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FINITE ELEMENT APPLICATIONS
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SUMMARY

Up to the present time, most of the finite element applications to linear struc-
tural dynamics have been based on the displacement approach and its corresponding
-Hamiltonian variational principle. It is sufficient to this effect to add to the
static stiffness matrix lagrangian, or so-called coherent, mass matrices.

The first really satisfactory formulation of a dual principle, in which the kine-
tic energy is transformed tnrough satisfaction of the dynamic equilibrium equa-
tions into a functional expressed in terms of- space derivatives of an impulse
field, is due to Toupin >, Similar approaches were followed by Crandall 9, Yu
Chen 10 and Gladwell and Zimmermann ll, Finite element applications to the elbeq-
value problems of beams and plates are due to Tabarrok, Sakaguchi and karnopp

and to Geradin 7,

Tne paper gives a logical derlvatlon of the dual dynamlc principle through .the
canonical form in the spirit of Friedrichs transformations 1, It also discusses
the general procedures for assembling.equilibrium type finite elements in order
to implement the dual principle., Finally it is show . that there is no advantage

in using the dual principle together with the requirement of forcing orthogonality
with respect to all zero frequency modes. Instead, experience shows 7/, that by
ignoring this unnecessary requirement eigenvalues generally converge to their
exact values by lower bounds, hence giving precious accuracy estimates by compa-
rison with the displacement approach.
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l. Hamiltoan's principle

Hamilton's principle for conservative systems is a stateuwent of stationarity of
a functional of tine displacement field - :

t. ‘ - :
- 2 ‘
v fm“:f (1= de - - ®

£ _ _ :
wnere T denotes the kinetic energy

X T= f '% pu, u, dR ' - co (2)
I R J 3J : : ‘ o

and V the total potential energy of the system. V can have several distinct parts;
one is tne strain energy

;x V1 = !ﬁ N‘(?u) dR o | o (})

wihere the energy density is expressed in terms of strains, i.e

1 S ‘ S . .
€, =5 (Di uj + Dj ui) : _ 4)

1]

if we restrict ourselves to tne linearized case; another one can be a pqtential'.
energy associated to the displacements on a part 32R of the boundary

Vy = - [ F (u,t) dS - - (5).
3, _ R A

On the remaining part 3,R of the boundary we shall assume that the dlsplaccmentsv

are prescrlaed time functlons :

u =‘If. (t) k on 3iR _ o _ (6);

For simplicity we do not take-'into consideration otner potential energies like
that associated with conservative external body forces functions of p051t10n.
In 4pp1y115 the pr1nc1plu

-

X | 5'5 [.u J=0 o R B L

wita ilamiiton's rule

. x 8 Yy ERY for t =t ) and t =, | N ¢ )
o . ' ‘ St _ . .
and 6 u, =0 at all times on 3, R, which is a consequence of (o), tue Lollow1n7

Vdrldtlond.l derivatives are ooL‘uued
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are tue stresses. They are the dynamic equilibrium conditions in d'Aleuwert's
form. Tne natural boundary coaditions supplementing (6) are found to be

- + —=
n, Tij S 0 on 32R _(lu?
J _ . C
witi the usual notation ‘ - -
t, =q, 1., . ' _ : - (11)

J i ij

for tue surface tractions, tiey state that tnese surface tractions are prescrived
fuactions of displacement and time :

| = "tj -7;; tj (u,t) ‘ on aZR (1{).

‘An important special case is that of a linear function

Foe =u T (® . | a3

in whica tne natural vouadary conditions reduce to

=T © o e . o ae.

.

2. Friedricas transformation. The canonical variational principle. .

.

e follow the way iandicated by Triedricas to traasforau iaailton's principle

into cauonical and, later, dusl fori. To this purpose we introduce a dislocation

potential A into the functional (1) that becouwes -

t, - ‘ . AV
(T -V + 4) at (1)

1 T . .

Tae dislocation poetntiul consists of turee parts :

.X £ [uivteb)\)anl.l] = J
. o - t

X 4 =J[ A (e..-%uiuj-%Dj ui)‘di’x . (1)

tiat incorporates tiie coastraints (4) as natural variational egquations for tue

stationarity of (15) by means of a tensor of lagraagilan wultipliers A, ..

