STATIC-GEOMETRIC ANALOGIES
AND FINITE ELEMENT MODELS

B. Fracijs de Veubeke

KIRCHHOFF PLATE BENDING THEORY

The variational principles underlying the Kirchhoff plate bending theory are claborations of
the general principles [1] that take into account the simplifying assumptions reducing the problem
from three to two dimensions. They will be presecnted in a form outlining the static-geometric
malogies with plane stress problems. ‘ /

{x,.x,) are cartesian coordinates in the middle plane. Basic assumptions are:

Tag = 0 U = X (%) ,%,) u, = X3a, (X, ,%,) u, = w(x,,%,) (1)

Bending and twisting moments are defined as

h h h
L =/l'rnx3dx3 M. =/719x3dx3 M, 4=/‘T9ﬁx3dx3 : )
" T-h . -h ) -h
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and the shear loads as . .

h h .
. Q1 '=/ q'ladx:3 Q?. =/ Tladx? (3)

-h’ -h
For the variation of strain encrgy per unit plate area-one obtains then

6W: = M 6oy, + M, D 6, + M, D 8, + M,,D, bc,

111 1271

+ Q, (b, + D, 6w) + Q,(6c, + D, 6w) ‘ )
so that W is a function of the strains .

I

Dal,Dd + D o

p0 s D00y + DyWa, +.D,w

and the bending and twisitng moments and shear loads are the corresponding partlal derivatives. For
isotropic materials we have, explicitly -

1 : 1-v
='§B{D1°’1)9 + (D-:aa’n)a + 2V, o D,a, + 2 (D, + Dya, )?}

+ 6h{(2, + D,w)® + (o, + Dw)?} _ )

where G is the shear modulus and

Eh®
1-V2

win

B =

is the so-called bending rigidity of the plate. :

The plate bending thcory corresponding to the foregomg assumptions is that of Hencky [27];
it includes the effect of shearing deformations. The additional Kirchhoff-Love assumptions

. o

o, +Dw=0 a, + D,w=0 - ) . . (6)
whereby shearing strains are ignored, eliminates the calculation of shear loads as partial derivatives
of the strain energy. Nevertheless, one can retain them in expression (4) as lagrangian multipliers
liberating the Kirchhoff-Love constraints.

Conservation of energy requires that the total increase in strain energy be equal to the virtual
work performed by the external forces acting on the plate, transverse pressure q(x, ,% ), edge
bending moment M ,,, edge shear load K and concentrated transverse forces Z,at angular pomts of
the edge contour, :

/ SWdA =/ q8WdA +/ (M, 60, +. K sw)ds + T Z, 6w, (7
A ‘ A c : :
-2

- .
The angle @n is the rotation about the axis t tangent to the edge contour. The outward norma! 2
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to the edge contour forms with € a system of local axes whose orientation corresponds to a rotation
of the axes Ox, and Ox, about Oxs by an angle 6. Thus the direction cosines of the outward

rormal are

n, =cos © n, =sin® 4 _ ‘ (8)
nd
=nao, + n?d:' — ’ o ) : ; ‘ ¢))

2y

while the fotation of the edge about the normal is A
¥ = Mo, - o | (10)
Sixﬁilarly, the derivatives along the outward normal and along the tangent to the contour will be
given by
b, = n1D1 +inpD9 : o : . (11)
D, = mD, - nyD, - - (12)
Turning back to the equation of conservation of energy (7), we substitute (4) and integrate by parts

obiaining

: /{6‘71 (Q - DM, - DzMw) + 805 (Q, - DM, - DM, ) - 6w(D,Q, + D,Q,
A . _ ,

+ q)}dA +/ {8ar, (n My, + n,M,,) + ba, (M, + M ) + 6w(Q, - K, )}ds

c.

-[ ba M, ds - £ Z,6w, =0 (13)
Cc A .

In this equation Q, stands for the shear load resultant
-h

Q = n,Q + nyQ, =/ Tnadx, ) . . (14)
. . -h ' ‘ _
. Since =, and v, were liberated from the constraints (6), the variations 6a; , e, and 6w are
Tut?_penfient in the surface integral, and the vanishing of their coefficients provides the classical
Zuilibrium equations : '

oMy, + DMy, = Q, DM, + DM, = Q, (15)
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DlQl + Dng, = -q : ] . (16)
The remaining equation can be plac:;d in the form
/ {6, (M, - M) + oM, + 6w(Q, .- K,)}ds
c _ | .
- ZZibw, =0 ' - Q7)

. | .
by using'(9) and (10) and noting the tensor transformation rules to the local axes
LM, M, =M - M, _
mM, + M, = M+ oM, ) ) (18)
The contour integral must be manipulated to take into account the constraints ‘

a, = -D w o, = -D,w ' - - (19)

deriving from (6), (9), (11) and (12). A further integration by parts is then indicated, and (17) takes
the final form . 4 :

