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The purpose of .this report is to deal with certain dlfflcultlesL aﬁgmg : 4
in the construction of equilibrium models and displacement models of
~finite elements, yleldmg upper bounds or lower bounds to static influence
- coefficients.

The constraints imposed on the number of parameters of the displace- '
ment field or the stress field, in relation to the number of generalized
~ coordinates, in order to achieve either continuity of displacements or
continuity of stress transmission within the structure, are sometimes -
hard to satisfy. Two cases are presented, a displacement model for
bending and an equilibrium model for stretching, where the difficulties
are removed by a particular groupmg of elements in a larger bu1ldmg.
block.
. To make the report self-contamed the dual theories of dlsplacement,
a.nd equilibrium models are br1ef1y reviewed. :

DISPLACEMENT MODELS (Reference 1, 2 and 4)

The dlsplacement field within the element is approx1mated by a linear superposition of a
finite number of displacement modes, including the rigid body modes. The unknown intensities
@; of the assumed modes are the parameters of the field and form the coordinates of a column
matrlx Q. From the parameters of the field we pass to a set of generahzed d1sp1acements
q accordmg to the fillowing rules: : _

a. Along each boundary, where the element is to be ]omed to a neighbormg element,
complete set of boundary displacement modes, compatlble with the parametric field, is chosen..
The generalized dlsplacements pertaining to this boundary are defined to be the intensities of
these boundary modes. : :

b. The same boundary modes are valid for the newhbormg element. In this manner,
equatmg the corresponding generalized displacements secures complete continuity of the
dlsplacement field across the elements.

The justification of these rules is that the resulting d1sp1acen1ent field for the whole
structure is piece-wise dlfferentlable and lower bounds are obtamed for static 1nﬂuence
coefficients.

Since the boundary modes are deduced from the parametnc dlsplacement field, a linear
relationship is always available between the parameters Q; and the generahzed displacements
¢:|l ; in matnx form
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On the other hand the strain energy of the element is always avallable as a quadratlc form
in the parameters , ‘

“"T a Aa (A=AT) - | (2)
- Three cases must then be distinguished:

Case (a)

The ‘simplest case is when the number m of generahzed displacements is equal to the
number n of parameters and Equation 1 appears as a linear transformation with a non-smgular
matrix S. There is a remprocal transformation ,

@a=Tq  with  T=s" (3
- The strain energy can be written as a quadratlcform in the generalized dlsplacements
U-?q K q' with K=T AT (4

Let gdenote the column matrix of statlc generalized loads ass001ated to the generalized
displacements. Then, accordmg to the theorem of CLAPEYRON :

V and, since this is true for any qQ matrix, v _
9 =Kaq o (5)
and K is the ¢‘gtiffness matrix’’ of the element.

" Furthermore, cons1dermg Equation 3, the displacement f1e1d uis expressible as a hnear
superposition of ‘‘q - modes” Wj

ZqW(x.y,z) | - (e)

- The physical SIgmflcance of generalized loads is obtained by substltutlon of this express1on
_into the virtual work equation '

ng=Zq 91=I

> > ->->. Do
X-u Jv,+fp-uvdS‘ ' ' (7)

_where X denotes the actually applied body forces andp p the actually apphed surface tractlons
Identlflcatlon of the coefflclents of the qj on both sides gives

| 9 = [X- Wjdv-i-fp was | | - (8)
S0 that the q - modes appear also to be the weightmg functions of the applied loads..
Case (b) |

When the number of parameters exceeds the number of generalized d1sp1acements requlred
for continuity purposes (n > m), one possible procedure is as follows:

Take a complementary set of (n - m). generahzed displacements, represented by the
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column-matrix r, so that ‘ ' ' \
raqy. , : :
| - [7]- sa |
is a non-singular transformation, whose reciprocal can be written

@:=Toq+T,r o | Rt

The displacement field is then expressible in terms of q- inodes and r - modes
- | , |
lu-Zq,W-i-Zrka : (10)
Substltutlon of Equation 9 into 2 shows the stlffness relations to be
0q = Kgq @ +Kge 7 , | | un
9 = Kqat Kee ¥ o | ’ (i2)
with ' ' -
- .
Kaq " Tq ATq