Corres dinsl ; ceatial ~v V. i vy o sed ¢ i
orrespondingly tne poteatial energy V, is now cxpressed as

v, = jﬂ

~

i (e) di’ L e,



(17)

A second part: AZ = f a, { u, =u, (t) }ds Y. s
: Jag R 3 J J : .

1 C e Lo —1
incorporates the boundary constraints (6) as natural bouadary condltlons tarougi
tie vector of lagrangian wultipliers aJ. Finally

A, = . . = v.) dR 13

introduces thg ~vefocity vector field v, as an independent field and the <inetic
energy 1is now exprgssea as’ J

T = [ Lo v, v, ax . 4 2"
. ; . L ; . . , . . 2,3

Tue dislocation potentials 4, and 4, have been used in the static proolenm

to provide a logical approacii to tué two-field variational principles, one of whick
is the Reissner-itellinger principle. The introduction of tne dislocation potential

A, is an essential step in tne logical transformation Iroin Hamilton's principle '
td the eulerian variational principles of fluid mechaaics .

The first step in the simplification of the functional (15) consists in identi-

fying the multipliers A,., and u,. This results immediatly from setting tne varia-

tional derivatives of eij_andvj equal to zero :
| ol ' S
- kij ae.j =0 : o X (19)
V. =u,. =0 o A 20
PV, = U . S (20)

Hence tiie A.. tensor is identified with the stress tensor 1., related to the
€., by the 1) elastic constitutive equations (9); the u << vector is iden-
tified wita the momentum per unit mass. when (19) is sugscltutud into tne func-
tional, tne expression _

o » ' -
eij. -EE;-W=¢ (1) | _ | . x (21) 

that appears on the left-hand-side is trcated as a Legendre transformation
introducing tie complementary energy density ¢ , a function of the eleuments

of the stress tensor. This transformation is possible whenever tue strains can
be expressed in terms of the stresses, in which case the constitutive equations
(9) are equivalent to

N TS S S '
hu-Fij-" R e ;(22)

Thus one obtains

. A v ey .-
V= U - A



wiere U, = [ ¢ e ~ _ : T (23)
IR : S
the complementary strain energy, and
P T T - @

where account was taken of the symmetry of the stress tensor. Also the substi-
tutlon of (20) yields :

. T+ A3 =-T+ A3

where A, = { p v, u, dR - o T (25)
o 3 JR J 1] ‘ - : .

The last set.of multipliers is identified through the natural boundary conditions
stemming froia variations on the displacements on alR

aj -0, Tij =0 _ on.alR . | - (26)

. e .. f‘

vt

Tn1s is simply used to transform (17) into

= f n, 1., {u, —-u

oo Pty Ly mw@yes AT

Tiie final result is a canonical variational principle in tae Friedrich sense,
requiring tne stationarity of the functional .

T t R :
2 v - L)
c [u,v,t ] Ll W, =T~ v.2 * 0y - A+ ) de (27)

in whicih the various integrands are given respectively by (23), (2'), (5), (7"),
(24) and (25). It can be used to develop approximate solutions based on indepen=
deat discretizations of dlsplacements, velocities and stresses. Its variatioual
equations are respectlvelj : : SR

ai.tij =PV = 0 - - sy @3

for the variations on displacements (the dynamic equilibrium equations);

p( - Vj +‘;j) =0 . . - : o ;~; . Vv-(29)

for the variations on vclocxtxes, restoring the coastraints between valocity
and displacement field;

8% _1 L _
A (D.i u +.Dj ui) 0 N E | (30)
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for the variations on stresses, restoring the constraints between stresses and
displacements. All boundary conditions are natural. On aln tuey follow from the
variations on tne surface tractions (1l) and correspond to (6); on BZR tuey follos
from tne variation of displacements and correspoand to (12).

