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ABSTRACT

A finite element for a prismatic member subjected to axial
loads is derived for the stability analysis of elastic space frames.
The derivation is based on the fact that in a stable state of
equilibrium the total energy is positive definite. A feature of the
element developed is that the reduction of torsional rigidity due
to the presence of axial stresses is taken into account. Several
examples are presented. An excellent agreement with analytical
results is obtained, where closed form solutions are available.
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LIST OF ABBREVIATIONS AND SYMBOLS

A= the sectional area

E, G = the el#stic constants
e x = the axial strain

Iy . Iz = the moments of inertia about the y and the 2z axes respectively
Ip = the polar moment of inertia

J = the torsion constant of a section

K = the stiffness matrix

M.y . Hz = the bending moments about the y and the 2z .axes respectively

N = the axial force
n=3
P
P = the load intensity, or when specifically stated in the text, the

potential energy

the generalized displacement, a vector
= the stability ("geometric stiffness") matrix

the torsional moment

(== o N 75
]

= the strain energy

(U + P) = the total energy

u(o) » v(o) . w(o) » ¢£°) = the displacements in the x, y, 2z directions

‘ and the angle of twist in a stable (initial)

configuration of a structure
EU , EV ,EW , € ¢x = small disturbances from the stable configuration,
where ¢ 1is a small quantity

a,v, @, $x = the total displacements and the total angle of twist,
including the disturbance

Superscript (1) indicates first order terms w.r.t.. € in the expansion
of 4,9V, %, $x

Superscript (2) indicates second order terms w,r,t, ¢ in the expansion
of &4 ,9V,w, $x

X, Y, 2 = the coordinates of a point before the deformation

E, n, = the coordinates of a point after the deformation

0. = the axial stress ‘

0 = a unit angle of twist

SY ’ kz = the curvatures about the  y and the 2z axes respectively

A(U + P) = the complete increment of the total energy

Gn(U + P) = the n=th variation of the total energy
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Summarz.

A finite element procedure is developed for the determination of critical
loads of elastic space frames with members subjected to axial forces.
A stability criterion of positive definiteness of the second variation of
total energy is used. Several examples of space frames are presented.
By comparison with analytical solutions, where such solutions are readily

obtainable, the method is shown to yield satiéfactory results,

I. Introduction.

In the vast literature on structural stability there is an increasing
emphasis on numerical solutions, which is? no doubt, prompted by the
developments in computer technology. Numerical solutions for the determi-
nation of critical loads of space structures, the objeétive of this paper,
have been discussed in several other publications (12, 8, 10). It is there-
fore desirable to point out briefly those features of the present paper
which are different from the material presented elsewhere.

In this paper the conditions of stability are derived in a different manner,
namely from considerations of positive definiteness of the second variation
of total energy, thereby achieving generality and ciarity. Examples of solu-
tions of space frames are presented, a feature which is for some reason
often omitted elsewhere. The reduction of torsional rigidity due to the

presence of axial stresses is taken into account. Whilst this effect has



been investigated both analytically and experimentally (2, 16, 15, 14, 9,
7, 1), it fias apparently been ignored in finite element solutions of stabi-
lity problems. It can be significant when the members of a frame are of thin
walled open sections.
An introduction to a paper is not complete without a discussion of its
known limitations : the derivation of stiffness and stability matrices is
based on the assumption that sectionms, ﬁhich are subjected to a torque, are
free to warp. This assumption is often implicitly made in structural ana-
lysis of space frames, though it can contradict the boundary conditions of
some structures. Another assumption which is tacitly made here, and for
which above comments still apply, is that the center of twist coincides
with the center of gravity of the sections. Finally, the present paper ‘is
limited to structures which are perfectly elastic and in which in a state
of stable equilibrium all members are subjected to axial forces only.
Thus, the paper is limited to one type of bifurcation problem.
As a starting point for the criterion of stability, we consider a change
of the total energy due to a small disturbance from an equilibrium state.
The total energy is the suﬁ of the strain energy, U , and the potential
energy, P . The change of the total energy, A(U + P) , can be expanded
in terms of the first and higher variations as follows

A(U +P) =€ § (U +P) +~% €2 §2(U + P) + ...'+<ﬁ7 e® 6" M +P) + ...

