (6.12)

Finally, because of (6.3)
H=H,

and we know that H is the 1soper1metr1cal time
constant.

Replacing H, by (6.5), simplifying by (6.10) and
(6:11), and rearranging: _ghaves
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sinyp (Biny + r2H) =12, (4 + 4). (6.13)

Equations (6.12) and (6.13) yield r and 1, as

algebraic functions of sin y. They are fully equivalent
to LAWDEN’s equations (89) and (90) of [2].

The correspondence with LAWDEN’s notation
appears to be

Apy=w the orthogc;na,l projection of the velocity
vector on the normal to the thrust vector,
o=—4A4 H=—-C

so that LAWDEN’s constants 4 and C are recognized
to be the isoperimetrical constants of the problem.
Further differentiation of (6.12) produces

tan y (3 — 5sin? y) uy +
+ 44 + (34 5sin2y) A, =0 (6.14)

so that u; is also expressible as an algebraic function
of sin y. The next differentiation gives the value of
a & u, that is the level of thrust required. The differ-
entiation procedure can be stopped at this stage for,
if continued, it would merely furnish the successive
differential coefficients of £. To complete the inte-
gration of the problem we can construct dt/dy,
db/dy and d (1/u) [dy as functions of y, so that ¢,
0 and 1/u are solved by quadratures.

LAWDEN has examined in detail the case H = 0,
which is now seen to correspond to a specification on
the polar transit angle only. The other special case
A9 = 0 where the only specification is on transit time
is also simple. The intermediate thrust arc is also a
kind of spiral with the property

3sindy=—12H

7. An Orbitally Linear Formulation

A formulation that is linear, except for the pro-
pulsive terms, is obtained by taking 0 as the inde-
pendant variable and by the single transformation

g =—1 (7.1)

U

The new variable z is the reciprocal of the angular
momentum. Denoting by K the new hamiltonian we
perform the canonical transformation

A dr + 2d6 + 2, du, + A, dup + Apdp — Hdt =
=A,dz+ A, dt + A, du, + A,dus+ Aydp— Kd

Differentiation of'A(7.l), substitution and identi-
fication produces

A= —22up A,
o= —K
z'u,.‘__— Au,

A=A, — 24 (72)
“0— %y Uug z

}.”=A” -
H=—4,

In the last equation the hamiltonian H can be
replaced by its expression (3.1, 2, 3) and the old
multipliers replaced by the new ones. Solving for K,
we find

K=K, +atuk, (1.3)
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A
= u% + (up —2) A4, —u, 4, (7.4)

1 . A,
K, = P (4,, siny + A, cosy) — Wcoszp +
+ mg.{l” (7.5)
In this formulation
dK _ YK _ dd, 3K _
0 =26 -0 Gg =" =0

K becomes the isoperimetrical constant for polar
angle specification, 4, the constant for time speci-
fication.

This is also clearly indicated in (7.2). Just as 6
was previously an ignorable coordinate, so becomes ¢:

dt K _ 1
de — 24, zu}

can be integrated separately when we require infor-
mations on the timing of the trajectory.
The other hamiltonian equations of motion are

(7.6)

dz cos
qp = b u}
du,_ sin y
a6 —ztalp— zud
d (7.7)
ug cos
—0——u,—|-a§y z ug
du
_O_a'f'u czu}
and
dA, bKl
do z’u2 +A —a.f,u
a4, - A
o o 9
ddy 24, bK, '
—— =4, —aé
a6 - zu Uy L
d/lp _ aE,u
do =—afK —— s czul i

This formulation is specially convenient for the

- integration of the orbital motion & = 0. The following

integrals are readily obtained

2=2 (7.9)
u, = Asinf — Bcos (7.10)
ug = Z + Acos 0 + Bsin 0 (7.11)
u=M (7.12)

" Zisthe reciprocal of the constant angular momentum,

A and B are orbital constants related to eccentricity
and argument of pericenter by the identification

_’17=zue=Z(Z+Acosﬂ+Bsm0)=
= Z2[1 + ecos (6 — 0,)]

whence

A= Zecosb, B = Zesin 0, (7.13)