For finite element applications it is important to recognize tiie nature of the
transition conditions at interfaces. Lbecause thc ounly space derivatives contained
in the functional are those affecting displacements, we must consider that pny-
sical continuity '

(u ) ‘= (u.)_ : (31)
is an a priori requlrenenc' the natural transition condltlons provided by the
principle and stemming from the common varlatlons (ou ) = (6u,)_ at interfaces
are then : J :

(t), + (t) =0 e - (32). -

3+ J = : A :

From that stand point the canonical principle (27) behaves as the classical
principle of variation of displacements. Ubviously the interface constraints
(31) could be incorporated into tie principle tiurougia an additional dislocation
‘potential and the corresponding multipliers.identified, Theéir, “just “as was found.
to be tue case for the boundary conditions, all transitional conditions can be
cared for by the principle. :

3. The complementary energy principle of elastodynaaics

It can be deduced from the canonical principle by specializations. To tais
effect the functional (27) is integrated by parts with respect to tie dlsplace~
ments in bot1 tae “terms Al and A3 of the integrand

Al a (_ ni T ds -~ [ uj Di Tij dR

: g b1 g

This operation cancels part of the contribution of &,. Furthermore the term at
the time limits is dropped on the basis of the requirements (7) and introduction
of the new requirements ’

. évj =0 for t=¢t, ad t=¢t, . R (33)

Thus, for tne following portion of the canonical functional,

[t o Lt S e
[ 2 (- V2 + AZ -‘Al + A3)dt = ! 2 r j(L) T.. =P vj)dR dt

J ij
'tl v < _ | 1
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t _ t,

- [ 2 [ n, t., u, (t) dS dt + { 2 ( {F(u,t)-n_t, u, }dSdt

Jg J ap ¥ M J Je. J3.R- i7ijj _
1 L 1 °2

: ' ' (34)

The left-nand side is now simplified by making the assuuption that the dynanic
equiliorium equations (28) can be satisfied a priori; this causes tne first term
to vanisii. In view of (11) and (l2), the integrand of tue last term is ODVIOUoly
- related to another Legendre transformation
T
u, 2 F (u,t) = G (t,,t) : (35)
j auJ , j? _ : .

provided equatlons (12) can be solved for the boundary dlsplacenents. This is °
the case in principle whenever the llessian :

2 . e
R does not vanish. The complementary function G is
du, odu,
J
then such that
s .' - R
] T o - SRR (36)
J :
Wdith the notations
s = 6T @ as B,= [ (e, ds 6D
Jar 3. J : Ja,  J o

the canonlcal tunctlonal is now reduced to one that depends only on the stress
field

CoL t, - : S h ;

g[r]=f2<U1-T'-Bl-f»2)dt . o (38)
. 1 -4

provided the kinetic energy can ve expressed in terms of it,

Tne dynamical equilibrium equations (23) that must be satisfied a priori allow
precisely to express the veloc1ty field in terms of the stresses :

s Dy f Tij<dt D o (39)
| g _ -

=~ e ————— o

t

Tnis suggest the introduction of an impulse field 3 Tij such that ~

vj -5- Di Tij ‘ _ S E | o - X (40)p
her . T,, = T, .+ | .. dt : ' '
ence Ty TR ) T4 N X (41)
Trar AL e SRR
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The requirement (33) can now obviously be replaced by

o'rij =0 for t = tl . and t = t?_ | ¥ (43)

A convenient foriwlation. of the complementary energy principle of elastodynanmics
is thus tne statiodnarity of the functional

'[T'J=(t2{f (¢(i)§-1-DT DT ,)dR
§ L%+ 7 ] i3 T2 i “ij Y tmy?et
e, 7R o .
- I T. u. (t) ds - ( G (T,,t) dS } dt - (44)
3.R J J Ja R J ' .
1 2 -
‘where ‘T, =n, T,, . ' ﬁ s’i | 45
TNy 37T 43
'Ihe vafiational derivatives of this principle are
d 30 | P ' - .
at a" " (0D Tj * Dy by Ty) =0 : (46)
ij / '

tndt, in view of (4’), (22) and (40), are edSlly 1nt;rp1cteJ as the tine dLerd-
tlves of compatibility conditions :

e 1 __ _
- ¢ +‘2 (1_)i Vj + Dj'vi) =

ij

The natural boundary conditions are seen to be

1L A= | . R

. Di<Tij * T uj (t) =0 N on BlR B (47)

1 d 3G - L S i

5 D1 Lij + TN 0 ~on 321\ . (43)
3Tj

Botn are easily 1nterpretcd througi (40) and (36).

-Ii tue special case (13), tine Legendre trarnsformatioun (3)) yields a funct101 G
‘that is identically zero; the vouandary coaditions (14) .uecome a priori bouadary
conditions in tihe coumplementary energy formulation, thus :

Tj = -EJ (t) | . : - on, 32R o . (14')'

Similarly, because tue displacenent field vanished completely, the transitioaal
conditions at interfaces (32) nave now to be satisfied a priori. . '



4, Finite elecument discretization using the comnlementary enerpgy priaciple

The approach to discretization by finite elements can follow a very similar path
to tnat used in statics ©. At the level of a single finite element it is convenient
to consider bouadary conditions to consist only on imposed displace:ents,

Tne tensorial iiapulse field is dlscretlzeu in the sawe nmanner as the stress flcld
was in statics, namaly

T(x,£) = R(0) e() *+ 5() s(0) W)

where 1(x,t) here denotes a column matrix of the elements of the impulse teasor,
ranged in the same order as the stresses in refercnce 6, and where the parameters
ranged in tie column matrices ¢ and s are now functions of time. As was assumed
in reference 6, the approximating functions in S(x) are such that

Dls(x) = Q . . : . . /\,..

where D' is the differential operator generating the Juantities Di Tij
Thus the s(t) coordinates do not contribute to the kinetic energy.
On the other hand ecach column of

D'R(x) = U(x)

furnishes .the components of an inertia force distribution accouated for in tiae
discretization, It should at least contain the inertia force distributions
‘related to the motions of the finite element as a rigid body. The discretization
(49) Lurnlsnes, Wnen used in the evaluatlon of the kinetic energy, a consistent
,"inverse mass'" or "mobility matrix'" N :

.|

)f -.Ll,;n"r..o T . dE -;-Jf -}{Damc} {(D'RGIcH dg =+ et e

E i 7ij m "mj E 2

| | . o) X
N = I L u' U dE - - positive definite (51) 2

EP .
It also furnishes a stress energy

f o(T,.) dE ='% f v il ot dE

1E ‘E

R TR TP SO . (52)
-2 cc _ cs 2 ss ' R '

with the same flexibility matrices that were already defined in reference 6.
Again, generalized boundary iwmpulses can be defined by examination of the dis-
tributions W'R(x) and N'S(x) of the T, impulses appearing along eaci boundary
of the element; and they are finally ] expressible in terms of tie parameters
of the impulse field through the same load coanection matrices G and C

g=Gc+Cs - | | | (53) .
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The bencralized poundary displacements qx'conjugate to the generalized body
loads & are defined exactly as in secction 4. 2 of reference 6.

Tous the discretization of (44), assuming iwmposed displaceuents aloag the wnole
boundary, leads to a requirement of stationarity of -

"
(7]
[N ]

t . L] L] ] L L] L L] o
'J.z{—zl-‘-c'F c_+c'_Fc s-i:—;]é-_s'l-‘ s - c_'_iw'c-(c'G'-!-s'C‘)q*}dt

with 8c, 6s vanisihing at the time limits. Hence

- - LN - v : . : ’
cc bc § - N c + G' q 0 -(54)

- e o ‘ . t .5“= . A
.= F E-F 8 +C' q 0 | N (55)

waen the s coordinates are taken from the second set of cqudtlons and suostltuted
into the flrst, there conmes -

B '- 1 . .* . .
F&E+ (G es Fs c') q . . (56)
< e -1 : 4 . :
with F rcc - ch Fss bsc (57)

Equations (56) can be rewardea as determining the dynamics of the impulse coor-
dinates to wvhich an inertia is attacued as excited by prescribed boundary displa-.

cements.
"Tihe finite elewents are now assembled with the same procedure as in statics,

allocating each generalized uoundary displaccment of an element i to a set w™*
of nodal displacements ° . :
oo wk ' S .
- . W ) 3
%7 e S (58)
with the help of bool;an matrices, Then, for each finite elem»nt, we write tue
" set of equations (56) in the form :

Py L R AN I CE =L, 2, ees W) - (59)
. .. .o \‘ . 3 . o ' _ . ‘_1 , : ’ .. )
vith | Jig= @' -F S F Dy Ly | S ~ (60)

There are as many equations in the set (59) as there are coordinates in the set
of all c.. Jde refer to tuem as tue "internal coordinates” and note that their
dynanics are described vy (59), provided we consider thew excited Ly knowa tine
histories of the nodal displacements. Of course we need a complementary set of
dynamic equations to obtain those time nlstorlcs. They are obtained by usiag

iie property of internal connexioa loads 3. to be in equilibrium with the external.
loads applied at interfaces or at the boundaries of tihe assembled structure.

Thus, by reference to equation (l105) of reference 6, - ge® APDlg,
ey B P S,
ZL' g, =Y , - Lo = 61
‘g 4O (w) . N & |



where y ) denotes the external impulse vector conjugate to the nodgf;displuce-
meants. Tné connexion loads, or rather their time derivatives, can be obtained

in terms of tue internal coordinates and nodal velocities by dlrterentxatxng (53)
twice with respect to time and substituting § frowm (55) abaln.

Whence, for eacih element

. - wq-l P ‘ - * * ’ - * o V
&g " @ ¢ rss FSC)E CE * E LE v . S T (62)
K, = (C F-l c') ' i -i'(63)
E ss B : . ! S

We recognize in K_ the stiffness matrix of the equilibrium elenent as usad in
statics. lefercntlatln (61) with respect to time and substituting (62), we
obtain the complementary set of dynamic equations

S R "
E Jp &, *Kw = ¥ ) . (64)
: R i H4 . . ‘ .
where in K=1IL'yK Ly | (65)

E -

we recognize the master stiffness matrix of the assembled structure. The equations
(59) and (63) constitute a complete set of dynamic equations for the unknowns.
There is no difficulty in taking into account lumped inertias associated to the
‘nodal displacewents, that 1s applied either at interfaces or aloag the structural
boundary, we merely have to set up the corresponding consistent mass matrix i
and write :

L]

Y(w) = - I'I "*+ f

(w

y (©) - S (66)
modifying equation (64) that becomes now

. . - . . R .
e N
¢, .+ M +Kw = o 67).
z JE E" h f(w) (t) o _ ( 7)
E : o .
The real excitation of the system takes place either from eclements of £ ) (t)
as prescribed external forces, or Irom elements of w* as prescribed disédeements

in wihiicih case the conjugate elements in f(w) become unxnown reactions.

5. Free vibrations

Consider the problem of a modal analysis of the free vibrations. If the structure
is floating, tnat is not subjected to homogeneous displaceweant boundary conditions,
we can sxmply set f( ) = 0 and consider 411 c,, and w* elements as uncaowns. Setting

B
— ; ¢, = EE_Sln wt o  w®= G%cos w t
tne eigenvalue problem is given in the form )
2 ;s - | P
@iy - w FE)c}f, o'y i¥=0 - E=1, 2 .., d (63)
e 2M)w vezd ce0 T ey

E



or, with a wmodal amplitude vector ' L

B 2 : ‘ ] ! ’ T
N1 -w F1 i 0 % 0 i 0 wJ 1
- o F 2! | E ,
0 % NZ -w FZ % 0-;. , (0] :‘ wJ 2

0 : 0 i -"'- E 0 ’ ‘ see ox=0

0 | 0 ! (0 i NN w FN . w ; N

1 us, | k-t

le | i U)JZ | XX E (I-)JN ; K W {

(70)

In many applications there are no lumped inertias attached to the nodal points
and consequently no matrix M. This makes it possible to reduce drastically the
size of the eigenvalue problem by a static condensation of most or all of the
nodal displacements, leaving essentially the few internal coordinates as unknowns.
In the case of the floating structure this means that we should use

Ka¥=-0uw £J, 8 - (71)
EE : S

to eliminate the nodal amplitudes. Because K is singular on account of the pre-'
sence of structural rigid body modes or mechanisms, it will be necessary to keep
enough displacement coordinates to represent those. This is in general achieved
by suppressing. just enough rows and corresponding columns in K to obtain a non
singular sub matrix. Let P and R denote column selection operators of same size
as K ' : '

e T

o ——— T

TP +R=I identity matrix,
andfgecoﬁpose @ into
Lo *epiens
Then, with the notations

.:;EEJ&LP = K P'K R = K R'KP =K R'KR =K

quation (71) becomes after premultxpllcatlon by P' and R' respectlvely

» 2 e 1 ) . .
.‘Kpp p + hpr 3 wP g I, & o R, (72)
R I4 X e ) ] I3 ’ o : .
. l‘rp P + l\rr r | w R i JE s v (73)

Let K__ Dbe non singular, r representing kinematical freedoms of the: assembled
struck re; p can pbe extracted from (72) and substituted into (63) and (73) to
produce an eigenvalue proulem ih the unknowns €. and r only. Clearly similar
procedures apply to structures that are 1sostat1ca11y or nyperstatically grounded
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by setting some of the elements of W equal to zero. liowever elegant, the formula-
tion (68) does not lend itself to the classical algorithms for eigenvalue search
in many degrees of freedom. The reason is of course the use of mixed displacement
and stress type variables tnat induces a special coupling tirough the J . matrices.
It might prove interesting to generalize the iterative.type algorithms to this
type of formulation; but it is also possible, as shown by GERADIN 7 , to obtaln

a classical formulation by a change of variables.

6. Classical form of the eigenvalue problen

The change of variables consists in setting

“-Ne=p* | ' : | S (74)

and, in view of (54), consider p* as a displacement vector conjugate to c.
Lquatlons (54) and (55) are then brought to~ether in the form

O e

with extended flexibility and load connexion matrices

» ' CF. F - - 6 c . _ e
F-( _ _ G=< ) o - (76)
. . . . N, ) | | )

LE() e (:) AR A____-_’«.d;/'__ on

However, using (53), the left-hand side 1s also equal to

crea o

Consequedtiizﬁﬁéftitionnipg the extended stiffness matrix

_ _ Lo~ A : .
: .+ K K ‘ S S <
S S B qq qp , _ : . _ .
- . GF G' = , FRRE LS S ¢4°))
Pq PP . ] _ . e
. X3 > * *' - .. * | : . . .- o . : : . .
we obtain = K + K 80
; 8 qq q qp P S B ‘ _ | (80)
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These results are applicable to each finite element. Thus, using (58) and (74)
again in (81), we have a first set of dynamic equations

-~

o=

e ———— e -

- -1 X *= R . '* . " . : '

Also, substltutlng the equatlons of type (30) into the time derivative of (61)
and using (53) and (66) .

’ -~ . -~ . W ev . .
o EL' (K YL wFe I L' (K ) p. o =-Mw + f (83)

Equatlons (82) and (83) form agaln a complete dynamical system for the variables
w* and ph . .
The correspondlng eigenvalue problem has now the classical form

(K-u2 M)x"O . . : o (84)
with as:modal column the amplitudes of the pg and w*, as stiffness matrix
[ 1 ! | Q co ]
- ' : ! : ! ~
K. ! 0 : 0 L0 b (K L
“p | » e
0 - &) o0 Yo T &)L
- pp)z . ; : ®pgd2 12
o o R e e s T I
0 . : 0 N ' 0 ( (Kpp)N <l\pq).‘l LJ
LR L L® ) e | LR ) izr.'(x)
lqpl, 27qp", | PN g qth
. | ) _
and as mass matrix
oo 1o 0 )
1 P R
H -1 )
E 0 | N'2 0] 0 0
e u,ﬁwl-“uimwg Sl S — ] ) _ . .
M= -0 o . - o | O ' ‘ (86)
0 0 0 iy 0 |
T N -
0"; 0 i 0 M

Again, if M disappears, static condensation of tne nodal displaccments becomes :
possible,

L4
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7. Tae Rayleigh guotient

' "'-*'2‘

Turning back to the dual varlatlonal principle for a contlnuun, the results
obtained in section 3 show that the eigenvalue problem can be stated in the
form of the stationarity of the following Rayleigh quotient

[ Lp A b A ar
2p

) i 71 m mj 4 : o '
o2 = {R ‘ BN )
4'JR ¢ (Aij) dR : :

where A ., is either the tensor of impulse anplltudes or more 51mp1y that of

stress a&plltudes. : :

Moreover n, A,, =0 : " on 3,R ' (83)
i ij . 2 . :

are stress type boundary conditions to be satisfied a priori, while the comple=

mentary boundary conditions, of kinematical type,

Di Aij =0 on aln e - (89)
are -natural; they are taken care of by the principle itself.

This is the converse of the displacement formulation, where the kinematical
conditions are those to be satisfied ab initio. Another contrast is tne nature
of the zero frequency modes; they are obviously given by stress distributions

in static equilibrium with themselves or self-stressings obeying '

X A . =Y 3 . ) = 3
. .a;w?iﬂ ij 0 in R - n, Alj 0 on 02R
For a continuum their number is infinite, while in the displacement formulation
the zero frequency modes are related to a finite number of rigid body or kinema-
tical degrees of freedom. Otherwise the Rayleigh quotient (87) has characteristics

very similar to those of the displacement type quotlent

! W (D u) dR _ . .
W = R . | R ' | (90) .

