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Abstract 

 

Because PU coatings offer a compromise between aesthetic and performance expectations, 

unachievable with other types of industrial paints, they are currently recognized as the most 

appropriate option to coat sculptures intended for an outdoor setting. However, the PU class 

includes various systems, such as two package solvent-borne, two package water-borne, one 

package water-borne and fluoropolymer polyurethanes, which possess very different 

properties.  115 reference samples of PU coatings were investigated by means of Py-GC/MS, 

in order to outline the differences and the similarities existing, in terms of composition, 

between the major PU systems used for creating as well as for conserving modern painted 

outdoor sculptures. The Py-GC/MS study of an extended number of reference samples 

showed that the composition of equivalent PU systems strongly varies depending on the 

product line and the manufacturer. Furthermore the comparison of all the produced pyrograms 

allowed defining characteristic marker compounds helpful to discriminate specific PU paint 

systems.  
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1. Introduction 

As evidenced by the numerous case studies reported in literature [1-4], PUs represent one of 

the most important class of industrial paints used in 20th outdoor painted sculptures (OPS), 

for making process as well as for posterior conservation treatments. The leading position of 

PU coatings noticed for painted artworks intended for an outdoor setting is due to the 

advantageous weatherability and durability generally associated with such products. However 

polyurethane is a generic class covering various paint systems that have their own properties. 

In practice, the uneven quality of PU coatings is indicated through variable significance and 

speed of the surface changes affecting artworks [2]. The PU coatings employed in OPS can be 

roughly divided in four systems, namely two package solvent-borne (2KSBPU), two package 

water-borne (2KWBPU), one package water-borne (1KWBPU) and fluoropolymer 

polyurethanes (FPU). The differences in terms of composition and performance existing 

between these four paint systems remain barely studied from a conservation point of view. 

 

In the frame of the Outdoor sculpture research project conducted at the Getty Conservation 

Institute (GCI), a part of the Modern and Contemporary Art Research Initiative, an extended 

number of PU reference samples were analyzed by means of the FTIR-ATR and Py-GC/MS 

techniques. This paper presents an overview of the obtained Py-GC/MS results. It outlines the 

differences and the similarities existing, in terms of composition between the investigated PU 

coatings and proposes some marker compounds helpful to discriminate certain PU systems.  
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2.  Experimental 

2.1. PU reference materials 

The 115 PU reference samples analyzed in this study were collected or prepared between 

2005 and 2015, and incorporate primers, topcoats and clearcoats. Various lines from 

manufacturers that are representatives of the PU industry, namely Dupont, PPG, Akzo, BASF, 

Tnemec, Carboline, Sherwin Williams, NCP, Matthews Paints and Awlgrip, were 

investigated. The tested reference materials include: 

• Standard Color References supplied by collaborating Artists' Estates, Foundations, and 

Studios  

• Coupons made on request by industrials or fabricators  

• Swatches of replacement coatings used for OPS repainting 

• Laboratory prepared samples for the needs of this study 

 

 

In Table 1, the 115 PU coating samples analyzed by Py-GC-MS are presented through the 

associated artists, outdoor sculptures and commercial names. For sake of clarity, the samples 

of two package solvent-borne (2KSBPU), two package water-borne (2KWBPU), one package 

water-borne (1KWBPU) and fluoropolymer polyurethanes (FPU) are divided into four 

subgroups. For a more accurate characterization of 2K PU coatings, available activators and 

co-reactants involved in the preparation of solvent-borne and water-borne systems were 

individually analyzed by Py-GC-MS. 

 

 

 

 

 

 

 

Table 1 List of the PU coating references analyzed by Py-GC-MS, presented with the 
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associated artists, outdoor sculptures and commercial names. The samples of two package 

solvent-borne (2KSBPU), two package water-borne (2KWBPU), one package water-borne 

(1KWBPU) and fluoropolymer polyurethanes (FPU) are divided into four subgroups. 