[ : ) .
Kee =T, AT,

where 9qis the set of generahzed loads related to q and g,tor. If one operates with the
complete stiffness matrix S

Kaq Kqr

Keq Ker

one introduces unnecessary constraints of continuity between the displacement fields of the
elements, which is equivalent to lowering the bounds obtained for the influence coefficients.
A final step in the procedure is therefore the elimination of the complementary set of
generalized displacements. Because the q - modes necessarily contain the rigid body degrees
of freedom, the matrix K, is non-singular and r can be taken from Equation 12 and sub-
stltuted into Equation 11, yielding :

L | .
g:gq_l(” 9, =Kgq . (13)
where ' |( = Kqq ~ Kqr K','r' Keq o (14)

This expression of K is the operational stiffness matrix of the element. It must be noted that
the set of generalized loads associated to q is thereby modified. With the notation

|
K rr = ( f j k )
the welghtmg functions of the new loads are displayed in the result

9 Ind -(wj - iju Vk)dv_+f P -(wj - Zfik V1 ds (15)
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The procedure described has the advantage of keeping track of the. physwal significance of
the generalized loads and also of yielding information on complementary generalized dis-
placements of physical interest. To this purpose the equations v \

’ = -1 —
r K" .. (or vqu q)
can be kept in slow memory and computed after solving' for the q - modes. The spar element

model, whose correctbehavior inbending has been a source of difficulties, is an example. where
thls procedure gives excellent results (Reference 6 and 8).

Case (c) -

The worst case occurs when the number of generalized displacements, necessary for
continuity purposes, exceeds the number of parameters (m > n). In most of these cases an
increase in the number of d1Splacements modes (parameters), besides complicating the model,
also increases the number of boundary modes, so that the inequality persists. The boundary
modes never form an independent set and it proves impossible to set up a stiffness matrix.
However, as will be shown later, it is sometimes possible by direct analysis to obtain
continuity of displacements and independent boundary modes for a group of such elements. The
success depends on the geometry of the boundaries internal to the group. A case in pomt is
represented by the quadrilateral plate in bending (Reference 7).

- EQUILIBRIUM MODELS (Reference 6)

The stress field within the element is approximated by a linear superposition of stress-
modes. Each stress-mode satisfies internal equilibrium conditions. For the sake of simplicity
it will be assumed that these conditions are homogeneous, although the theory can be extended
to cover the case of equilibrium in the presgence,of body forces (Reference 6). The external
loading of the structure must then be conceived to take place through surface tractions
applied along the boundaries of the elements. The unknown intensities 3;of the stress-modes
are the parameters of the field and form the coordinates of a column matrix .

. From the parameters of the field we pass to a set of generahzed loads gj according to the
following rules: :

(a) Along each boundary, where the element is to be joined to a neighboring element, a
complete set of boundary surface traction modes, compatible with the parametric field, is
chosen. The generalized loads pertammg to this boundary are defmed to be the intensities
of these surface traction-modes. ‘

(b) The same boundary modes are valid for the neighboring element. In this manner we
can obtain, either by reciprocity of generalized loads, or by equilibrium with an external
loading mode of the same nature, complete continuity in the transmission of stresses.

The justification of these rules is thatthe resulting stress-field of the whole structure is an
equilibrium field, thereby providing upper bounds to static influence coefficients. Since the
boundary surface traction-modes are deduced from the parametric field, a linear relationship
is always available between the parameters B of the field and the generahzed loads g; in
matrix form :

g=CB B 3 ' (16)

where C is the load connection matrix. As will become evident later, it is a rectangular matrix,
the number of rows (generalized loads) exceeding the number of columns (parameters) by at
least the number of rigid body degrees of freedom : : o
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On the other hand the complementary energy of the element can always be expressed as a
q_uadratic form in the parameters:

I B o |
! B .W‘zﬁpﬁ' (17
The symmetric matrix F, the flexibility matrix of the element, is necessarily non-singular.