/ {p, 6w, - M )+ 6w(Q + DM, - Kh)}ds
c

- [M,,6w]_ - £ Zy6w =0

Since D,; 6w and 6w are independent contour variations, the boundary conditions for applied loads
are

Mnn = Mnn : ' (20)
.. ' y

Kn = Qn + DnMnt = K" (21)

(Mn,,')'_,_ ™, )_ = _Z, at angular points. ‘ (22)

The last condition stems from the fact that w must be single valued at an angular point, the
subscripts - and + indicating respectively the limiting values of the twisting moment as we approach
or leave the angular point. The same analysis shows that the displacements that can be imposed
along the contour arew and @, = -D, w.
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THE FIRST STATIC-GEOMETRIC ANALOGY

Saveral authors [3,4] noted some of the analogies between the formulation of Kirchhoff plate
rending theory in terms of the transverse displacement w and the plane stress (or plane strain)
.peoblem as formulatéd in terms of an Airy function. This analogy is particularly transparent when

comparing the variational approach of the previous section with the complementary energy

principle for plane stress [5]. Since in the complementary encrgy formulation the equilibrium
cqq..uons are to be satisficd a priori, the use of the Airy stress function is natural. Assuming the
tady forces to derive from a potential ¥

%= DY X =Dy ' o @)
2 volume equilibrium e;]uations fo.r the normal forces and shear flow ;1re given by

Dy (Ty, - ¥ +D,m,, =0

D T, + D, (T, = V) =0 , ' . ' 24)
= are satisfied first by introducing two stress functions & anda, :

Ty - ¥ = "D, T2y = D,

Ts = Dzd'l Tan -y = -Dlal _ ’ (25)

Those equations show. that ¥ - Tyys ¥ - Tap  and 7,5 + 7, play roles analogous to the.
strains of the Kirchhoff theory. In order to satisfy the rotational equilibrium condition T,
= T2 » one should introduce the Airy stress function w.

2, = -D,w @ = -D,w ' (26)

=3 obtain the classical relations

Ty = V4 DEw Ty, =T

1 2y = ~DyDyw

T2 = ¥+ Dju | | @7)

tHowever, noting the analogy between (26) and the Kirchhoff- Love assumptions (6), we shall keep
12€) as constraints liberated by the use of lagrangian multipliers q, and q, analogous to- the shear
%zds Q) and Q, of the Kirchhoff theory.

The variation of the complementary energy per unit area will then be

b3 = 31161'11 + ¢

21875y + €8T, + €587, .

€10, 8a, + €,,D, 80, + €,.D,80; - €;,D,

+ q, (6, +-D,6w) + q, (8, + D,6w) ‘ _ (28)
i~ this expression the €; 4 are the partial derivatives of ¢, considered asa quadratic function in the

‘: izbles ‘T, , T, and T, + 7,,, sothat €, = ¢,,. By conservation of energy, the
3 ”znon of the foral stress energy must be equal to the complementary vnrtual work of the
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displacements (4G, , w,) imposed along the boundary on the surface traction variations

/.6¢dA =/ {;1 (n 67y + n,67y,) + ;(“15712 + n,67,,)1ds
A c V '

=/ {:1 (-n; D 8a, + n,D,ba,) + -J? (n,D, 6, - n2D16a1)]ds
c

=/ (-u, D, 6ar, + D, b0y )ds | 29

[
Substituting (28) and intcgrating by parts-

/ {60, (0,6, - Dy€y + q,) + b (-Dy6y, + D¢, +q,) - bw(D,q,+ D,q,)1dA

A ' o _ _ .

+/ [6012 (n,€,, - n,€,) + 6o, (ny€,,- n, €,,) + u;D, oy - u,D, bary+ qnbwlds=0
. . ' : (30)
Again the vanishing of coefficicnts of the independent variations b, , 8a,, Ow in the surface
integral produces the compatibility requirements '

© Dyeyy + D6, = q D€, - Dy, = q ' : (31

Diqy + Dyg, =0 (32)

By comparison with (15) and (16) they show that (- €, €155 €11) are the respective
analogucs of (My,, M., M ,). ‘

Note further that elimination of the multipliers between (31) and (32) furnishes the classical
local compatibility condition for strains '

D2e

1722

+ D2e,, = 2D1Dg€12 . ~ . -(33)

Furthermore, should we satisfy (32) by setting
q, = -D,w q, = D,w (34)

equations (31) become the Beltrami equations for the integ}ation of the material rotation w,'(33)
being their integrability condition. After disappearance of the surface integral in (30), the remams*-éf
can first be manipulated as in the previous section by using '

Meyy " Ma€yy T MChy 7 N6,

. - 35)
N€yn = Ny€, T M6, + M€y (
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There comes

f (¢,.00, - €, 00, + u Db, - u,D, by + q,bw)ds =0 ‘ (36)
A :

This is integrated by parts, notmg that the single-valuedness of u ,u and 6011 and 6, causes the
integrated terms to vanish, producing .