*T=Topcoat, C=Clearcoat, P=Primer 

**Bk= Black, Gr=Green, Gy=Gray, Rd=Red, Bl=Blue, Yel=Yellow, W=White, Or=Orange,   

Cl=Clear, Br=Brown, Si=Silver 

2KSBPU 

Artist OPS Trade names 
Coating 

type* 

Sample 

x 
Color** 

R. Lichtenstein 
Three  brushstrokes 

(1984) 

DuPont®/Imron® 2.1 HG-C 

™ 
C 2 Cl, Bl 

R. Lichtenstein 
Three  brushstrokes 

(1984) 
DuPont®/Imron® 2.1 HG™  T 5 Rd, W, Bk, Yel 

R. Lichtenstein 
Three  brushstrokes 

(1984) 
DuPont®/Imron® 5.0™ T 13 

W, Bk, Gr, Bl, 

Yel, Rd, Br 

R. Lichtenstein n/a Awlgrip®/(unknown) T 3 W, Bk, Si 

R. Lichtenstein n/a 
Akzo Nobel/Akzo topcoat 

683-3-7 
C 13 

Cl, W, Bk, Yel, 

Bl, Rd, Gr 

A. Caro Box piece E (1971) Nason®/FullBase 3.5 VOC T 2 Rd 

M. di Suvero 
Gandydancer's 

Dream (1987-88) 

DuPont®/Imron®Industrial 

Strength Ultra Low VOC™ 
T 2 Rd 

M. di Suvero n/a 
Tnemec®/Endura-Shield® II 

1075 
T 1 Bk 

M. di Suvero n/a 
Tnemec®/Endura-Shield® II 

1074S 
T 5 Rd, Or, Yel 

A. Calder Spiny Top (1963) 
DuPont®/Imron® 2.1 SG 

"E"™ 
T 1 Rd 

A. Calder Jousters (1963) MPC™/Satin MAP T 3 Rd, Bk, W 

A. Calder Jousters (1963) MPC™/42900SP Matte Clear C 1 Cl 

A. Calder n/a NCP ®/2KSBPU T 1 Rd 

A. Calder 
La Grande Vitesse 

(1969) 