The physical mterpretatlon of the generahzed displacements is obtained by virtual work
considerations. Let :

Zg. ’5? | | (18)

express the decomposmon of surface tractlons in modes for a gwen boundary b. Then by
definition of virtual work along this boundary, . v

> ”—> > > > _ : ‘
jt; peudSs= Z gj j; Pj‘ * "' ds = Z gj Qj ‘, . (|9)
Hence ' ‘ ‘
- [ ® T ds | |
G744 it @ (20)

and the generalized displacements are weighted means of the displacements along the boundary
under consideration, the surface traction modes playing the role of weighting functions. It
should be noted that, unless the internal deformation field turns out to be mtegrable, no other
information is available about d1sp1acements than the above weighted averages.

A stiffness matrix for the equilibrium model is now easily built up by an appeal to the
complementary energy principle. To this purpose, all the generalized displacements are
considered to be specified quantities and the ‘complementary potential energy expressed in
terms of the parameters

-9 q=—- BTcT q

The principie A o

| 3 BT»F B - BT CT q minimom | |

where: the parameters can be varied independently, yields the compatibility conditions
| | FB:=c"q - (21)

From Equations 16 and 21 follows then |
=cB=(cF' ¢cThq (@2

In other words, the stiffness matrix of the element is

K=CcF ' ¢ - o (@3)

In contrast with displacement models, a discrepancy between the number of parameters
and the number of generalized loads does not effect the usefulness of the model through the
possible appearance -of spurlous k1nemat1ca1 deformatlon modes.. Observe first that the
homogeneous system

cCB=0 —— B= o (e
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has only the trivial solution B o. Indeed, referring back to the non-homogeneous system.
Equation- 16, it is tantamount to stating that in the absence of external loads (9 = 0) the
internal stresses must vanish. As a result, and because F is non-singular, the solutions of
the homogeneous problem: :

Kq=o0 ’ (25)
are all contained in the homogeneous problem
¢l q=0  (26)

Problem Equation 25 aims at discovering the dlsplacement systems that leave the element
unstressed. ngld body modes :

| Q= v, i=,2...r | ' ' (27)
are certainly solutions . : | v A
Cc "(i) =0 / (28)

and are generallytobe found by elementary considerations. Hence the number m of generalized
loads certainly exceeds the number n of parameters by the number r of rigid body freedoms:

m 2 n+r o - (29)
Howevei', because of the property Eqﬁatlon 24, c is a (n x m) matrix of rahk n, so that the
number of solutions of Equations 26 and 25 is exactly m - n. Therefore, if Equation 29 is not

an equality, other displacement systems appear thatleave the element unstressed they are the
kinematical deformatlon modes:

= . T . - - *
q = z(j) } C t(j) 'io j = I'A +'l,.v..,m (n+r) (30)

From the structure Equation 23 of the stiffness matrix it is also obvious that

- T - ' -
| "(i) K=o z(j) K'o.
and, consequently, that '
T - .
p 9°° | | (32)

Equation 31 expresses the external equilibrium conditions of the element under the applied
loads; Equation 32 the additional constraints on the applied loads due to the kinematical
deformability of the element. These constraints constltute the undesirable feature of some
equilibrium models.

Another feature of equilibrium models is the appearance of kinematical freedoms in a group
of assembled elements. Each element undergoes a rigid body motion but the group is able to
distort. A case in point is the quadrilateral plate formed of four triangular panels, each of:
which is under a plane state of constant stress (Reference 3). A way out of this difficulty is
a suitable geometric pattern for the assemblage, whereby the constraints on the external loads
can be satlsfled 81mply by avoiding loads on the internal boundaries. of the group.
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If the elements are sufficiently sophisticated to prevent relative translations and rotations
when assembled, the previous difficulty does not arise. However such elements have a tendancy
to produce their own kinematical modes. Two ways are open to remove the difficulties. The
first consists in sacrificing perfect stress transmission across boundaries by a reduction in
the number of generalized loads. The deficiency in stress transmission should be statically
equivalent to zero along a boundary so that its effect can be expected to be small, by appeal
to the de Saint-Venant’s principle. The potential energy of the removed loads should be
converted into complementary energy, if the model is still required to give upper bounds
to the influence coefficients. This canbe done when the mternal deformation field is integrable
(Reference 6). :

The second way out is a grouping of the elements in a larger building block, where, by
suitable geometry and avoidance of externalloadingon the internal boundaries, the constraints
on the loading of the external boundaries of the group are removed. This is very similar to
the procedure for avoiding group kinematics and will be illustrated by the l:rla.ngular panel
under a plane state of linearly varying stresses.