.The energy integral is
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The corresponding integrals for the adjoint system
are obtained as follows. We set
60 —6,="f
the true anomaly, and
A4, = Psinf+ Qcosf

Ayy=Pcosf— Qsinf (7.18)

Then from egs. (7.8) with £=0, P and @ must

satisfy the differential equations

P 24, cos f

d6 ~ " Z* (1+ ecosf)?

iaQ 24, sin f (7.16)
d0 -~ " Z* (1 +ecosf)p

The required quadratures are best obtained by
transforming to the eccentric anomaly E, defined in
the elliptic case 0 <e <1 by

1—e
]/ TFe tan
With P, and @, denoting the values of P and @ at
pericenter E = f = 0, we find

(7.17)

24,
Z4 (1 — er)'s

3 e .
—?E—Zsm2E]

24,
Q=QO_Z—‘(1—_ieT),[l—cosE—

P=P,+ [(1 + e?) sin B —

(1.18)

— %(1 — cos 2 E)]

Hence ﬁnaﬁy
(1—ecosE)A4, =
=P,(1 —e?)"sin E + Q, (cos B — ¢) +
4
+m[2 (1 +¢) (1 — cos E) +

+2 (1 — cos 2E)—3EsinE] (7.19)
(1 —ecosE) A,

— Qo(1 —e?)"*sin B +

o= Po(cos B —e) —
——L,—[3eE’—- '
Zl(l,_ez)/a
—3EcosE-|—(2—26—232—%e3)sinE+

+ie2sin.2E—isin3E]

> ; (7.20)

P, and @, are also the respective values of 4, and 4,

at pericenter. To integrate A, it is easier to form the
combination

uo + 22
2 9,8
22 uf

.y 3+ ecosf
Tt Z4(1 + ecos f)3

d
W(Az + Auo) ='At

(i.21)
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We find
A
Zs (1 — e2)'hs

+e(e2—5)sin B+ 5 sin 2 E]

A,y + WE+

(7.22)

and at pericenter the value is R, — P,,.

The orbital behaviour of the multipliers is now
completely known; A, and A, are constants, 4, , 4,,
and A, are given in terms of integration consta.nts
P,, Qo and R,

Since the ha.mlltoma,n K is constant, we must find
that for £ = 0, K, is constant. Indeed, substituting
the integrals into (7.4) it is found that

4
K0=K=6ZQO+W

The K®EPLER equation resulting from the integration
of (7.6) takes the form

(7.23)

— esin B

t - to + Z’ (1 2)31'

where £, is the epoch of pericenter.

These results allow to write down immediately the

orbital integrals in other coordinate systems by

means of the canonical transformation equations.

Simplifications occur if:

The polar transit angle is not specified,

(7.24)

K=0 (7.25)
Then (7.23) furnishes @, in terms of A,.
The transfer time is not specified,
A4,=0 (7.26)

P and @ reduce to constant values P, and @,. Hence
very simply

Au,.= POSinf"' QOCOSf

A,y = Pycos f — Qqsin f (7.27)
Az = Ro. _ Auo
K=eZQ@Q,
Neither polar angle nor transfer time are specified,
4,=0
K=0
A, = Pysin f (7.28)
A,y = Pycos f
A,=Ry— A4,

8. Orbital Transfer of Variables

The analytical integration of an orbital coasting
phase makes it possible to correlate the state variables
and adjoint variables at engine relight with the same
variables at the preceding engine cutoff. Such a
procedure, which accelerates the numerical integration
of an optimal trajectory, will be called an orbital
transfer of variables. It will be discussed in the
simplest case, that of free polar transit angle and free
transfer time.
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The signal function H,, as given by eq. (3.5), is
first transformed by (7.2) in :
=3 Sz \2T /s 1
H, = [A:tr'i‘ (Aua—u_o/lz) ] + 7/"‘4#
The signal becomes zero at cutoff and again zero at
relight. But, during the intermediate coasting phase,
both y and /A stay constant, consequently
2z 2
4+ (Auo ——-A,)

Ug

(8.1)

takes the same value at cutoff and relight.