Tnemec®/Endura-Shield® II 

1074U 
T 1 Rd 

A. Calder Peau Rouge (1971) Tnemec®/Endura-Shield® 73 T 1 Rd 

T. Smith n/a 
Tnemec®/Endura-Shield® 

Series 175 
T 1 Bk 

T. Smith n/a Akzo Nobel/Aerodur® 5000 T 1 Bk 

C. Oldenburg / 

C. Van 
Corridor Pin Blue PPG/Deltron® DBU T 1 Bl 
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Bruggen (1999) 

G.Hume 
Back of Snowman 

(Ink) 
BASF/ Glasurit® 22 line T 1 Bl 

R. Murray Nimbus (1978) Sherwin-Williams®/Polane® T 1 Bl 

n/a n/a 
DuPont®/Imron® Industrial 

Strength™ 
T 1 W 

n/a n/a DuPont®/Imron® 3.5 HG-D™ T 1 Bk 

n/a n/a 
DuPont®/Imron® 2.1 HG, SG, 

FT, ST ™ 
T 21 Bk, W, Yel, Gr 

n/a n/a DuPont®/Imron® 2.1 Pr-P ™ P 1 W 

n/a n/a DuPont®/Imron® 2.1 HG-D™ T 1 W 

n/a n/a DuPont®/Imron® 2.1 EZ-C™ C 1 Or 

n/a n/a Awlgrip®/Awlcraft 2000® T 3 Bk, W 

n/a n/a Awlgrip®/Awlcraft 2000® C 1 Cl 

2KWBPU 

Artist OPS Trade names 
Coating 

type* 

Sample 

x 
Color** 

A. Calder Jousters (1963) NCP ®/2KWBPU T 9 
W, Bk, 

Rd, Yel 

A. Calder 
Four Arches (1975) 

Intermediate Model 
Spectrum Coatings/W-series T 1 Rd 

A. Calder n/a Formulated by J.A. Escarsega C 1 Cl 

A. Calder n/a Formulated by J.A. Escarsega C 1 Cl 

n/a n/a DuPont®/Imron® ZV-HG™ T 1 W 

1KWBPU 

Artist OPS Trade names 
Coating 

type* 

Sample 

x 
Color** 

n/a n/a DuPont®/Imron® 1.5 ST-D™ T 1 W 

n/a n/a DuPont®/Imron® 1.5 PR™ P 2 W 

n/a n/a DuPont®/Imron® 1.2 HG-C™ C 1 Cl 

2KFPU 

Artist OPS Trade names 
Coating 

type* 

Sample 

x 
Color** 

T. Smith n/a PPG/Coraflon® ADS Intermix T 1 Bk 

T. Smith n/a 
PPG/Coraflon® ADS 

Intermix  low VOC 
T 1 Bk 

T. Smith n/a Sherwin- T 1 Bk 
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Williams®/Fluorokem™ HS 

Satin 

T. Smith n/a 
Carboline®/Carboxane 950 

Satin 
T 1 Bk 

T. Smith n/a 
Tnemec®/Fluoronar® Series 

1072 
T 1 Bk 

D. Judd Untitled (1968) 
Tnemec®/Fluoronar® Series 

1072 
T 2 Gr 

R. Murray Duet (1965) 
Tnemec®/Fluoronar® Series 

1072V 
T 1 Or 

n/a n/a 
Tnemec®/Fluoronar® Series 

1071 
T 1 Bl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Py-GC/MS analysis 
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Py-GC/MS analyses were performed on a Frontier PY-2020D microfurnace pyrolyzer 

interfaced to an Agilent 7890A GC/5975C inert MSD. A J&W DB-5MS-UI capillary column 

(30 M x 0.25 mm x 0.25 µm) attached to a Frontier Vent-Free adaptor was used (40 M 

effective column length), with helium set to 1 ml/minute. The split injector was set to 320°C 

with a split ratio of 50:1. The GC oven temperature program was 40°C for 2 minutes, then 

6°C /minute to 320°C with 9 minutes isothermal. Samples were placed into 50 µl stainless 

steel Eco-cups prior to analysis, and pyrolyzed at 550°C. The Py-GC/MS results obtained for 

the 2KSBPU, FPU, 2KWBPU and 1KWBPU samples are presented separately. For a more 

accurate characterization of the activated and/or cured PU coatings, pure polyisocyanate 

resins and pure coreactants involved in the preparation of certain systems were analyzed 

individually by Py-GC/MS in the same fashion.  

 

2.3. Expert System for Data Processing 

Although the analysis itself is easy to conduct, the abundance of the collected Py-GC/MS data 

have made challenging their evaluation. The key difficulty in Py-GC/MS data evaluation is 

recognizing the connection between the constitutive materials of the PU coatings and the sets 

of associated marker compounds formed by pyrolysis of these materials. Due to the extended 

number and the heterogeneous composition of the PU coating samples investigated in this 

study, the Py-GC/MS data were treated with an expert system for data processing. Scientists 

at the Getty Conservation Institute (GCI) and conservators at the J. Paul Getty Museum 

(JPGM), developed the latter for facilitated and more accurate Py-GC/MS data interpretation.  

This expert system combines both components: processing with AMDIS (Automated Mass 

spectral Deconvolution and Identification System), and evaluation using Excel. AMDIS 

version 2.70 used in this study was bundled with the National Institute of Standards and 

Technology (NIST) MS library (version 2.0g), and AMDIS can also be downloaded for free 

from the NIST website (NIST 2015). Further information on AMDIS processes data can be 

found in [5]. Microsoft Excel 2013 was used with a customized workbook specifically 

developed for the present research. 