A DISPLACEMENT MODEL FOR PLATE BENDING

This model illustrates the idea of grouping a small number of simple elements, with a
suitable geometry, to provide the correct balance between number of parameters and number
of generalized coordinates.

The theory developed by G. SANDER and the author (Reference 7) is presented here with

considerable simplifications due' to the adoption of oblique coordinates, In rectangular.
coordinates (§ , m), the strain energy per unit area according to the Kirchhoff theory is

' -n{ L , 2 (1 _ .
w ’-D(Z (W€€ + w")"], =( V) ‘wff w__’r’) wf‘ﬂ)) 33

Now let the 7 axis turn to form an angle g with the other. This will be our (x, y) obhque
coordinate system. We have '

Q=9 Q. _L_ | 3
o6 ox on - sin a ( cos @ "3y )
and consequently | _
| I
w =—-l'—(w —cos aw,, ) ' | (34)

€n  sinae MY

| ' 2
_w.’.r,’ sinZa (w -2cos a w‘y +cos a wy, )

Noting that the correspcndence between surface elements is
_ d§ dn =sina dx dy
the strain energy of the plate in cblique coordinates turns out to be
U=' ! ) {(w- +.w  —2 cos aw )~z -Zs-inza(l-v) (-w )
2sin° a XX yy Xy ' xXx Vyy ny }dxdy
‘ (35)
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We adopt for the vert1cal deflection a complete cublc parametric fleld
w-a|rl-_azxi-aay +a,x +-2asxy -I—asy

| - | |
| +4(a, x> + agxy + agxy’ + agy’) (36)

Suppose the plate element to be trlangula.r, two of the sides bemg defined to be x = o0 and y=o

respectively. .

2 - 3

Along y = o we have . .
’ w=a +a, x+ a,x +4a, x

37

wy -d3+205x +4a8x

Hence deflections and slopes along this side depend on 7 parameters or7 boundary displace-
ment modes. We can infact express the parameters in terms of a triplet (deflection + 2 slopes)
at one vertex, a second triplet at the second vertex and a transverse slope at mid-distance.
The total number of generalized displacements required for the triangle is then equal to 12
(3 triplets at the vertices and 3 mid-distance slopes), while the total number of field param-
eters is only 10. One easily convinces oneself that there is no escape from.this dlfflculty
by modifying the geometry of the element. If we complicate the field by quartic terms, we
need only two out of five possible and there is no guidance as to which one should be chosen.
Indeed there is every reason to suspect that, unless some preferential direction is desirable
in the approximation, we would ruin the isotropic behavior of the element by some arbitrary
choice. :

It will now be shown that if the element is grouped at the outset with three other ones, as
indicated on Figure 1, perfect compatibility in deflections and slopes is achievable for the
quadrilateral panel as a whole. Let Equation 36 be the field of triangle 1. Then, according to
Equation 37, the same values must be retained for the parameters(a,,a,a s, @4, s, @7 andag)
‘of the field of trlangle 2, in order to preserve continuity of deflections and slopes along the:
internal boundary between the two But the three remaining parameters can be arbitrarily
changed to some other values(a a anda ). Similarly, by noting that along x = 0

w

, 2 3
‘a' +a,y + ay + 4a,y
@8)

_ _ 2
- w, a, +2a,y +4a,y | '
-Compatibility between fields 1 and 3 is achieved by keeping (a' @, , Q.0 '05 and g o) but
changing the remaining three to new arbitrary values (a .a' and aa) Tﬁe last field, field of
triangle 4, is now compatlble with both fields 2 and 3, if descrlbed by the parameters (a, @y
Q3,04 Q QA7 dgs Qo and Q). In other words it must incorporate both'changes and this 1s pos-

sible because the changes affect different sets of parameters;

The total number of parameters is now increased by six units and equal to-16. The total”
number of generalized coordinates needed along the four sides of the quadrilateral is also
16 (four triplets at the vertices and four mid-distance transverse slopes). The major burden
of the analysis is toinvertthe q =S @ relationship. It is desirable to do so analytically, both for
accuracy in the numerical work and to establish the weighting functions capable of translating
any external load into generalized loads. This burden is considerably reduced by the simple
geometry provided by the oblique coordinates. One method consists in using the triplet

= = : AL W, .
a, = v, @7 Y%, 0 3. y,0 -
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(the deflection and slopes at the origin) as auxiliary unknowns. In each triangle the seven
remaining parameters can then be solved in terms of these unknowns, the triplets at the two
other vertices and a transverse slope at mid-distance along the external boundary This
program entails no more than the solution of systems of order two.