1 .
< p u, u, dR
IR 2 ii

In both cases the functional in the numerator is constructed with space deriva-
tives of the variables involved in the functional of the denominator. All minimax
properties of (90), as established by Courant l, can be translated to 37), as
shown for instance by Tabarrok 3, 2
Thus in theory (87) will furnish an upper bound to the eigenvalue Wy s provided
(Ai )1 is ortnogonal to all the self-stressing modes of non zero frequency.

J It is of interest to note that it is quite possible to comstruct all the
stress distributions that are orthoéonal to the self-stressing modes. Orthogonalit;

.means that

IR TRt I
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where A, . is any self-stressing and €,, is the distribution of strains associated
with - the orthogonal stress distribution through the constitutive
equations..A suificient condltlon to implement (91) is to make the strain distri-

bution compatible :

-~ 1 ‘
€y 73 @, ug +_Dj u,) inR Yy 0. on 3R (?2)

Indeed one obtains then

f A, .. dr =-f A.. D, u, dR = f n, A.. u, dS - f u, D, A, .dR.
IR ij }J IR ij 173 JaR i 43 7j /R J '1J

and the right-hand side vanishes in view of (88), (89) and (92).

The condition is also necessary as can be shown by satisfying (39) with tne help
of stress functions, integrating (91) by parts and using the arbitrariness in the
stress functions to show that the strains have to satisfy the integrability condi-
tions for the existence of displacements, Finally the most general stress distri-
bution orthogonal to all the Self-sttessing states is given by

_— Pq - '
A,,. =C D : 93
13 ™ %13 % ¥ S (53)

_where the uq are arbitrary save for the boundary conditibn

uq =0 : | | on alR (94)

But then, the Rayleign quotient (87) becomes expressible entlrely in terms of
the auxiliary displacement field uq : .

L cpq cts D, D u D_D_u_ dR
o |g® Tij “mj P q

p (95)
_‘J W(Du)dR '
R
This new Rayleigh quotient, that leads immediatly to the non zero eigenvalues

of the problem, has the same kinematical boundary conditions to be satisfied
ab initio as (90) but in addition the transformed boundary conditions (88)

Pq - C
ny €3y D, v =0 | o en 3 ,R - (96}

Taere is also an interesting inequality relating (90) and (95).
To prepare its proof consider th¢ following obvious in equality

/ .
: ©Ab : Ab
I (ha, -—L) ¢ a, -—L)arzo
R N7 1%
valid for any value of the scalér A; expanding it

. C 2
) IRk paj aj dR = 2 A !R aj bj dR f A !
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The minimum of the left-hand side is reached for

Aa[abdx' Ly b, dr
Jo 3 3 g P 3

L

hence, after substitution

{ 1 p a, a, dR - { { %-a b, dR } [ %—
Jjg 23 h| IR i Jg %
ing a. = = cPd
Se;tlng aj uj and bj Cij Di Dp uq

we already identify two of the integrals as the denominator of (90) and the
~numefator of (96) respectively. For the third integral -

-

1 [ L, e
[ 7 8. b, dR J 5 U c.. Di Dp uq dR

g 313 31
=I lunchDuds-f-l-c??D.u.Dud,R
ar 2 ] ij p g JgZ i 13 P e

8 - ( W ((Du) dR <O

‘R
since the surface integfaivégﬁishes on account of (94) and (96).
Manipulating the inequality (97), there comes

2 2
Wp S YR

\ .

(98)

where mi denotes tie classical Réyleigh quotient (90) and wﬁ. the quotient (93),

This means that whenever a displacement field is chosen that satisfies botn the
kinematical and the stress boundary conditions, the classical Rayleigh quotient
is always a better approximation than the one derived from the stress approach
with orthogonality to all zero frequency modes. iowever, as exparience snows,
direct application of the quotient (87) is beneficial in that the frequencies
are usually underestimated and converge througnh lower bounds when the degrees

of freedom are increased 7, 8, This is of course due to the fact that the assumed
stress modes do not satisfy orthogonality with respect to all the self-stressing
modes. Unfortunately there is no guarantee of this property of lower boundedness
and further theoretical research is necessary to be able to 1ncorporate this
into the formalism, :
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