(D

Here Gn(U + P) 1is the n-th variation and ¢ 1is an arbitrarily small

scaling factor. The condition of equilibrium (6.4) can be stated as
S(U+P)=0 v (2)
The condition of stability can be written as (12, 46, 37)
§2(U+P) 30 3)

Equations (2) and (3) must be satisfied for any kinematically admissible
mode of disturbance if the structure is in a stable state of equilibrium,
Thus, to investigate the stability of a given state of equilibrium, one
must investigate the least value of §2(U + P) for all kinematically
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admissible disturbances of the equilibrium configuration. If the least
value of 62(U + P) ié positive, then the equilibrium is stable, if it is
negative, then the equilibrium is unétable and if it is equal to zero,
then the equilibrium is neutral. This minimum of the second variation of
the total eneigy)can be found by considering a variation of the distur-
11

bance itself »
Thus, to investigate the stability of a structure, we will first seek an

expression for the second variation of the total energy, 6&2(U + P) .

2. Derivation of an expression for &2(U + P).

Let an equilibrium configuration be defined by three orthogonal displace-
1@ , +(@ , ) , §0)
throughout the structure, Similarly, let a kinematically admissible dis-

ment componénts, and the angle of twist ¢
turbance be defined by EU, EV 4, EW, € ¢x s Where ¢ 1is an
arbitrarily small scaling factor. The change of total energy, A(U + P) ,

due to this disturbance, is equal to

A(U +P) = (U +P) (G,G,G,B) - (U + P) (u(°),v(°) ’W(O)’e(o)) 4)
where

4= u(o) +€eu
V= v(o) +ev

(5)

W= w(o) +ew o
5. =0 4 c o
X X X

If the right-hand side of equation (4) is evaluated and the terms are collec-
ted according to the order of ¢ , the terms containing €2 yield the

second variation of the strain energy, 62(U + P) . This evaluation is
carried-out in two steps.

First, the deformation components at G , ¥ , # , § are expanded in terms

of ¢ wup to the second order terms., This can be written as



g =@ L DL e2 e (2)
p.od xx . XX 2 XX
Ey = Kio) + e Kél) +'% g2 K;Z) ,
(6)
R, = Kéo) + € K:l) +-% 2 Kiz)
s = 0€® 4 ¢ o1 +‘% 2 6(2).

In the above expression axx is the axial strain at the centre of gravity
of a section, ﬁy and ﬁz are the curvatures about the y and the =z
axes respectively and § 1is the twist per unit length, The right-hand
sides of equations (6) will be evaluated in terms of & , ¥ , W and 3x
later.

Second, equations (6) are substituted into an expression for the change of
total energy, eq. (4). In the first step, the strain energy per unit length

of a member is considered. In matrix terms this can be written as

AQUy = { & Ry R, 8} D {8 Ry R, %}
(@) (o) (o) (o) , T (o) (o) (o) (o)
- { e x Ky Kg ] } | D { e Ky K, = O } @))

where { oee } indicates a vector and where

EA

E Iy S (8)

(GJ + oii)

Ip)

All elements of matrix D are self explanatory, except the last one,

narnely, GJ + oii? I . In this term G is the shear modulus, J 1is the

P
torsion constant, oiz) is the initial axial stress (with tension as
positive) and Ip is the polar moment of inertia, which is equal to

Ix + Iy . Thus, GJ 1is the usual expression for the torsional rigidity of

(o) I

xx is its reduction (Wagner effect)

a bar of unit length, whilst o
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(2) (16) that an

axially loaded column can buckle in pure torsion when GJ + oi;) Ip =0,

When the initial stress o(o) is non uniform, the statement of the stabi-
(13)
d

due to the axial compressive stress « It has been shown

lity of a member is more involve . We restrict ourselves here to the
limitations outlined in the introduction. .