Identification of the expressions found for the same parameters furnishes. a system to solve
for the remaining unknowns. The final result is broken down for presentation as follows: a

column matrix of vertexdisplacements is denotedby w,column matrices for vertex slopes are

denoted by w, and Wy, a column matrix for x-slopes ‘halfway is denoted by

For the correspondmg row matrlces
[w' W, Wy w 4] :
["”x g Wx 2 W3 "‘x.4]
[ “"y,s Wy 4 ]

¢‘=[¢12 ¢23 b1 ba ]

The first three parameters are needed only for establishing weighting functions, not for energy
computations: _

a,
[QZ] :A'+Awa +Ay“y+A¢¢

‘ a3
with
A = X, —Xg 3 o -3 (o]
o o o ©
| %, x5ly, =y,) 0 =Xy Xy (ymy) (o]
A, = -3x, (y, - -3y, (x, - 3 = 3 -
X8k —xz)(yp myg) X? 0’2 y4) Y4 ;' x3) .x3(y20y4) Yz“’;u x3)
I
| (0] 0 0O O
Ay = 0O 0 0 o
X, ~ X3
-x 0 x, O
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P TR X3 Yy Xy X3 Vg <X X3¥e X X3V,
[ 2 , ) .
=— - 3%,y -3x3 ¥y 3%z Y -3x; y
¢ 30x, -x3)yg-ya) 1 Ya ~9%3 Vs 3 V2 ‘W Y2
) . ' 3){. X3 -3 x.| 13 ‘3‘| x; -3x| 13
The curvatu're. mat:rix; ' ' _ .
; : L Wxx ‘ . : : ' :
YV E Wxy 12% t8x Y +8y Yy, o (@39)
’ Wyy o ' . L

leads to a presentation of the other parameters as:
7°=[a5 ] =T w+l, wx+r w,+r ¢ (40)
Qg

The (3 x 4) matnces l" l" F r¢are glven in Appendix B. They are submatrlces of a
(3 x 16)

I:> :(roo 'l": l-oy‘ ro*,

such that - r - o '
, o =1, @ ' - (41
where the order of generalized diéplacements is taken to be

y
Similarly S
3a, 1. .
‘%=l e |=T aq | (42)
ag o
and
Qg " : _ _ :
7y=-°s]'=.ryn o o (43)
3ay0 : '
where the submatrices of I , and '\ -
Cp el Pt p?, e oo P pd
I, =(r, I, Px’_rx) ' I, (.ry_ Iy ry,ry)

are given in Appendix'B.

872



AFF_DL-TR-66-80 ’

The stram energy Equation 35 can be wrltten in matnx form, using the curvature matrix, as

o U-—ff D()’ H)’)dx dy \ (44)
with | - | |
| | : —2cosa » (v sinza+cos2 a) 1
H= —5— | -2cosa dcos’a + 2 (1-v) -2cos a ' ‘ (45)
sin”-a 2 2 ' \
{vsina+cosa) —2 cos a o |

To obtam the contribution of trxangle 1 to the stlffness matrix, we substitute Equatlons 39, 41,
42, and 43, obtaining

-(I‘ HE,) A +(T) nl" +T, U A + (T uT, +I‘Tul" )A’
(@6)
+‘I‘xnvl;),A +(1" WT, +T) nI‘)A”Hl" L)a)’

with geometrical constants evaluated over the area of trla.ngle 1:
A° q [ f o dx dy :

= 16 ff' Dx dx dy o A{ =16 ff. Dy dx dy
AT =64 [f Dx*dxdy A =64 [l Oxy dx dy AYY =54‘jf.v Dy dx dy

For constant bending rigidity D, we have simply

A¥= — Dx%y . A -8 py 2

0 _ . A : x _ 8

Al-aoxl Y2 . ' 3 172 ' 3 1 Y2
16 [ I L. SN
Av =3 Dy, - Al Ew 0] yz* A =3 0nye

The matrlx operations .leading to K, are best performed numerically. To include the con-
tributions of the three remaining trlangles to the stlffness matnx, new matrices I'should be
displayed, containing the expressions of @, " as,a, ’ ao, a and a o interms of the generahzed
displacements.