/{Sfr, (e, - nlD,;1 - n,D.;9)'+ ba, (-€,, - n?D'-l;l-l- nlD.-Jp) + q,6wlds = 0

[

Finally, we note that, in accordance with (26),

a, = -Dw @, = -D,w . (37)

so that a further integration by parts is indicated to obtain coefficients of the independent
variations dwand D,6w. In carrying out this intcgration the single-valuedness of &w indicates that

€,, - n,Dju, - n?]).;p éingle-\{alued along c. (38)

Setting the coefficients of independent variations equal to zero, we obtain

D, (¢,, - mD,u; - n,Du,) +q, =0 ’ (39)

€, =nDu - nD,u along c : . (40)

The interpretation of those boundary conditions is perhaps clearer if the dwplacement vector is
._e:omposed in local coordinates

U T muy monyuy

u
> = n,u + nu,

Then, using (8), the notation ® = d6/ds, and noting that

9, = n,q, + n,q, = (n,D, - n,D)w : . (41)
%¢ transform (38), (39) and (40) respectively in

e, - D,:“ + é:t - single-valued along c T (38)

D, (e,, - w- Du, + 6y, )=0 . : (39"
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€y = Dyu, + Ou_ - : ’ 4 (407
showing that, as it should, the single-valuedness of w along c. Also in view of the Beltramj

equatlons (31) and (34) it can be shown that

D¢,y - @) = 2D, - De,, + e(en'n T S4) (42)

MULTI-VALUEDNESS OF THE AIRY FUNCTION AND ITS DERIVATIVES

Cansider ;the following integrals extended to any closed contour y, which is the boundary of
a simply conncected domain D

/ Ty dx, - T, dx, =/ (Vdx, - da, )

Y o \ . :

/dexg - Typdx, =[ (- dx, +'dfy1') - . C@3)
, , ‘ v .

where the right-hand sides arc obtained from relations (25). The left-hand sides represent respectively
the total force components F, and F, due to the surface tractions along the boudary. By global
“equilibrium considerations we must have

F, = -/ X, dx, dx, =/ D1¢dx1dxa' ""/ Ydx,
D D Y

F, = -/ X, dx, dx, '=/ Dallexldxz = "/ Ydxy
. 5 o v .

the successive forms deriving from (23) and application of Stokes theorem
The conclusions .

/da1=0 ::/d~2=o L (44)
Y , D :

Y

can also be obtained directly by observing that the stresses, generated by m. and a, only, are in
equilibrium without body forces. In a similar manner, consndermg the moment with respect to the

origin of the surface traction forces

/ %y (T1pdxy = Toodx)) - x, (71,,d%,- 7,,dx,)
v " '
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= -/ ¢(x1dx1+ x,dx, ) +/ x,dw,+ x,dn, . (45)
Ty Y

and observing that global equilibrium requijres that it should also be equal to

-/ (xlx?- x’Xl)dxldxp = -] (x,D ¥ - ‘xlDPlll)dxlde = -V/“Iﬁ(xldxl-i-‘ x,dx,)
D D Y .
we obtain '

-/ xyda,+ xda, = 0 A (46)
. )

In view of (44) and (26) this is cquivalent to

-/ oy dx, + m,dx, =/ dw=0 %7)

Y Y

Consequently, in any simple connectcd domain the Airy function and its first partial derivatives are
single-valued. Consider now a multiply-connected domain with a single internal cavity of contour
as shown in Fig. 2. '

From (43) we obtain that

[dcy? =/de2 - F, /‘dcy1 =/ Ydx, + F, : : (48)
¢ ¢ .

¢ ¢

where F, and F, are the components of the total force exerted by the surface tractions applied
along the internal boundary. Furthcrmore, there are also contributions from the body force
potential that do not in general cancel F, and F,. Hence, the first partial derivatives of the Airy
function have in general nonzero cyclic constants. The jumps bar, and Aa, incurred across any
barrier devised to render the domains simply connected remain equal to the values of (48) because
the additional integrals along (PA)_and (Ap), cancel in view of the single-valuedness of the body
force potential and the reciprocity of the surface tractions

t,=n T, +n,T, . and t, =n
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Figure 2.
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Siilarly we find
[d" = '/ o dx, + apdx, = - x{/d"’f x:Ae/d'Yg "'/x1d0!1+ x,da, (49)
g ¢ ' ¢ ¢ ¢

2ad the last term is, from (45), ’ |
/klddl + x?ddp = M° +/ \ll(xldxl + x?dx?) (50)

¢ ¢

where M, is the moment with respect to the origin of the surface tractions along the internal
woundary. This result furnishes the jump in value of the Airy function itsclf when the inner contour
i described from A_to A,. S

Consider now any point P in the domain and a closed contour q, passing through P and
endlosing the inner cavity. We join it to the contour { by a two faced barrier (AP)-and (AP),.The
&omain enclosed in A_ A, P, P_ A_ issimply connected so that the total jumpsin w,a; and o,
#re zero. In other words, the jumps in P(x;,x,) by describing the contour T are the same as
those calculated by describing the contour P_ A_ A, P,. Because, again, the contributions from
the two faces of the barrier -cancel, we obtain the same result as (49) and (50), except that the
coordinates of A must be replaced by those of P, Hence in P

by = / do, by, = / da, as given by (48) (51)
¢ ¢
Aw = -xlAal- x, A, ;O-Mo +/‘\l'(x1dx1 + x,dx, ) . (52)
. c . .

Iz the analogy with plate flexure, where w is the deflection and @; and «, the slopes of this
Z2flection, results (51) and (52) show that both faces of a cut from inner to outer boundaries can
vdergo a relative kinematical displacement.  The analogue of the multivaluedness of the Airy
fznction and its first derivatives are a ““dislocation.”
~ The extension of equations (51) and (52) to multiply-connected domains with more than one
=temal cavity presents no difficulties.
There is, of course, a straight forward derivation of the results (51) and (52) that, however,
i:zi not yield the physical interpretation of the constants. It consists in observing that the surface
ons i o : :

£, = - Daa;) +n,Da, = n{ - Dy
& =D + ny(V - D) = n, ¥ + Dy,

=4 l’bdgroca.l across a barrier, and in case of single valuedness of the body force potential, entail
;u-':—jx;edlately the constancy of the jumps in oy and « 5. Thus the jump in w is necessarily of the form
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bw = -xy 0 - x, 0, + Aw, (53)
as can be verified from (26). . - '
DISLOCATIONS IN THE PLANE STRESS PROBLEM

Since the application of the complementary energy principle requires a simply-connected
domain, we can imagine the multiply-connected domain to be converted to a simply connected one
by physically cutting the domain by the barriers. There arc no specified displacements at the

interfaces; thus invoking the rcciprocity of the surface tractions, we can write on the strength of the
previous results that

(6a,), = (82,)_ - (8a,), = (ba,). (6w), = (6w)_

By the lagrangian variation tcchnique that was used, those variations are independent. Hence,
grouping terms at both interfaces in (36) and sctting the coefficients of the variations cqual to zero,
we get as natural transition conditions:

(c,), = (¢, (6,,), = (&) ‘ (54)
and, in view 6f 41),

D,w, = D,u_ o (55)
Those conditions are satisficd by the following jump conditions

Ay, = Av, - x,Aw

Bu, = bv, + x,0w - ) ' . (56)
Hence, in the multiply connected case, satisfaction of the local compatibility equation (33) is not

sufficient to produce single-valued displacements.
To each barrier one should add the compatibility conditions in the large

Av, = 0 A, =0 Ao = 0 ' (s7)

that suppress the dislocation or relative kinematical displacement possibilities discovered by
Weingarten [6] and Volterra [7] . R
THE SECOND ANALOGY .

" The stress app‘roach is now applied to bplate bending and cdmpared to the displacement
approach in membrane stretching, thus reversing the roles played by the variational principles in the
first analogy. The plate equilibrium equation (16) is satisfied by setting

Q, = -D,k + D Q, = -D,u - Dyw , ' (58)
provided the potentialp obeys the Poisson equation

(0 + D) = q . | (59

AaUksn
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The other two equilibrium equations (15) become then
Dxmn"' p.) + D, (M, - w) +0

D, (M, + w) + D, M+ p) =
xd can be satlst" ed by mtroducmg a stress function vector (u1 » u,)such that

My, +"” = Dyu, - My, + b = Dyu, :
M, - w=-Du, M, +®=-Du (60)

Finally the reciprocity of twisting moments requires that

1
w'= E(Dlup - D.’—!ul_) B (61)
o which case
' = =-1pu+np © (62
M, =M, ==~ 5 u+Du) (62)

The notations u,,u, and w for the stress functions of plate bending theory were used on purpose

t stress their analogy with the displacements and the material rotation of the membrane stretching

peoblem. The analogues of the strains €,,, ¢, , e1, in this last problem are clearly the

quantities M, + p,My,+pand -M,,,. '
Introduce now the elements of the curvature tensor of plate bending

k11 = Dldl = "D’?W

k

1?

k., =Da, = -DIw ‘ (63)

1
'2-(D1a2+ Da’lﬁ) = -D,D,w

which, according to (27), are the respective analogues of - and Y -7,, in the
=embrane problem. '

While the strain encrgy of plate bending per unit area was a function of those cuivatures, the
. Bamplementary strain energy, or stress-energy, is a function of the dual variables Miy, My, and

1
.=+ Its variation is

220 T2

8% = k), 6M,,+ Zky 5 60y o+ Ty BM,
= k1Dy6u, - ky, (Dy6uy + Dybuy) + ky Dybuy S (64)

Aoz a boundary curve we can calculate

How =3y, + Znyn,M,, + n2My, = -p o+ Deuy + Ouy - (65)
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' 1
May = mim, (- M33) + (02 - m3)M,, = - 2(D,u+ Dyu,) + & bu, (66)

.

Ql = n1Q1 + N;,Qn = 'Dnu‘ + D!w
K, = Q+ DM, =-Dp - D (Du, - fu,) : (67)

wherc (up,u,) are the components of the stress functlon vector in local axes. Assuming all
displacements to be prescribed along the contour c, the statement of energy conservation is found
to be

/ 5¢dA =/ (3, M, , + woK,)ds - [weM_ ], . (68)

After substitution of (64), (65), (66) and (67) and integration by parts 1t can be placed in the
followmg form

/ {Bul( D, kyot DK, ,) + bu, (D, ky 5 - Dakll)}dA
A

+/ {6up (kyy + D?w - Oap) + buy (-k,+ D+ 6D,w)1ds
(]

+ [pwbu, - Dwbu - wow, =0 (69)

Use was made of the tensor transformation rules
mkyo- ok, = ngkey + npk,

- mky, + nkyy = npkyy- mpk,

From the cocfficients of the independent variations in the surface mtegral we obtain compatibility
equations for the curvatures

- le + Dykyg = 0 Dik,, - Dykyy = 0 (70)
that represent the integrability conditions for a transverse dlsplacement they are the analogues of
the equilibrium equations (24).

Along each scgment of boundary with continuously turnmg tangent we must satisfy the
boundary conditions
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key = -D3w + 0o,

.
. - -

K,y T Ds;n - ép,w V ' (71)

A: sngular points the deflection and both slopes of the deflection are known from the boundary
Atz and it was found advantagcous to express the last term of (69) in the fixed axes. This term
«xaishes by virtue of the single valuedness of the prescribed deflection and its slopes and the
wured single-valuedness of the stress functions u, ,u, and w,
WULTI-VALUEDNESS OF THE STRESS FUNCTIONS uj,u, and w

The potential u generates a particular state of stress in equilibrium with the transverse pressure
E. In particular the force system consisting in the transverse pressurc distribution and the surface
wsction forces generated by p along the boundaries is statically equivalent to zcro. The stress
fenctions (up, u,)  gencrate stresses in equilibrium  without transverse pressure, and the

aeresponding system of surface tractions along the boundary is statically equivalent to zero.
Considering a simply connected domain of boundary vy, thisimplies that the total transverse force

% 28700 .

/ -Q,t‘lx1 + Qldx2 =0
Y .

Transformed by equations (58) with 1 = 0, this gives

/Dlu)clx1 + D, wdx, =/ dp =0 _ (72)

Y Y

Similarly for the moments with resi)cct to the Ox, and Ox,

/}gzdxl- M,,dx, + x,dw =0

) v
/ = M,,dx,+ Mudxz' x,dw =0
Y

Transformed by equations (60) with u = 0, they give

j'd(u1 + xw) =0 ) fd(u,? xlw) =0

v _ . Y-
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. and, taking (72) into account, reduce to

;/c]u1 =0 fdu, =0 : - | . ‘ (73)

Y Y

This establishes the single-valuedness of uy, u, andw for a simply connected domain.
Across a barrier in a multiply-connected "domain, the reciprocity of Mn, and K, entails, by
virtue of (65) and (67), and provided p and D, u be single-valued, the continuity of

D,u,+ Ou, and D, (D,u,- Bu,) continuous at interface . (74)
|
As a matter of fact this corresponds exactly to the same jump conditions for the stress functions as
the displacement dislocation expressed by equations (56) and constitutes another facet of the
second analogy. Indeed, adopting (56), a simple calculation shows that

D Aut+ 8hu, = 0 and D, Au, - eAu = -Aw o (75)

DISLOCATIONS IN THE PLATE BENDING PROBLEM

From the results just obtained concerning the jumps in stress functions across a barrier in a
multiply-connccted domain, we conclude that the variations of the stress functions are continuous.
The transition conditions provided by those variations are the continuity of k,, and k,,; or,
equivalently, of .

D?w+ 6D w  and D,D,w - 8D,w ' continuous at interfaces (76)

The corresponding jump condition for w turns out to be exactly the same as th'lt given in (53) for
the Airy stress function; it is a facet of the first analogy.

EQUILIBRIUM MODELS OF FINITE ELEMENTS BASED ON DISCRETIZATION OF STRESS
FUNCTIONS

To construct equilibrium models of finite elements for plane stress problemns one can use an
Airy stress function containing a finite number of unknown parameters. For plate bending problems
_the same proceduie is applicable to the vector stress function..
An interesting property associated with stress functions is diffusivity at interfaces. In the case
of the Airy function, the fact that . '

= D?w + 9an T,y = “DyDyw + GDJJ
shows that continuity of W and D, w, equivalent to that of w and both its slopes, is sufficient to
guarantee diffusivity; that is, contmuous transmission of surface tractions. By the first analogy it
follows that any displacement model for plate bending that is conforming will correspond to a
diffusive equilibrium model for plate stretching. However, those continuity requirements. if
" sufficient, are not quite necessary. As was shown in the section pertaining to multi-valuedness of
the Airy functions and its derivatives, the Airy function may undergo a jump ot rigid body type



STATIC-GEOMETRIC ANALOGIES 315

,&21 scross the interface without impairing diffusivity. In multiply-connected domains this does
sy occur across the cuts devised to restore simple connectmty Similarly for the vector stress

m-non the fact that ‘
¥ = DUy + éu,, K, = -D,(D,u, - 8u,)

s that simple continuity of the vector function is sufficient to guarantee diffusivity. Hence, by
e r\ond analogy, any conforming displacemcat model for plate stretching will correspond to a
.. “7usive equilibrium model for plate bending. Again, continuity of the vector stress function may
3, repiaced by jump conditions of the type (56) without altering diffusivity.

Suppression of Kinematical Freedoms in Equilibrium Finite Elements

Tt was observed  [1] that kinematical freedoms or “mechanisms” can appear either within an
zyzlibrium model itself or as a consequence of its connection to neighbouring elements. An
szportant feature of equilibrium models derived from displacement analogues is the absence of such
ymdssirable characteristics. To this effect we must start from a displacement model, whose
g:-ralized boundary displacements, devised to guarantee conformity, are independent. It is known
:11 that in such a case the displacement field parameters, represcnted by the column matrix a, are
cipressible in terms of the generalized boundary displacements q and a set of bubble coordinates b:

=Qq + Bb . ‘ 77)

w23 2 nonssingular transformation matrix (qB).The choice of field parameters can always be such that
@z gistinguish between the set r,gencrating rigid body motions, and a complementary set s,

$ooerating a true deformation field:

= (1‘ 1g! )
it the analogy, a becomes a set of parameters for either the Airy functnon or the vector stress
fomotion (uy,w,).The subset s that which describes *rigid body motions of the stress flll‘lbtl()nb"
L

=Y, X, - YoXgy + W r! = (Y1Ya"’o) 31
% the Airy function, or
u = vl - X, Uy = Vg + xlw (56')
= (vv,w)
% the vector stress function. Inasmuch as the set r does not generate deformations in the

-—:i‘&:ement models, it does not generate stresses in the analogue equilibrium models With this
®ichision of a,(77) is split into

= Q.q + B,b (78)

=Q,q+ B,b | ’ (19)

2‘ 2t s can be identified with the set of stress parameters appearing with the same notation in the
ezl theory of equilibrium models [1]. The set q can be identified with the parameters
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describing the behavior of the stress functions at the boundaries of the equilibrium element; they

.-are obviously such that intcrface identification of the elements of q produce, either continuity of
the Airy function and its two first derivatives across an interface, or continuity of the vector stress
functions. This. was recognized to be sufficient for diffusivity. The set b becomes a set of parameters
describing an internal behavior of the stress functions that generates no- surface tractions at the
boundaries. It was shown [1] that, disregarding presently the presence of body loading modes, the
generalized boundary forces, devised to insure diffusivity, are connected to the set s by a load
conncction matrix C: -

g = Cs . (80)

We also recognize that the same generalized boundary loads are expressible in terms of the set q of
boundary parameters of the stress functions alone, since the b set generates on boundary surface
tractions, thus '

g = Cq ' (81)

We call ¢ the “extended” load conncction matrix, and proceed to establish its relationship withc.
Substitute (79) into (80).

g = CQ,q + CB,b

and conclude from the previous considerations that we must have
CB, =0 (82)
¢ = cq, : (83)
Similarly, since the sy'stem of equations (78), (79) is invertible, there exists a relationship

q=Mr+Ms ‘ ) , (84)
which derives in fact directly from the general equation [J.] q = M a, after partitioning a into its
two subsets. When this is substituted into (81)

g = CM.r + CM,s

However the set T, that does not generate stresses, cannot generate surface tractions at the
boundaries and so

tM, = 0 _ (85)
C = CM, (86)

Equations (83) and (86) are the relationships sought for between the two loan connection matrices.
The proof that there are no internal kinematical freedoms hinges on the proposition that the
dimensions of the column matrices q and g are identical: n(q) =n(g). This is not only borne
out by experience but is susceptible of a general proof. Take first the case of the Airy function.
Since one can add to it an arbitrary linear form of type (53"),without altering the stress distribution.
there is no loss in generality in considering the Airy function and its two slopcs to be zcro at one ol
the vertices v of a finite clement
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A V (40, %,=0, o, =0)