Substituting the right-hand sides of equations (6) into equation (7) and
collecting terms with ¢2 , one obtains

.]2;52 62 (U)) :%52 { e}(u];) Kél) Kil) e(l) }T D { e:(u]-:) K)(’l) Kil) e(l)}

2 [ @ @ @ T o ) () @) 0,

+ 1
2 € XX 'y z XX |y z

(9)

The second term of the equation (9) can be readily simplified because,

in general,

D { e}(‘;) .<§°) .<§°) 6@ 3= (n MM, T ) (10)
where N , My N Mz and T are respectively the axial force, the bending
moment about the y axis, the bending moment about the 2z axis and the
torsion in the initial equilibrium configuration, defined by the displace-
ments u(o) N v(o) ’ w(o) s e(°) , before the disturbances are introducec
But, since our discussion is limited to frames with members subjected to

z
Thus, after cancelling e2 , equation (9) can be written as

axial forces only, My =M =T=0,

Lo @=t(e® M MM T 50O 0 0®,0®)

x “y ] XX 'y z
+ 3 exx N (11)
The second variation of the potential energy vanishes, since it is here a

linear function of @ , ¥ , & . Thus, after integration, the second varia-

tion of the total energy of the structure can be written as

1 !
I,=5 [ &2@U+P) dR=

[
[

rﬂ?-"

=% /A (e}g‘))2 dx + I, (.<(1)) dx + % { EI_ ( (1))2 dx

i
2
+21a (M2 ax v ] s 0% ax v 3w @) ax (12)
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In the above equation we always take the x axis in the direction of a
member and the integration is over the whole of the structure. Thus, for

an analytical expression of the second variation in terms of the distur-
bances u, v ,w and 6 , it remains to find expressions for eﬁi) s
e (2 , (D , g oD,

XX y z

Since éxx expansion up to the second order of e is required, terms

~

of one higher order than ~%§ must be-retained in the expression for the
axial strain. Consider a segment AB , which lies in the direction of
axis x and has before the deformation-a length of dx , i.e. A(x,0,0)
and B(x+dx,0,0) , ref. fig. 1 . A Lagrange'ian System of coordinates is
used, where the displacements of a point are regarded as functions of the
coordinates of that point before the deformation. After the displacement
8,9, %, the points A and B move over to the positions A' and
B' respectively. The position of A' and B' {is defined by the coordi-
nates of the deformed state £ , n, £ , ises A'(E,n,g) and.

B'(g+dg , n+dn , r+dg) o By the definition of Lagrange'ian coordinates,

£=x+ G(x)
n=y+ %(x) : ‘ (13)
=z + @(x)

Hence, by differentiation

dg=(1+ %) dx
adn= & a | - (14)
d ¢ = G%%) dx

since y =z =0 . Strain é is given by definition as

XX
s -AB _AB
= F TE
or
N
1+a =42 (15)
= )



Both sides of eq. (I5) can be squared :

TRt
A'B",2
e A2 = —————
1+2 e, + & ¢ ) (16)

AB

Since the strain is small, Eix can be neglected, so that

g, =7 &1 | (I
AB o

The advantage of the expression for axx of equation (I7), over equation

(14), is that (A2~
AB ‘ |
This is the same idea which underlies the Green's strain tensor. In fact,

)2 can be evaluated exactly.

the derivation of an expression for éxx could be dispensed with if

Green's strain tensor were adopted (24), wow,

A'B'.2 _ (dE)2 + (dn)2 + (dr)2 _ da2 49,2 d@#,2
s - & =y - PP @@ (18)

After the substitution into eq. (I7), the axial stress, axx s 1s found as
. _da .1 .,d82 1 92,1 49,2 o
e “ax T 2 (dx) *3 63;) *32 (dx) a1

For small disturbances from an equilibrium state the rates 6f displacements

associated with flexure are greater than those in the direction of the
4,2

~ 2 ; ~
member, so that 6%%) << '%g)z R 6%%) + Thus, neglecting '6%%)2 we have

s 46,1 dv.2 1 d@,2 ” (20}
ex " axt 2'(dx) *3 (dx) ‘ (20)

Equation (20) gives ‘the adopted expression for the axial strain, axx .
Substitution of (5) into (20) yields :