" To save space, a simple rule can be given to perform the necessary modlﬁcatlons on the
submatrices of Appendix B, To pass from triangle 1 to triangle 2 it is enough to exchange the
subscripts 2 and 4 éverywhere; this leaves invariant the expressions of the parameters whlch
are still apphcable (a control -on the analytical inversion) but changes a, toQg , a, to a and
a, to a .-It also exchanges the order of the generalized dlsplacements wx 29 Wy 49 w yr 20
w Y, ¢,2 , ¢ ? and¢ 41 * SO that one is cautioned to restore this order by the correspond-
ing exchange o co umns in the submatrices. Similarly the exchange of subscripts 1 and 3 in the
field of triangle 1; produces the expressions valid for triangle 3. Finally the double exchange
produces the field for triangle 4. It should be observed that in the calculation of the geometrical
constants, each exchange of subscripts mustbe accompamedby a change in sign. The complete
(16 x 16) stiffness matrix

K=K +K, +K, +K,
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is now built up but expressed in ‘‘localdirections’’, those of the diagonals of the quadrilateral.
Should they be the same for all quadrilaterals, the stiffness matrix can be used directly. If
they are not, the slope directions should be aligned on two reference directions, common to
all the structural elements. x]

AN EQUILIBRIUM MODEL FOR PLATE STRETCHING WITH '
A LINEARLY VARYING STRESS FIELD

Remarkable raising of lower bounds.of influence coefficients were obtained in displacement
models for plate. stretching, when passing from the lmear displacement field of Turner
(Reference 1) to a quadratic one, keeping the basic triangular building block (Reference 6). It
is then natural to ask whether a similar lowering of upper bounds could be obtained by passing
from the constant stress equilibrium model (Reference 6), to an equilibrium model with
linearly varying stresses. Besides the obvious bettering of the approximation, one might
expect that such a model could avoid the kinematical deformation freedoms encountered when
assembling the constant stress models (Reference 6).-

It turns out that the assumption of linearly varying stresses leads to kinematical deformation
modes within the element itself and that the way of overcoming this difficulty by a suitable
assemblage of linear fields is exactly the same as that used for the plate bending displacement
model. This is perhaps not surprising in view of the known analogy between transverse
‘displacements in plate bending and Airy function in plate stretching. An equ111br1um field,
without body forces, is obtained for triangle 1, by the cubic Alry functlon :

A(x,y)——ox-+bxy+'2 2

| 3 | 2 | . 2 | >3
+ — +— + — —
6" T2Pxy T axy Tgry

This equilibrium field is

Cy =c+qx.+r'y,

T Ty Tbtextay (an

gy = a+mx+py

As shown in Appendix A, all this is valid in oblique coordinates, provided stresses are
defined properly. Along each side of triangle 1, we have 4 surface traction boundary modes,
as shown in Figure 2. According to the. equilibrium model theory we need 12 generalized
loads to ensure perfect transmission of these surface traction modes to the neighboring
triangles. Substracting the three rigid body modes, or overall equilibrium conditions, we should
dispose of 9 parameters in the stress field and we have only 7. The triangular element has
consequently 2 kinematical deformation modes. Without bothermg to exhibit these, we shall
make a direct analysis of the equilibrium conditions involved in the grouping of four of these

. elements in a quadrilateral, and find them suppressed

~ Exact transmission. of Tyy and - Ty along the boundary y = o between. trlangles 1 and 2 im-
plies that the parameters a, b m and p remain valid for field 2. Parameters ¢, q and r can
however take differentvaluesc', q' andr'. Similarly, perfect transmission of T,y and o, along

= 0 between triangles 1 and 3, 1mphes conservation of b, ¢, r and q but leaves a, m and p
free to take new values d ‘m' and p'. Fmally, in the ﬁeld of triangle 4, perfect stress
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transmission with its neighbors is achieved if and only if we adopt the values a‘, b, ¢*, p', q',
r' and m' corresponding to the double change. The total number of generalized loads needed
for the external boundaries of the quadrilateral is now equal to 16, Reduced by the three overall
equilibrium conditions it becomes exactly equal to the total of 13 parameters. now at our
disposal.