Figure 3. -

Suppose now the local values of wand its slopes o, and o, to be split into two categories:
category 1- contains the valucs defined between vertices and belonging to only one partial
voundary 3.E;catcgory 2 the values pertaining to the vertices themselves and belonging to two
partial boun aries. In category 1 each local valuc between A and V generates an independent
wrface traction distribution along AV (that is statically cquivalent to zero) and requires the
definition of a corresponding generalized boundary load. Hence ny (g) = nj (q) . In category 2 the
surface tractions along AV are generated only by the 3 local values in A (they are no more
statically equivalent to zero because complementary surface tractions are also generated along the
other boundary issued from A) and require 3 generalized boundary Joad. Then
(o, (g) =n,(q) because therc are as many partial boundarics as there are vertices. The
result n(g) = a(q) follows by addition. A similar argument can be presented for the vector stress
function (u,, u, ) . Here there is no loss in generality in assuming u, = 0 and’
u, =0 in the vertex V and some transversc component to vanish in A , thus preventing
the rigid body motions of the stress functions . :

Ffigure 4.

For category 1 local values the situation is similar to the previous one and n, (g) =n,(q) . In
category 2 however there is only one local value of the stress vector generating a surface traction
dl_\strﬂaution along AV that requires only one gencralized boundary load. Thus ng (g) = n(v) the
ramber of vertices. However it must be recalled that in this case there are concentrated transverse
loads appearing ‘at the vertices that must be added to the generalized boundary loads. Their
numbern, (g) = n(v) again, Thus '

n

a(e) = n,(g) + 1n,(g) + ng(g) = my (a) + 20(v) -

n, (q) + ny;(q) = n(q)
The result n(g) =n(q) implies that in (81) the extended load connextion matrix is square. From

2 generai theorem of algebra it is known that the number of independent solutions of the
Bomogeneous system . '

C'qx = 0.
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is equal to the number of independent solutions of the adjoint system

el

and this is in any case equal to 3, representing the rigid body freedoms of the stress functions. Now
since from (86)

S C'qk = M.'('j'q*
andM_has linearly independent columns it follows that
C'q* =0

has only 3 independent solutions that cannot be other than the 3 rigid body displacement freedoms
of the element. This completes the proof that the element is free from spurious mechanisms. (1].

Assembling by the Direct Stiffness Mcthod

The most obvious way to utilize an cquilibrium model, established through its static-gcometric
analogy with a displacement model, is to bring its formulation back to the general thoery. This
amounts simply to sct up its load conncxion matrix ¢ by means of (86). If body force loading
modes are required, care must be taken to avoid that the part Gc (see equation (87) of
reference 1) of the generalized boundary loads does not increase their number because additional
independent surface traction modes become generated. This would introduce again the undesirable
feature of internal kincmatical freedoms. Far prescribed types of body loading modes this poses a
problem of carcful determination of the part R(x)c in the discretization of the stress ficld. One
example is given in reference 9 for the uniform transverse pressure on a plate bending equilibrium
model. As was shown in reference 1, the elastic behavior of any equilibrium model can be
represented in terms of discretized stiffness relations, exactly as displacement modcls. The same
assembling process as in the dircct stiffness method is thus applicable to them, contrary to the belief
that equilibrium models necessarily rcquire a Force Method of solution. No special problems arise
with the presence of interface loading modes, provided they conform with the possible shapes of
surface traction modes. The same remark applies to the loading modes at the boundaries of the
assembled structure.

Assembling by Analogy

The observation.was just made that both equilibrium and displacement models can be
generated and assembled together, considering nodal displacements as the basic unknowns. The
same is true of the Force Method, in which the basic unknowns are intensitites of self-stressing
states of the assembled structure; it is applicable to both types of models. However, there is some
evidence that the differences in topology of the connexions between both types favors the use of 2 -
" Direcc . Stiffness Method for the displacement type and the use of a Force Method for the
equilibrium type. Moreover, whenever a static-geometric analogy is at hand, the Force Method
applied to a set of equilibrium elements can be presented in a form that is strongly similar to the
Direct Stiffness Method as applied to the set of displacement analogues. In other words the
static-geometric analogy can be pushed beyond the construction of models to the problem of
assembling and solving. The general theory of this procedure is taken up in the next section.
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The Direct Force Method ‘
"In the general theory of equilibrium models [1], the discretization of the stress field is

~—ecented in terms of parameters c,representing body loading modes, and parameters s, representing
gt . .
eress fields in equilibrium without body forces .

r(x) = R(X)c + S(x)s ’ - (87)
S:ince the last part is precisely one that can be derived from the use of stress functions, we use (79)
ra Jistinguish in s the generalized values ¢ that govern the surface traction distributions on the
wcundary of the element and the internal generalized values b, Thus
- 7(x) = R(xX)c + Q(x)q + B(x)b
Q(x) = S(x)Qs ~  B(x) = 5(x)B, _ (88)
The discretization (88) produces a new form of the flexibility matrix of the element

Foo Foq _ Fov c
t=+ [ruiede = 2erqvy [F, B, ¥
2 2 q qo- qQq qb q
E . Fro  Foq - Fyy \b / 89)

. It can also be obtained from the quadratic form in cand s (see equation 93 of reference 1) by
subsitution of (79). Moreover, because the bubble coordinates b of the stress function are
cncoupled to neighbouring elements because they produce no surface tractions, thcy can be
&iminated at the element level by straight forward minimization of the complementary energy.
Hence b can be solved from the minimizing condition ‘

FyeC + Fy @ + Fyyb = 0 (90)

zd substituted to yield a flexibility matrix
\ Foo F
\ 1 cc cq ¢
= = 10
¥=7 (c'q") X . ,
Fio Fgo q (91)

Z.at only involves the boundary coordinates of the stress function and the body loading parameters.
Tﬂt_ application of the minimum complementary energy principle at the element level can be
achieved by considering the generalized displacements as prescribed. Then

¥-q* -b* = minimum

:hm Q_* and b*are defined by virtual work considerations as in reference 1, section pertaining to
- “seneralized Displacements, and where we have, as already shown

=G+ dq 4 | (92)
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 The minimizing conditions with respect to ¢ and q yield

l?‘”c + f-‘oqq = G'q* + b* : - (93)
Foo€ + Fgqa = Clax = .o (94)

Those generalized flexibility relations, akin to equations (96) and (97) of reference 1, involve
generalized strain definitions on the right hand side. To exhibit the analogy in the assembling
process with the Direct Stiffness Method in its simpler form we take the casc without body loading
coordinates and with a simply connected domain. Then, provided there are no interface loads, the
stress functions are known to be single-valued so that, without loss of generality, each setqof locai
valucs can be allocated to a common set w of nodal values:

e = Lew (95)
Each coordinate in w can be regarded as a hyperstatic unknown [12] since it generates a
self-equilibrated stress field. Such hyperstatic unknowns are even the best conceivable because the
domain in which their stress ficld diffuses is strictly: limited to those small number of elements
whose boundary is influenced by the considered nodal value. In this sense-we have a direct answer
to the problem of determining the “minimal hyperstatic cells”. The coordinates of w that appear
along the outer boundary of the assembled structure are to be considered as unknowns only where
the boundary displacements are prescribed; we shall also consider this to be the case. Equation (94)
is reduced to

(Foqdeae = Clat - . (96)

for each element. Hence

~

at (F Dede = aiCiaf = glaF 97

if due account is taken of the reduced form taken by (92). This appears as a Clapeyron statement:
on the left twice the strain energy of the clement, on the right the product of the externally applied
loads g and their conjugate displacements. We now use (95) and sum the energies of all elements,
obtaining

X ' . . |
W'FWE :rs':sqa'f | L (98)
with a master flexibility matrix
. F =§ Li(Fdele . ' 99)
T , A

constructed in a manner that is perfectly analogous to the master stiffness matrix of displacement
type elements. The right hand side of (98) can be manipulated to introduce the nodal vector of
generalized displacements w¥, through :

aF = L o | 100)
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ﬂ.en, noting that by virtual work considerations [1],

> LrE =y - (101)
E . o
ahere y-is the external load vector conjugate to w¥

w'Fw = E g¢ Lwk = y'wk ’ ' ' (102)

This is again a Clapeyron statement, but this time for the assembled structure. Through (101) the
external load vector is expressible as .

y = ( E L%'CeLg)w = Aw ' (103)
L |

We now distinguish between the set w, of coordinates of w that do not belong to the outer boundary
and the complementary set wa;similarly for y. This leads to a partitioning of A and separate
aquations

~ A
Apwy + A v,

Y1

Yo = Mgy Wy + Ajpw, ' (104)

. e e . . N
Howe:'er, since diffusitivity was insured, the interface loads y , are always zero, hence A3, = C
ad A, , =0. We now state the minimum complementary energy principle for the complete
structure assuming W,  to be prescribed

A

'1 a 1 ~ A ~
3 WiFy vy + wiF, v, + 7 WaFaawy = (WiAZ, + wlAL )wk min

ad,‘this leads to the set of linear equations

\
\

\6 A ~

Fpa¥1 + Fppwy = Ajuwy
FraWy + Fopvwy = Aj,vg " (105)

By using also (104) the case of mixed boundary conditions on the outer boundary can be handled.
Extensions to multi-connected domains, body loading modes and interface loadings are possible but
still remain difficalt to automate. ‘



322

10.

11.

12.
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