(o) (o) (o)
a du du , 1 dv dv.2 . 1 ,dw dw,2
T IHm Tt mTI G e ® T W (21)
Since v(o) = w(o) = 0 for the types of structures under consideration,
(o) - '
su ~, du 1l o dvy2 , dwy2
T et (@R (22)

Hence, bearing in mind equation (6),
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(1) _ du
'exx dx

(23)
(2) | @vy2, dw,2
ex - @ t @
The displacements ¥ and @ are taken in the direction of the principal
axes of members in their undeformed state. Since the disturbances include
a twisting of the sections, the curvatures about the principal axes are
affected by v , w and 6 , Figure 2 shows the cross-section of a member
subjected to a twist $x + The moments of inertia about the y and the
z axes (in the initial state of the member) are denoted by Iy and Iz
respectively. The curvatures of a twisted section, associated with these

moments of inertia, are after the twist equal to

az e
Ky = >
dx (24)
ZA*
dx?

2

where @% and ¢ are the deflection components shown in figure 2 b.

From geometry,

a%

¥ =9 cos $x + @ sin Gx
(25)
AN PO
@ - ¥ sin $x + @ cos $x
Bearing in mind that @io) = 0, following expansions (up to €2) can be
written down :
2 = (o) e -1l 242
cos 3 cos(q>x + e ox) 1 7 € Qx .
(26)

(o)

sin $x = sin(¢x

+€d) = €E O + Ja0
X X

Substitution of (5), (25) and (26) into equation (24), together with the
condition that w(o) = v(o) =0 , yields

c 32 2
Kyae—d;’+%622—-—d:®x
d: d: 27)
8 K aeuq-.].'.ezzud;
z dx2 2 ax2 *



From (27) and noting that 9 = = - Tx tegs o ove obtain
2,
K.(1) - 44w
y dx2
2
D -4 (28)
dx?
Nl de_
dx

Finally, substituting (23) and (28) into (II) one obtains the equation for

the second variation of the total energy

d2y 1 - ,d2v, 2
={- EA( ) dx + EI (— ) dx + = [ EI ()¢ dx
J ZI dx2 2 [, dx2
do, N, dvi2, dw\2
+-fGJ( )d}+P{Zj (G + @7 ) ax
dx _
de_
+%I%A( D dx =1, 421, (29)

where 13 is the first bracketed term { «eo } , P 1is a parameter of
load intemnsity, and Iq is the second bracketed term { «4¢ } o+ As in

eq. (II), the integration is over the whole of the structure.

3, A Finite Element.,

Instead of integrating over the whole of the structure, one can integrate

over a number of finite elements and obtain the overall integral by a
summation of individual element integrations. -

The integration over each element is made in an approximate way, assuming

a polynomial form of the deformed shape. The variation of 12 of eq. (29)
WeTst., disturbances u , v , w , o s then yields a criterion of stability.
This, in a mnutshell., is the finite element approach to the instability
problems under consideration. The method follows closely the well esta-
blished pattern of structural analysis by finite elements,

An element shown in figure 3 will be considered. We start by the determina-
tion of term I, for each element in terms of a "stability matrix". The

displacements are assumed to have the following form :

9



u 1l x 0 0 O 0 0O 0 O (4] 0O 0
_ 2 3
- 0 01 x x x 0O 0 O (0] 0 O { o) (30)
w 00000 0 1 x x2 x3 00
¢x 0 Q 0O 0 O 0 o 0 9 0 1 x
Here the vector { a } is equal to
{a } = { al az XX a12 } (31)
do
For the stability matrix the values of dv v and =—= are required,
dx * dx dx .
We can write
do
dv dw X
& @& & 1=81{a} (32)

where
0 0 01 2x 3x2 0 0 O 0 9 0
B = 0 0 0 0 O 0 O 1 2x 3x2 0 O (33)
0 0 0 0 O 0o 0 0O 0] 01 '
Hence, for an element
;. =L(a)T (f astEra (34)
yi-2lel (£n x){a}
N ‘
where n = 7 and wvhere
1 0 0]
F=|0 1 O (35)
e
0 0 Y

We choose in the local (element) axes the following generalized displace-
ments at end points 1 and 2 : the translations u ', v , w in the direc-

tion of local x ,y , z axes, and the rotations about the local x s Y

: X dw dv .
and z axes, namely ¢ (dx 8) , ¢y === % "= respectively.,

10



The generalized displacement vector in the local axes is denoted by { q, }
and is equal to

{ 1, } =:{ bt TS WA ¢xl @yl ozl U V2 W sz Qyz <pzz } (36)
From (30), by differentiation where appropriate and substitution of x = 0
for point 1 and x =4 for point 2, { qz } can be related to { o }

as follows :

{q} =T {a} (37
where

1 o0 o o o o o o o0 ©o0° o0 o

o o 1 o o o o0 o o o o0 o

6o o o0 o O o 1 o o0 o0 o0 o

0o o o o o o o o o o 1 o

" lo o o o o0 o0 o0 -1 0 0 0 0
1.0 o0 o 1 o o o o0 o o0 0 O (38)

1 & O 0o O o o o0 o0 o0 o0 o

o o 1 L 22 3 o o0 o 0o O 0

o o o o o o0 1 L 22 3 0 o

o 0 o0 o o 0o o o o0 1 g

0O 0 o0 O o0 o0 0 -1 =29 =32 O 0

0 0 0 1 2 3 0 0 0 0 0 0

Substitution of (37) into (34) yields

_1 T T ? T
Iy=3049} T(onB FBdx )T {q,}
_1 T : :
where the stability matrix of an element in local axes, Sz s is defined by
T T
Sz'T(z“B FBdx ) T (40)

1



Matrix T is obtained by inverting the matrix of eq. (38) analytically.
The integration of equation (40) and the matrix multiplications are also

performed analytically. The resulting stability matrix, Sl » (in local

axes) is shown in table 1,
Table 1.

Stability matrix, S2 » in local axes for the generalizéd displacements

fup vy vy 0y 0y 0, u, Y, W, B, b, 8, 0

_0 0 0 o 0O o o0 o0 o 0 0 o ]
36 0 O 0 32 0 =36 0 0 0 32
36 0O =32 0 0 0 =36 0 -3, O
1 I
302 o0 0o o o o -3+ 0o o
482 0 0 0 32 0 -22 0
492 0 =32 O 0 0o -2
'3'37 o o0 0 0 0 o0
36 O 0 0 =32
SYMMETRY 36 0 32 O
30-;1’- 0o o
422 0
492
Similar operations on 13 term of eq. (29) lead to
1,=3 09, ) K {a) | (41)

where KL is the usual form of the stiffness matrix of a prismatié member
of length & . From the element stiffnesses, the gross .stiffness matrix,
K , is assembled in the usual way : the generalized displacements of an

element in local axes are transformed to global axes by axes rotation,

ta t=8{q} (42)

12



and the element stiffness matrices are added together by addressing their
terms to their proper place in the gross stiffness matrix, K . In the
same way the gross s'tability matrix, S , is assembled from the element
stability matrices, thus yielding

T

1 T L 1 T
I, ZIsi+Pqui_Zz{qg} H KEH{qg}+P2>:{qg} Sl{qg}

=2 tak{a)+P3iars{al> 0 )

where { q} 1is a vector of all generalized displacements of a structure,
where each "displacement" is, in fact, a disturbance from an equilibrium
configuration. :

Equation (43) is a condition of stability in a finite form. We can employ
it in order to answer two different, but related questions :

(a) Is the structure stable for a specified load intensity P ?

To answer it we must find the minimum value of 12 werete { q } -and see
if this value of 12 is positive. The equation for 12 (eqe 43) is qua-
dratic and homogeneous in { q } , with a trivial minimum at {q}=z0.
In order to obtain information about the relative values of I2 for the
various modes of disturbances, the disturbance scale should be constrained
by a norm (3).