If the generahzed loads are defined as resultants of the surface traction modes described on
Flgure 2, the loads connection matrix C is extremely simple. Naturally, inversion of the
flex1b1hty matrix F, obtainedby integrationof the complementary energy of Appendix A, should
be performed numerically to construct K according t6 formula 28. -
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APPENDIX A
NATURAL STRESSES AND STRAINS IN OBLIQUE COORDINATES
_ | As shown on Figure 3, the covariant components (u, v) of a displacement vector PP’ are
defined as the orthogonal projections of the vector on the coordinate axes. The contravariant

components (U, V), defined by the parallelogram law, are related to (u, v) by the followmg
transformation:

u=u +vecosa _ " Usin? @ z=u-vcosa
- - : — (48)
v=v+ucos a o v sih @ = v -ucosa
e , ' _ ' ' nemat
| L
()
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Usmg contravariant (parallelogram law) components (F )for any force vector and covariant
components. for d1sp1acements, the virtual work expressdn keeps the simple form

| ufF, +‘ v Fy :
Thus, if the surface tractions on the elementary parallelogram are defined according to
Figure 4,the work done by these forces during a small variation of the displacement field is

ven b
gi y: s

‘.a (a' 8u+r Sv) dx dy+%(r Svu‘+0'y'3>v)dxdy

Similarly, if there is a body force f1e1d of contravanant components (X, Y) per unit area, it
Produces an amount of work ,

(sin @ dx dy ) (X8u+Y8v-)

P
The total work i's' stored as an increase in strain energy
(sin adcdy) Sw
where W is the strain energy per unit area.

The work equation is therefore

sina _8 =T(o"‘ Sui—rxy_8vb)+-5; ‘Tyx Su -I~a'y'8v) |
' , ) (49)
+sina (XSu+Ydv)
We first apply this equation to the particular case
Su=8u, (aconstant) dv=o -
which representsv a simple translation of the elementin a direction perpendlcular to the y axis.

Since there is no additional deformation, we ‘must have 8W = 0; equation 49 reduces to the
equilibrium equatlon ‘

do, o, . o '
2 - 4t xsinaz=o (50)
dx - Oy o
Similarly. a translation perpendicular to the x axis, Yields
’ ot 0 :
xy + 09 +Ysinaz=o , (s
ox dy

We ca.h use Equations 50 and 51 to simplify Equation 49

(SuH-a' —(Sv)

sin @ 3 W=0, (8“)"'"3( yx a Yy dy

0 ‘(8v)+r

y 0
and consider now a small rotation 8 w of the element about the origin:

Susz-y sinaSw  Sv=xsinadw
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Again we must have 3W = o0 and the simplified work equation reduces to the rotational equili-
brium condition: . o :
' . rxy : Tyx E ' (52)

Furthermore, commuting the 8 operator with partlal derivatives, the work equation is placed
in the form

'sina 3 W=o0, 8 €, + rxy 3 Yxy + oy 3 Gy | (53)
where '

. =a_u.' . =Q_|_.|_ v _0v

€x Ix ny dy +0x “y = dy (54

Equation 53 shows that the stram energy per unit area is a functlon of the strams defmed
by Equation 54, and that the stress-stram relations are

ow
oy ='sin a d
. T =sina aa ) _(55)
| W Txy
| | . oW
' q'y = sin a a(y

The deflmtlons are such that there is an almost perfect formal identity of equ111br1um
equations, definition of strains and stress-strain relations, compared to the formulation in
recta.ngular coordinates. The formal identity would mdeed be perfect if the constant factor
sin @ were absorbed in the definition of the stresses.