  

 

 

3. Results and discussion 
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The Py-GC-MS results obtained for 2KSBPUs, 2KWBPUs, 1KWBPUs and FPUs are 

discussed separately. In the sections devoted to the 2KSBPU and 2KWBPU systems, the 

results obtained for the activators, the co-reactants and the activated systems are presented in 

three distinct parts. An overview of the compounds identified by Py-GC-MS in the reference 

samples of 2KSBPU, 2KWBPU, 1KWBPU and FPU is given in Table 2. 

 

 

3.1. Two package solvent-borne PU (2KSBPU) 

3.1.1. Activators 

The pyrograms obtained for the Awlgrip and AKZO activators similarly exhibit a dominant 

and sharp peak of hexamethylene diisocyanate monomer, which is consistent with the 

complete depolymerization of HDI resins on pyrolysis. By using the described experimental 

parameters, monomeric HDI elutes at 9.35 minutes. In the mass spectrum of HDI, the 

strongest peaks are the fragment ions at m/z = 41 and 56. Note the absence of the molecular 

ion (m/z = 168) in the spectrum.  

The HDI peak is much less intense in the pyrograms produced for the Imron FG1333 and 

FG1633 activators. For both of them, important peaks identifying isocyanic acids 

(cyclohexane, butane 1- and hexane 1- isocyanato-), quinuclidone 3 and hexamethylenimine 

(hexane 1-, 6- diamine) were detected. Possibly, those compounds are decomposition 

products of the HDI polyisocyanates resulting from the pyrolysis. The presence of a very 

small peak identified as caprolactam has to be noticed as well.  

Indeed, the use of epsilon-caprolactam as a blocking agent for isocyanates is quite common 

for engineering activators required in two components polyurethane coating systems [6-7]. 

Blocking agents allow conserving unreacted isocyanates at storage temperatures. The 

recurrent presence of caprolactam could indicate activators containing isocyanate groups 

blocked by epsilon-caprolactam. However, caprolactam could also correspond to a residual 

product of the HDI cyclic trimer decomposition.  

 

3.1.2. Co-reactants 
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The Py-GC/MS results obtained for the Aircraft 2000 co-reactants pointed out a binder mix 

with high contents in styrene and nBMA polymers. The same three peaks of styrene, nBMA 

and 2-hydroxyethyl MA are observed in the pyrograms of the co-reactants used for clear, 

black and white Aircraft 2000 coatings. The co-reactant used for the Imron 2.1 topcoats seem 

richer in polyester resins. The intense peak seen at 7.73 minutes in the pyrograms of Imron 

2.1 is caprolactone, a compound widely used in coating industry to prepare polyester resins 

for high-solids coatings [6]. The major peak of anhydride phthalic, occurring at a slightly later 

retention indicates an anhydride phthalic-based polyester resin. Various other polyacid 

species, for instance, isobenzofuranone, benzoic and adipic acids were punctually identified. 

Polyols commonly used for making polyester resins in the coating industry, i.e. neopentyl 

glycol (NPG), cyclohexanedimethanol (CHDM) and hexane diol were also detected. At a 

lesser proportion, Imron 2.1 co-reactants also contain acrylic resins modified with styrene, 

nBA and nBMA monomers were identified through their respective characteristic ion 

fragments. 

The pyrogram produced for the Imron 5.0 co-reactant exhibits a single dominant peak with 

molecular ion at m/z = 104 and the characteristic m/z = 78 and 51 fragments of styrene in the 

related mass spectrum. Much smaller is the anhydride phthalic peak arising at 9.09 minutes. 

The Py-GC-MS results also unveiled the presence of three acrylic species; EMA, C12MA and 

C14MA.   

 

3.1.3. Activated systems 

All the pyrograms produced for activated 2KSBPUs have in common a peak identifying HDI 

monomer. In the cases of the NCP, Nason and BASF references HDI was found in 

combination with isophorone diisocyanate (IPDI).   

Basically, for most of the studied 2KSBPU samples, the formation of polyurethane linkages 

result from the reaction of polyisocyanate resins with hydroxy-terminated polyester and/or 

hydroxyl-substituted acrylic resins. Example of pyrograms produced for 2KSBPU samples 

made from hybrid resins is shown in Fig. 1. 
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Fig. 1 Pyrogram produced for one 2KSBPU reference sample (Imron® 2.1 HG white topcoat from 

DuPont®) displaying peaks of styrene, acrylic species (nBA, nBMA, 2HEMA), phthalic anhydride, 

caprolactone and HDI.   

 

 

The reaction of isocyanates with hydroxy-functional co-reactants yielding to urethanes is 

reversible at elevated temperatures [6]. As a result, the pyrograms of PU coatings primary 

based on acrylic resins, such as the Awlgrip, MPC and Endurashield Series samples, display 

easily distinguishable peaks of monomeric diisocyanate and acrylic monomers. The acrylic 

species recurrently identified, include nBMA, nBA, and 2HEMA.  However, iBMA, 2EHA, 

EMA, C8MA, C12MA and C14MA monomers were also punctually detected.  

The polyester resins were identified through the detection of characteristic polyester chemical 

precursors, such as phthalic anhydride (PA), caprolactone, adipic and benzoic acids, 

neopentyl glycol  (NPG) cyclohexanedimethanol (CHDM) and 1-, 6- hexane diol. Note that 

polycaprolactone (PCL) polyols, allow making PU coatings with advantageous exterior 

durability are widely used in industry. The use of CHDM and 1-, 6- hexane diol as chain 

extenders in the PU industry has to be noticed as well [6-7]. The significant peak of styrene 

arising in most of the pyrograms, pointed out the general use of styrenic polyester and/or 

acrylic resins in the PU coating formulations [9-10]. The Aerodur 5000 black topcoat from 

the Tony Smith Estate and the Akzo clear from Lichtenstein’s studio, both produced by 

Nobel, are singular examples of styrene free 2KSBPU coatings. In both cases, the Py-GC/MS 

results led to the identification of adipic acid and heptanal.  

nBA	

C8MA	

HDI	

Styrene	

nBMA	

2HEMA	

Caprolactone	

Imron ®
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The detection of heptanal is possibly due to the presence of aldehyde resins in the binder 

mixes [11], while the detection of adipic acid indicates the use of alkyd resins [12-15]. 

Nevertheless, the Aerodur 5000 topcoat differs from the Akzo one by the absence of acrylic 

resin and the presence of bisphenol A, which is a characteristic compound of epoxy resins 

[6,16].  

Bisphenol A was also detected for the Deltron DBU, Nason Finishes and Imron Industrial 

Strength samples. The green coating from Polane , do not contain polyester or acrylic resins, 

it is made of a styrene-aldehyde hybrid binder. A styrene-nBMA copolymer with a relatively 

high polypropylene content was found in the NCP reference samples. 

 

3.2.  Two package water-borne PU (2KWBPU) 

3.2.1. Activators 

HDI monomer eluting at 9.35 minutes was identified in all the pyrograms produced for water 

dispersible polyisocyanate resins. All of them display additional peaks identifying isocyanic 

acid, quinuclidone 3 and hexamethylenimine, in other words, the same decomposition 

products than those detected for the unmodified polyisocyanate resins discussed above. The 

PyGCMS results obtained for activators made from HDI isocyanurates showed the 

decomposition of the cyclic trimer on pyrolysis. However, a very small peak of trimethyl 

isocyanurate was observed in the pyrogram of the H2O activator from NCP. The most 

significant difference between the pyrograms of water-dispersible and regular resins lies in 

the presence of a dominant peak of 1-hexanol, 2- ethyl at 6.51 minutes in the pyrograms of 

aqueous resins.  In PU industry, 2-ethylhexyl alcohol is used as blocking agent to make 

polyisocyante resins containing blocked isocyanate groups (7]. Because of a low reactivity, 

alcohol-blocked isocyanates are favored in the preparation of waterborne coatings with high 

stability (6].  Although, the peak area is variable depending on the sample, 1-hexanol, 2- ethyl 

can be considered as a marker compound, relevant for the identification of waterborne PU 

systems.  

 

3.2.2. Co-reactants 
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The pyrogram produced for the anionic polyacrylate dispersion Bayhydrol, used in the 2K 

waterborne clearcoats, formulated at the GCI laboratory, primary display the peaks of styrene, 

nBA and 2HEMA monomers. Smaller peaks of other monomeric acrylic species - nBMA and 

ethylene glycol diMA- are also present.  The Py-GC/MS results did not reveal evidence of 

polyester resins content (absence of characteristic precursors) but outlined the modification of 

the acrylic resin with styrene.  

 

3.2.3. Activated systems 

As shown in Fig. 2, the characteristic peak of 2-ethylhexyl alcohol noticed for pure water 

dispersible polyisocyanate resins remains readily identifiable in the pyrograms produced for 

activated waterborne systems. The differences of composition existing between the NCP, 

laboratory made and Spectrum coatings, clearly appear by comparing the produced 

pyrograms. On the basis of the Py-GC/MS results, the 2KWBPU samples may be divided in 

three subgroups. The first one includes the laboratory prepared clearcoats using anionic 

polyacrylate dispersion, as co-reactant [8].  Due to the absence of polyester resin in the binder 

mix the related pyrograms are relatively simple, the principal peaks being monomeric species 

of HDI, styrene, nBA and 2HEMA. The second subgroup includes all the NCP waterborne 

samples for which the related pyrograms, did not display any acrylic or styrene peak, but 

exhibit the three same dominant peaks, respectively seen at 13.67, 13.75 and 13.85 minutes. 

The mass spectra of these peaks have in common the fragment ion of IPDI, at m/z = 81. 

Interestingly, the IPDI monomer, eluting at 10.86 minutes is identified as well. The formation 

of new compounds resulting from the pyrolysis decomposition process of a polyurethane 

dispersion (PUD) prepared with an IPDI polyisocyanate resin, could reasonably explain the 

presence of such strong peaks [17-18]. Because of the solubility of HDI crosslinkers in water, 

cycloaliphatic diisocyanates such as IPDI are favored to make PUDs [6]. The absence of the 

IPDI peak and the dominant peak of HDI, in the pyrogram obtained for pure H2O activator, 

supports this assumption. Additional peaks of NPG, hexane diol and adipic acid seen in the 

pyrograms of NCP samples suggest the use of PUD involving polyester polyols [8].  

The W series Spectrum Coating sample represents alone the last subgroup. In this case, the 

Py-GC/MS results led to the identification of a system based on hydroxyl functional PUD 

prepared with an acrylic-urethane hybrid resin [19-20].  The acrylic resin mostly consists on a 

styrene-2EHA copolymer, although, nBA, nBMA and C8MA monomeric species were 
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identified as well. The strong peak of 1-hexanol, 2- ethyl can be reasonably explained by the 

use of an activator containing 2-ethylhexyl alcohol-blocked isocyanates. The PUD 

identification is supported by the presence of the decomposition products PUD eluting at 

13.67, 13.75 and 13.85 minutes, previously reported for the PUD-based coatings from NCP.  

 

 

Fig. 2 Pyrograms of 2KWBPU reference samples, N9688A white topcoat from NCP® (top) and 

Imron® ZV HG white topcoat from DuPont® (bottom), displaying a dominant peak of 1-hexanol, 2- 

ethyl at 6.51 minutes.  

 

 

 

 

3.3. One Package Waterborne PU (1KWBPU) 

3.3.1. Cured systems 

The pyrograms obtained for the one package aqueous PU coating references, which include a 

grey primer, a clearcoat and a direct-to-metal white topcoat from Imron, present the same 

characteristic features. Despite obvious differences in terms of use, nBMA-adipic acid 

polyester PUD was identified in the three systems. However, the pyrograms produced for the 
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primer and the topcoat exhibit both a small peak of monomeric styrene while the clearcoat 

reference appears styrene free system using n-methyl-2-pyrrolidone (NMP). NMP is a water-

miscible solvent commonly used to make PU dispersions [19]. In addition, the 1KWBPU 

pyrograms similarly exhibit the three characteristic peaks outlined for 2KWBPUs based on 

PUD (see 3.2.3).  The 1K samples pyrograms have in common two other peaks with a major 

fragment ion at m/z = 81. The most significant differences observed between the 1K and the 

2K aqueous PUD systems are the missing peaks of 1-hexanol, 2-ethyl and diisocyanate 

monomeric species in the pyrograms produced for the former.  

 

3.4. Fluoropolymer urethane (FPU) 

3.4.1. Activated systems 

All the FPU pyrograms exhibit the same characteristic pattern, which is illustrated in Fig. 3. 

This one includes a dominant peak of cyclopentanone 2-methyl, eluting at 4.62 minutes and, a 

smaller peak of cyclohexanol at a slightly earlier retention time (4.49 minutes). On the basis 

of the Py-GC/MS results obtained from the FPU samples, this combination of peaks appears 

as a diagnosis feature of FPU coatings.  

A strong peak of HDI monomer and smaller peaks of cyclohexane isocyanato-and hexane 1- 

isocyanato are other common features noticed for the FPU pyrograms. Styrene was also 

identified in every case and, most of the obtained pyrograms display peaks identifying 

caprolactone, 2-cyclohexen- 1- one and benzene -1 chloro-3 - (trifluoromethyl).  

The samples from the Fluoranar series have in common low siloxane content. Note the 

presence of several siloxane peaks in the Carboline 950 pyrogram as well. The peak 

identifying trimethyl isocyanurate in the pyrogram of the Tony Smith’s color standard, 

prepared with a black Fluoronar 1072 topcoat, is consistent with the use of an activator based 

on HDI isocyanurate. The orange topcoat used for repainting the 1965 Murray’s outdoor 

sculpture, Duet, is the unique Fluoranar sample containing bisphenol A. The presence of this 

compound suggests a binder mix with epoxy resin content. The pyrograms of the green 

Fluoranar 1072 topcoats used for Judd’s coupons are distinguished trough styrene peaks 

significantly stronger.  

The small peak areas of the acrylic monomeric species, identified in the FPU samples thanks 

to the Py-GC/MS technique, explain why no acrylic resin was identified from the FTIR 
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spectra recorded for the same samples. A small peak of 2EHA monomer appears in the 

Fluoronar 1072 and 1071 pyrograms, while a small peak of nBA monomer is present in the 

pyrograms of both Caraflon coatings from PPG. An additional peak of bisphenol A is 

observed for only one of them. In the case of the Fluorokem coating from Sherwin&William, 

the produced pyrogram display peaks identifying a C12MA-C14MA copolymer.   

 

 

 

Fig. 3 Pyrograms of 2KFPU reference samples, Fluoronar Series 1072V® orange topcoat from 

Tnemec® (top left), Fluorokem HS® Satin black topcoat from Sherwin Williams® (top right), Coraflon 

ADS® Intermix black topcoat from PPG® (left bottom) and Carboxane 950® black topcoat from 

Carboline® (right bottom). The dominant peak of cyclopentanone 2-methyl at 4.62 minutes and, the 

much less intense peak of cyclohexanol at 4.49 minutes are characteristic features of FPU pyrograms.  
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Table 2 Overview of the compounds identified by Py-GC-MS for the reference samples of 

2KSBPU, 2KWBPU, 1KWBPU and FPU.  