We choose as a norm

1 T

i{q}S{q}=l (44)
Hence, the augmented functional of eq. (43) is

Iza..%{q}Tx{q}+P%{q‘}Ts{q}-v(%{q}TS{q}-lJ

or

1 T '
1, =2(a)"RK{q}-G-P5{a}’s{q}+y=nin. (45)
2a 2 2

where y 1is a Lagrange'ian multiplier. For an extremum we consider a non-
trivial variation of the disturbances, 6 { q } # O . Hence, since K and

S are symmetric,
13



K{q}=-(G-PS{q}=0 46)

A compatible system of equations for which a solution of eq. (46) exists
with non-trivial {q9})={ q, } » is defined by the condition

| K- =P S| =0 47)

whence the characteristic values of the Lagrange'ian multiplier, \
and the characteristic vector of the disturbances, { 1, } , can be
determined., Only the modes of the latter can be found, as the scaling
factor of { 9, } must be adjusted to fulfill the constraint of the norm.
It can be shown that the Lagrange'ian multiplier, Yp 0 is equal to

12 (min.). To this end, { q, } and Y, are substituted into eq. (46)

K{a}+PS{q )=y, 5(q}=0 (48)
1. T :
Premultiplication by 3 { q, }° yilelds
1 .. T 1 _ 1 T -
704G P Rl T+ P la 1S {q)=y 309} S{q} v, (49)
, 1 T L ,
since by eq. (44), 3 { q, 17 s { q. } = 1 . But the left-hand side of
eq. (49) is the same as the right-hand side of eq. (43) with ({ 9, }
substituted for { q } « Thus,
=1L (mins) . (50)
Hence, a structure is stable if y_ >0 .
The second question can be frased as : ,
(b) At what load intensity P = Por 1is the structure in a neutral equili-

brium?

A neutral equilibrium is defined by

I, (min,) =y =0 - (50)

Substitution into eq. (46) yields a characteristic equation

;lh



(k+p,_s5){q }=0 (52)

Thus, the critical load intensity, Pcr , can be found from eq. (52). This
is the method adopted here. The solution of eq. (52) is done by standard
iterative procedure, in which the largest characteristic value of

A ='Fl_ is determined in the first cycle of iteratioms,
cr

4. Examples.

To test the rate of convergence of the finite element solution, the critical
load of a cantilever column, with a predominant weakness for bending about
the zz axis, was calculated. The results are listed below in terms of the

effective length, £ , and the moment of inertia about the zz axis, Iz .

Ex. 1l : Cantilever column, buckling out of ~xz plane.

Number of elements : 1 2 ‘ 3

n2EL_ m2EI ' m2EL
Computed critical load : I1.0075 - 3 I,0005 s 1.000I

22 22 : 22

Evidently, with as few as two elements in a loaded member, an excellent

accuracy is achieved.
To investigate other modes of buckling, we compute several eigenvalues of

a cantilever column which is divided into two elements.

Ex. 2 : Cantilever column, 2 elements.

Section properties : Area, A = 5.0 in? , Moments of Inertia, Iy = 240 in* ,
I, =12 in* , Torsion comstant, J = 0,35 in% .

Elastic properties : E = 30.000 K/in2 , G = 12,000 K/in? .

Actual length of the colurm, L = I00 in .

Applied load, n = 83,400 K .

Mode n° : 1,2 3

Computed critical load factor : 0:99920 '1,06562

The first and the second modes are torsional, which is evident from inspec-
tion of the eigenvectors (not reproduced here). The torsional critical load

factor can be evaluated "exactly" in this example from the condition

215



a ¥
-Cr

GJ - ‘ Y (Iy + Iz) =0 ' (53)

whence

SIA __ . 0.99920

Pox == n(_Iy+Iz) A

It is not a coincidence that the "exact" answer for the torsional modes is
obtained by the finite elements, since the element satisfies fully all the
requirements of the beam theory for the torsional buckling. The third mode
represents buckling about the 2z-z axis, and the load factor can be calcu-

lated exactly as

2 : V
_ J% x 30000 x I2 = 1.065064

834 x 4 x I002

cr

which is to within 0.05 7 of the value computed by the finite element
method.

The same example was solved several times with a different orientation of
the column with respect to the global axes. Consistent results were
obtained. . '

Next example is a plane frame shown in figure 4. One element represents
the beam (which is not loaded in the stable state of equilibrium), each

column is subdivided into two elements.

Ex. 3 : Plane frame of figure 4,

All members have the same sectional and elastic properties, namely :

A =5,0 in2 , 1y = I2 in* , E = 30,000 K/in? . |

The applied load, n = I.0 .

Torsional buckling and buckling out of X~z plane is prevented.

Computed critical load = 7I.050 K .

The members which are not subjected to the axial forces are represented
"exactly" by a single element, since the third order polynomial, which

is used to represent the deflections of an element, is an exact expression
for the deflections of a beam with constant shear. This has been verified
on the preseﬁt example by subdividing‘the beam into several elements. As

expected, identical results were obtained each time,
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The eigenvector shows that the first buckling mode is a sidesway buckling,
with maximum deflections occuring at the top of the columms. For this mode
the critical load can be obtained analytically from the equation

——

P
tan (Lc v -ﬁ:)

I
bt |, E
c EIc

where Ic and Lc are the pertinent moment of inertia and the length of
the column, whilst Ib and Lb are the corresponding values for the beam,
Substitution of the critical load obtained by the finite elements, yields
the following results

tan(L, / 32) = tan (2.52873%) = - 0,703182
c
and the substitution into equation (54) gives

0.,27778 - 0.27808 = 0,00030 = O

This indicates that a close approximation of the critical load was obtained

by the finite elements.

Ex. 4 : Frame of figure 5,

Point A 1is free to rotate in any direction; there are no restraints
against any mode of buckling.
Section properties (w.r.t. local axes) : A =5 in? , Iy = 240 in% ,

I, =12 in*., J = 0.4 in% .
Elastic properties : E = 30,000 K/in2 , G = 12,000 K/in2 ,
Applied load, n = I.0 . ‘
There are two elements in the columm AB and one element in the beam BC .
Computed critical load = 7.28862 K .
The corresponding eigenvector shows that the buckling is out of the global
Xz plane.'
To check the order of magnitude of the numerically computed critical load,
a simple approximate solution of this problem is possible. Because of the
large torsional flexibility of the member BC (fig. 5), the critical load

of the frame, associated with the buckling out of Xz plane, is of the
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same magnitude as the critical load of the mechanism of figure 6, provided
that the spring constant, k= 3 EIz/3003 = 0,04 K/in . By equilibrium
considerations of the mechanism in a deflected state, we find that

Pu =0,04,u,180 .

Hence, P = 7,2 K, and it is evident that the numerical solution is of the
right order of magnitude.

Ex. 5 : Tripoid of figure 7.

Section properties : A = 5 in? , Iy = 240 in* , I, = I2 in* , J =06 in* .
Elastic properties : E = 30.000 K/in? , G = 12,000 K/in2? ,

Applied loads on all colums, n = I.0 .

There are two elements in each column, and one element in each beam.
Computed critical load = 89,8212 k .

The structure is axisymmetric, though this information is not used in the
formulation of the problem and it is not " known" to the computer.
Inspection of the eigenvector reveals that the structure buckles indeed in
an axisymmetric fashion, the largest deflections (scaled down to unity)
occuring at the top of the colums in the directions marked by arrows on
the plan of figure 7.

Thus, the numerical solution shows a buckling behaviour which can be expected

from an inspection of the problem.

Ex. 6 : Tripoid having a plan of figure 8.

This example is similar to the example 5, but the columns B and C are
oriented differently, as shown in figure 8.

Computed critical load = 120,495 k .

The increase of the load bearing capacity (I20.5 k as compared with 89.8 k )
is due to the additional restraint of the columms B and C by the beams.
The beams must now bend about their local y ("strong") axis, in order to
allow the columms to undergo rotation about their weak axes at the joint.

An inspection of the eigenvector reveals the displacements of the tops of

the columns, shown in figure 8.

It is seen that the column A buckles first, and the columns B and C

provide some restraint to it.

18



5. Conclusion.

A finite element solution of the stability problem of elastic space frames
is a convenient method, which can be applied to a variety of problems with
ease, Where analytical solutions are available, the numerical results are
found to be in an excellent agreement with the analytical ones. Inspection
of examples 5 and 6 illustrates that the critical loads can not be assessed
by a consideration of a compression member alone, a procedure often employed
in older design methods.

The whole of the structure must be considered in its entirety, and the

finite element method provides a convenient means to achieve this.
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