If we replace in (8.1) the multipliers by the values
(7.28) they take along the coasting phase and
up = z (1 4 e cos f), we find; after dropping a constant
term P2, that

F __ (Pycosf— R,) (83 Pycosf+ 2ePycos?f — R,)
h= (1 4 ecos f)?

(8.2)

must take the same value at cutoff and relight. If f,
denotes the true anomaly at cutoff and f, the true
anomaly at relight, the equation

F(f)=7F(f,)

is algebraic of the third degree in the unknown cos f,.
It can in principle be reduced to a second degree
equation by removing the root cos f, = cos f,. How-
ever, before we discuss the general case, we shall
first investigate two limiting cases.

(8.3)

(a) The Case e =10

The coasting phase would be along a circular
orbit and (8.2) reduced to

F(f) = (Pycosf — By) (3 Pycos f — By) (8.4)
Eq. (8.3) yields in this case two roots -

cos f,. = cos
fr fe i 85)
0

o ___ _ — -0
cos f, = —cos f, + 3 P,
Moreover, since the true anomaly increases along the
coasting phase, we have the additional necessary
conditions

dF

—— <0 for f=/,

af (8.6)
>0 for f=/{,

for the signal function H, to exhibit the correct
changes in sign.
In the present case

dF D2

= —6P§smf(cosf—-
and we shall prove that this derivative actually
vanishes at cutoff in the limiting case where the
eccentricity also vanishes. Indeed, at any time during
powered or unpowered flight, the true anomaly of the
osculating orbit can be determined from

2 R“) (8.7)

3P,

zesinf  u,
zecos f up — 2

tan f =
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with
O<f<mifu>0

—a<f<0ifu<O0

This expression becomes indeterminate as u, — 0 and
% — 2z with e - 0. But the true value is then

_ dujde 1
tan f = o —yae = o tany
according to eqs. (7.7). This can be transformed by
(3.4) and (7.2) into
1 Ay,
tan f =5 dufhu = 504, —

Thus, if cutoff occurs for e = 0, we see from (7.28),
that

P, sin £,
2 (2 Pycos f, — R,)

tan f, = (8.8)

This relationship between true anomaly at cutoff and
the parameters P, and R, can actually be satisfied
in two ways:

Provided |2 Ry/3 P, | < 1 one possible solution is

2 R,
3 P,

it makes (8.7) vanish at cutoff and both roots (8.5)
are seen to become identical.
Since then

F(f) — F (f.) = 3 P§(cos f —cos f,)* >0 (8.10)

there is no finite time interval during which the H,
signal remains negative. The second possible solution is

cos f, = (8.9)

sinf,=0 (8.11)
which also causes (8.7) to vanish at cutoff.
From
aFr 2 R
Toos7 = 6 P2 (cos —-5 ?:) (8.12)

it can then be concluded that the signal H, will
become negative after cutoff provided

§ﬁ°<l if cosf,=+1

[}

2 R, . (8.13)
3P0<—1 if cosf, = —1

Now, from (3.5), (3.7) and (3.8), remembering that
Ao =0, we find

dH i 1 —
. 1 __é_aglqu

dt ~  dt

- and evaluation of dA/d¢ under the assumptions

e=0(u,=0,ui=1/r),sinf=0(siny=0, 1, =
= 0) produces

di
@ =0
Hence at cutoff H, =0
‘ dH, . _
it =0 for £=0 or &=1

~which agrees with dF/df = 0. Moreover
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d*H,
der

a2

T for £=0 or £=1

and, after evaluation,

2
aLlp ji, cos fc(sf; — cos f,,) (8.14)
This second derivative is continuous at the presumed
cutoff point and, according to (8.13), is negative.
But then the signal H, was also negative before
cutoff, which contradiction finally rules the case
e = 0 completely out.

(b) The Case Py =0
Expression (8.2) is reduced to

R}
F =(l + e cos f)?

For e < 1, the only root of (8.3) is
cos f, = cos f,

one of the solutions of the general case.

The signal H, will be negative between f, and f,
provided cos f > cos f,. The true anomaly at cutoff
will therefore be negative — m << f, <0 and f will
reach f, = — f, after passing through the pericenter
f = 0. This conclusion will be verified by the d.lscussmn
of the general case.

It should be noted here that P, and R, cannot
vanish simultaneously; this would induce 4, and 1,
to vanish for a finite period of time (the coasting
phase) and this situation was recognized to be im-
possible at the end of section 3.

To discuss the general case, we substitute

P,

= u
Up ze T

z __ Py 2?

Aup — WA‘_ ze [ua T Tue
into (8.1) to produce

( Py )2[u3 + ui— 2z2[

(ot
Tl

Having dealt with the special cases P, =0and e =0

we cancel the constant factor in front, drop the
constant term of the second bracket and conclude that

eR0)

ze

el.:l'io)_'_

w4+ 2o (14

takes the same value at cutoff and relight.
However, from the energy integral,

u 4+ uj — 22 up

remains constant during the coasting phase. Hence
by substraction and cancellation of the constant
factor z, there comes

e By \2

)

Equating this expression for the cutoff value up = =
and the relight value s = y we solve the third degree
equation in y. It has two significant roots

za
21+
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Y =z (8.15)
y' =xz@0+)o?+20) (8.16)
where
1238 eR, 2
a—z(?) (1+ o) >0 (8.17)

The third root, corresponding to a minus sign before
the radical in (8.16), must be discarded as negative.

The cosine of the true anomaly f’, corresponding
to y'', is given by

y' —z=1zecosf"’
It exists only if
(Y — 2 <2t = Ul + (up —2)?), (8.18)

the right-hand side being evaluated in the cutoff
condition. If this existence test fails, the only solution
is (8.15). If it succeeds, the choice between (8.15)
and (8.16) can be decided by a second test, illustrated
on Fig. 2.

/

Fig. 2. Symmetrical and asymmetrical relighting conditions

(1) (¢ —025)u, , >0

This occurs if, for example, the radial velocity at
cutoff is positive and ¢ larger than 0.25, which makes
yu > z.

The cutoff condition is located in 4, on Fig. 2,
where the radial velocity is positive. The relighting
conditions based on (8.16) are located in ¢ and D.

The vehicle passes first through B which is the

relighting condition associated with (8.15).

Similarly, if the radial velocity at cutoff is negative
and o smaller than 0.25, the cutoff condition is in B.
Because y'' <<« the relighting condition (8.16) is
located in £ and F. The vehicle passes first through 4,
associated with (8.15).

"‘q\les

(2) (c—025)u, , <0 &

For a positive radial velocity (cutoff pcg A
vehlcle passes first through F, which is ( 25 a
y'' < x) a relighting condition given by (8. (8.1¢).

®
<,

3’
Q
o
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For a negative radial velocity (cutoff point B)

the vehicle passes first through D, which is (¢ < 0.25.

and ¥’ > z) a relighting condition given by (8.16).

As e — 0 and consequently z — 44, ¢ tends to 0.25
and y'’ tends to y’. Due to this double root the period
during which the signal can be negative wvanishes.
This agrees with the. discussion of the case e = 0.
As P, — 0, ¢ becomes very large and y’’ also, causing
the true anomaly associated with (8.16) to become
imaginary. The only solution is (8.15). This also
agrees with .the conclusions of the case Py = 0.

In conclusion it is seen that we can rely on the
two tests (8.18) and sgn (¢ — 0.25) u,, , to decide on
the relight conditions:

(1) The Symmetrical -Relight Condition

It is located Symmetrica]ly with respect to the
major axis of the coasting orbit.

The variables z, ug, u, 4,5 A, and A, retain
their cutoff values. The variables u,, y and 4,
change sign.

(2) The Asymmetrical Relight Condition

ug, , = up (6 + |/ + 20)

_ k4
0—273' .
I/ 2 — )2 \2
-(z—l—sgn(u,/lu)(‘/l‘—'_‘/l“") ui + (uo z))
i VA% + Al

(8.19)

Uy, ¢ = sgn(u,)l/uf +u3 _ug, r 2 z (up, r o)
(8.20)

All right-hand side values being cutoff values except
where indicated by the subscript r.

z, u and A, retain their values. The other multi-
pliers can be calculated from the following invariant
expressions

Ay 4,
Pr— “u 4, + AW, (8.21)
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