X : identified in one or more reference sample(s) 

X : identified in one or more reference sample(s) for each investigated system 

- : not identified 

  2KSBPU 2KWBPU 1KWBPU 2KFPU 

      

Polyols 

Neopentyl glycol   X X X - 

cyclohexanedimethanol X X - - 

hexane diol X X - - 

2-Penten-1-ol, (Z)- X -  - 

propylene glycol  X - X - 

cyclohexanol - - - X 

1-,3- propanediol, 2- butyl, 2-ethyl - X - - 

Polyacids 

phthalic anhydride (PA)  X X  - X 

adipic acid X X X - 

caprolactone X - X X 

isobenzofuranone X - - - 

benzoic acid X - - - 

isobenzofurandione X X - - 

Ketone 

2-cyclohexen- 1- one - - - X 

cyclopentanone 2-methyl X - - X 

Aldehyde 

heptanal X - - - 

2-pentanal, 2-methyl X - - - 

Phenolic 

bisphenol-A X - - X 

phenol X X - X 

Polypropylene 
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Propylene X - - - 

PDU eluates 

Peak at 13.67 min - X X - 

Peak at 13.75 min - X X - 

Peak at 1.85 min - X X - 

Styrene 

styrene  X X X X 

Siloxane 

Siloxane - X - X 

Acrylates 

nBA X X X X 

methoxyethyl acrylate X - X - 

2-ethylhexyl acrylate X X - X 

Methacrylates 

nBMA X X X - 

EMA X - - - 

C12MA X - - X 

C14MA X - - X 

2-Hydroxyethyl MA X X - - 

ethylene glycol diMA X X - - 

ethoxyethyl MA X - - - 

iBMA X - - - 

MMA X - - - 

iso-Bornyl MA X - - - 

C8MA X X - X 

C16MA X - - - 

Isocyanates 

cyclohexane isocyanato- (Isocyanic acid) X X - X 

hexane 1- isocyanato- X X - X 

benzyl isocyanate X - - - 

benzene 1-isocyonato, 3-or-4- methyl X X - - 

HDI X X - X 

IPDI X X - - 
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trimethyl isocyanurate X - - X 

Others 

3-quinuclidone X X - X 

1-, 4- pentadiene X X - X 

1- hexanol, 2- ethyl X X - X 

3-hexen -1-ol, 2- ethyl X X - X 

caprolactam X X X X 

n-methyl-2-pyrrolidone - X X - 

 

 

 

4. Conclusions 

The Py-GC/MS study of 2KSBPU, 2KWBPU, 1KWBPU and FPU reference samples pointed 

out very different compositions for equivalent products and allowed determining marker 

compounds reliable for the identification of specific PU systems. The pyrograms obtained for 

two package PU systems systematically exhibit a peak identifying HDI monomer. Inversely 

no diisocyanate monomers were found in the pyrograms produced for the one package 

waterborne PU references. Most of the investigated PU coatings are based on binder mixes 

involving styrene, acrylate, methacrylate and phthalic anhydride polyester resins in various 

proportions.  Acrylic monomeric species primary identified are nBA and nBMA. 

Characteristic decomposition products of epoxy, aldehyde and silicone resins, resulting from 

pyrolysis were detected in several references.  A dominant peak of ethylhexyl alcohol 

characterizes the pyrograms recorded for the 2KWBPU samples. In PU industry, this alcohol 

is widely used as blocking agent in the preparation of polyisocyanate resins offering 

waterborne coatings with high stability. For this reason, the detection of high ethylhexyl 

alcohol content might be considered as an indicator of 2KWBPU systems. Concerning the 

FPU samples, the produced pyrograms similarly display a dominant peak of cyclopentanone 

2-methyl and a smaller peak of cyclohexanol. The combination of these two peaks appeared 

as a characteristic feature of the FPU pyrograms. As a result, the join presence of 

cyclopentanone 2-methyl and cyclohexanol provides a reliable criterion for the identification 

of FPU coatings. 
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