There remains to obtain exphclt expressions for the strain energy and the stress-strain
relations. This we proceed to do for an isotropic plate in a state of plane stress. Let (o ,
T +0,) and (&, Ye, €)) denote the surface tractions and strains in rectangular co-

ordinates (£, n) and let th% axes x and § coincide; the 7) axis lying in the same half-plane as
the y axis. Cons1der a segment OP, of original length dx, lying on the x axis. The orthogonal
projectlon of a displacement vector on this direction is, by deﬁmtlon, u. Hence

For a segment OQ, of orlgmal length d7, lying on the 1; a.xls. the orthogonal displacement

projection is |
vVsinga = ——(v—ucosa.)
sin a

Hence

o0 0.
‘nSina an (v-ucosa)
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aiad, since the contravariant components of the segment are dx = -d mcot aand dy. =

|
'sin a dm,
= ' 9 ( ) cot a + ! 9 ( a)
ee = sinai 3x vv ucosa) co sinad 3y v—u cos sina
or, after reductioh, . _ A
‘ | €, = (cos" ae, —cosa ¥y, B +e€ o (57
% sm"‘a x Yay t ey ) (57)

.

The dlsplacement component normal to OP is V sin a “ hence the rotation of OP towards OQ is
measured by - :
! a

—— (v- u cos
sma.bx'( uco a)

G_ax (Vv sin a)-

The displacement ’compohent normal to OQ is u, hence the rotation of OQ towards OP is
measured by

du _ _ du | du
an ot e 5 tena dy
Adding the two contributions we find
| o | . |
_yE = Sna (-2cosa ‘x +yxy ) (58)
n '

To summarize, the strain components of the cartes1an system are related to the oblique
strain components by the matrix transformation

€=Me R a ' . (59)
where T ¢
€ =te : €.,)
& Yq 7
T _
O csley vy &)
sin’a ' o o
M= ! -2s|na cosa sin a o

sin?q . . ,
cos’a -2cosa I

If tx, y) de_hotes the thickness of the plate, the strain energy per unit area is known to be

l 0 v
W= iz—' QT o '-ZV o €
2(1-v° )
' v o |
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Substitution or» Equation 59 expresses it in terms of the oblique strain components. Then, ap-

plication of Equatior 55 yields

o, |

x .
- E' i -
™y | T =v?) s’ a cos a
o, s cof atvsita

y

‘ 2 2
cos a+vsin a

—cos a
,;2— sinza + éoszd —cds a
—-cosa - |
€x
X Yxy © (60)
,ey ’

A dual procedure, based on the complementaryenergy, furnishes easily the inversion of this

relation. The complementary energy per unit area ¢

transformation:

(sina)¢ = o eg +Ty Yxy ¥

Whence, in view of Equation 53

» will be defined by the following Legendre

o ey—Wsin a

y

(sina)8¢ = ¢, 3oy +yy, Si'xy + ¢, 3oy

and the inverse stress-strain relations

€, =sin & ok
X 9o,
¢
= o 61
yxv =sin @ ot el
xy
- 2
€. =sin & ¢
y Oa'y
Now, by elementary equilibrium considerations, illustrated on Figure 5, we have
o= Ns ‘ ' (62)
where o' [o- -r o |
| & &9 "7]
T ]
S -
o, xy a'y
S -
. | 2cosa cos @
R sina sin@ cosQ .
sina . 2
.0 0 sin Q
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The complementa.ry strain energy per unit ares of plate is known to be

S 0 -v \
:t _oT| o 20+ w) o | & |

2Et
7 0 | J
Substltutwn of Equation 62 expresses this energy in terms of the oblique stress system. Then,
apphcatlon of Equation 61 yields: .

o " . . q
€, T - | ‘ 2cos a  cos?a-—vsin? a
o . 2 2
Y. z — .2cosa 4 cos a+2(l+v)sin a 2cos a
Xy - Et sina

e'y Lcosza—v sinza ‘ 2 cos A |

- - . -
o, |

- X | Txy (63)

oy

The reciprocal character of Equations 60 and 63 can now be checked by matrix multiplication.
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-~ Figure 2, ~ Surface Traction Modes and Resultants Along Bdunda;‘y,l-z. e,
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Figure 8. Covariant and Contravariant Displacement Components
in Oblique Coordinates ‘ ‘ N

Figure 4. Definition of Stresses in Oblique Coordinates
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Figure 5. Relationship Between Oblique and Cartesian Stresses:



