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PART 1

I. INTRODUCTION

. Numerical methods of structural analysis have reached a
high standard of efficiency. As a consequence they tend to
overgrow their usefulness as numerical checks of stress dis-
tribution, amplitudes of displacement, natural frequencies
and elastic stability to become adjuvants to design proce-~
dures,

The objectives of design vary according to the purpose of the

structure. In aerospace engineering the weight is the prominent

factor and is often the only goal of numerical optimization

studies. In other cases the functional that is subject to mi-

nimization is more complex, economical factors of various

kind being incorporated with their relative weights into the

cost function.

Until recently the minimization was carried out by trial and

exror, the preliminary design and the modifications introduced

after evaluation of a numerical structural analysis being

largely based on engineering judgment. Presently there is a

tendancy to a more scientific approach in which the changes

in design parameters are evaluated on the basis of algorithms.

Efficient algorithms are those that tend to bring the functio-

nal to its minimum with the smallest number of iterations

requiring a subsequent structural reanalysis. )Moreover they

have to satisfy many kinds of side constraints such as :

- remain within the elastic limits of the material in each
structural member under a given set of load distributions;

- keep displacemeht-type limitations;

- avoid elastic instability;

- keep natural frecuencies within prescriﬁed limits;

.
- keep member sizes above minimun values.
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The starting point of such automated Structural Optimization
Programs is a given preliminary d:sign. It is therefore dif-
ficult to evaluate the cost of optimization procedures, since
the computer time devoted to reach a near-optimal stage will
heavily depend on the quality of the preliminary d:sign.

In case where the unicity of the optimal solution is not gua-
ranteed a poor preliminary design can even lead to a local

and not to the global minimum,

For this reason, vhile optimization programs will probably
remain essential tools; the objectives of optimality will

also tend to incorporate the computer in the preliminary
design stage. This more direct approach towards an optimal
structure is the aim of "Computer aided Design".

It is also a much more ambitious goal and, fortunately per-
haps, will never cbliterate the exercize of engineering art.
It is indeed difficult tO conceive a selection by the computer
of the best “topology" of structurél members to carry the
loads according to the purpose of the structure, taking imme-
diatly the effect of side constraints into account.

On the other nand, once the topology has been fixed by engi-
neering judgment and experience, we will probably reach the
stage where the computer will carry out from there the sizing
of the members and even such other alterations in their geo=-
metry, permissible under the given topology and external cons-
traints. Whether such ambitious programs will ever become ope-
rational within economical limits is a question that only
experience will answer.
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2. DESIGN VARIABLES

Qﬁe can divide design variables in groups according to
their relative importance. For aerospace structures, with a
finite element method idealization, the following groups
are proposed : i ’

2.1. Element sizes

They comprize crosé-sectional areas of beam, membrane
and plate thicknesses ...
The optimization of those variables alone leaves the topology -
(system of element interconnexions) and other geometrical
characteristics (height, length, taper of beams, planforms
of membranes and plates ...) unchanged. Figure l-a illustrates
this in the simple case of a 3-bar truss where only the cross-
sections of the bars are subject to optimization with side
constraints consisting in upper bounds to tensile or compressive
stresses and possibly limitations to nodal displacements.

2.2. Geometric variables

The choice of geometrical variables may alter the cou?:-
guration of the structure but not its topology. In the fin:
element method they correspond to modifications in the nodai
coordinates as shown on figure l-b.

2.3. Material properties

The efficiency of the structure can be improved by a
change of nature of the material selected for some of its
members. For example Young's modulus, Poisson's ratio, the
elastic limits vary with the density of the material and
eventually the temperature to which it is subjected. There
are here seldom changes in the decisions taken in the preli-
minary design, and if they prove advantageous, they introduce
discrete parameter modifications as opposed to the continuous
variations possible in the previous design variables
(Figure 1-c). :



2.4. Topology

A change in topology is also, and more funcamentally
so, a discrete modification to the structure.
A set of members may be replaced by a new one with different
e;éments, differently connected. Figure l-d shows the substi-
,tution,df a triangular membrane in place of the previous
truss.

The order in which the groups of design variables have
been listed is roughly that of increasing complexity in an
optimization program and attendant increasing cost.

This consideration has led numerous research teams to limit
themselves to the first category. There is also some justi-
fication for it in the fact that the general layout of a
structure is often dictated by other considerations than a
certain definition of optimality.

Aerodynamic shape, headroom, access facilities, failsafe
design are characteristic examples.

The relative simplicity of dealing with element sizes only
is enﬁahced by the choice of a finite element method for the
discretization of the structure. As nodes are kept in place
and element interconnexions are invariant, the statics and
‘kinematics of the structure are not modified by alterations
in element sizes.

This cén make a large part of the optimization program a
fixed subroutine. '

In the sequel we shall deal only with this restricted aspect
of opt%mization., . :
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3. NUMERICAL METHODS OF STRUCTURAL OPTIMIZATION.

This section describes briefly two main aﬁproacﬁes encounte-
red in struqtural optimizatibn and discusses their relative
capabilities. B
3.1, Mathematical programming.

In this relatively recent approach, minimum weight design
is treated as the mathematical problem of extremizing a cost-
function in design space. Each dimension of this space is related
to one design variable, so that each point corresponds to a pos=—
sible design. The side-constraints consist of limits to. the
design variables (element sizes) themselves and to stresses or
displacements, the latter const:aints being generally functions
of the design variables. Symbolically, denoting by Ay (i=1...n)
the design variables

w.sw (Al...An ) min.

A, ¢ A

i

i€ -A-i " i=l...n

9 (Ay...A ) < EJ. j=l...p

The cost function and the nature of the second type of constraints
determine whether the problem can be treated by linear or non-
linea:-programminq. The second case usually prevails for struc-
tural optimization. The iterative search procedure may'be
summarized as follows



The vector 3v determines the direction of search and the

scalar 4, the step length made in this direction. They are
determined on the basis of the stress analysis made at the

v=th step. The step length depends on the position of the re-
presentative design point with respect to the restraint surface
delimiting in design space the feasible and non-feasible designs.
More recently unconstrained formulations have been proposed
wherein the cost function is augmented by penalty functions.

The analytical form of the cost and constraints are then of

less importance and more complex problems can be handled.

Drawbacks inherent to the mathematical programming approach
appear with large numbers of design variables as the number of
cycles required to get close to the optimum rapidly rises.

Each cycle involves a costly stress reanalysis and the compu=
tational expenditure rapidly becomes prohibitive. On the other
hand the method is very general and reliable. If a solution
converges to a local minimum instead of the global minimum
recuired, this can always be checked and the nécessary steps
be taken to reinitiate the procédure.

3.2, Optimality criteria.

Intuitive considerations as to the nature of the optimal
design may lead to adopt optimality criteria that are not di-
rectly related to the minimization of the given cost function
but sometimes constitute a satisfactory approximation to it.
They can then provide a basis for the search techniques and
lead to simple recﬁrsions formulas for redesign. The best
knovn and wideiy used example of such a procecure is the
"fully stressed design" concept.

According to it, each component of an optimal structure is
stressed to its limit in at least one of the loading conditionms..
It leads to the so-called "stress-ratio redesign" method in
which the element sizes are cycled by the recursion formula -
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Aiovel =Ry (%& )
i,att

where Tiv “is the actual stress parameter at the v-th cycle,
representative of the stressing state within the element and
%3,a11 its allowable upper limit. As several loading cases are
involved, %% v must be taken to be the largest stress value
encountered. )
Convergence to the optimal solution, according to the fully
stressed design criterion, is obtained in one iteration for
statically determinate structures.
In statically determinate cases the internal loads are indeed
independent of the design variables and optimality based on
fully stressed design coincides with the exact minimal weight
criterion if no limitations are put on displacements. In the
statically indeterminate case each redesign modifies the internal
loading distribution and fully stressed design does not yield
the minimum weight but may be considered to approach it satis-
factory.
An attractive feature of fully stressed design that explain-
its relative success is its tendancy to converge in a numb..
cycles independent of the number of design variables, in cosn...ax
to the more rigorous mathematical programming method.
Moreover each redesign cycle is fairly simple.



* (1232unz1ed paqyaosaad e 8y y)

SATIVIYVA NOISAd JO AHDIVEAIH * 1 ANOIA

€g e Ty e 1y . )
ﬂNANﬂ..—ﬂv# MB-NU-.—.ﬁ.’ ﬁ<.N<.~.<
¢ galqejaeA ulysaq ¢ sa1qeraea uldysaq ¢ sajqeraeA udysaq
£3010do3 (P) sar3zadoad jejaaden () uop3eandyjuo) (q) §92F8 1aqual (e)
£ . £
d d
Py
d
tv [ v fv.
nu NB .—U .
/77777777 7777 7777777777777 777

7777777



REFERENCES.

(1) L. A. SCHMIT and R. H. MALETT
"Structural Synthesis and Design Parameter Hierarchy"
Journal of the Structures Division, ASCE, vol. 89,
August 1963, p. 269.

(2) C. Y. SHEU and W. PRAGER
" Recent Developments in Optimal Structural Design®
Applied Mechanics Review, 21, 1968, p. 985.

(3) W. PRAGER and J. E. TAYLOR
“Problems of Optimal Structural Design®
Journal of rpplied Mechanics, ASME, vol. 35, March 1968,
p. 102-196.

(4) R. A. GELLATLY
“The Role of Cptimization in the Design of Aircraft
Structures"
Proceedings of AGARD Symposium on Structural Optimization ,
Istambul, AGARD-CP-36-70, 1970, paper 9.

(5) R. RAZANI :
"Behaviour of Fully Stressed Design of Structures and its
Relationship to Minimum-Weight Design®
A.I.A.A. Journal, vol. 3, 1966, p. 2262«

(6) F. I. NXORDSON and P. PEDERSEN
“A Review of Optimal Structural Design®
DCAMM Rep. 31, Dept. of Solid Mechanics, The Technical
University of Denmark, Copenhagen, 1972,



- 10 -
PART II

AN ALGORITHM FOR MINIMUM WEIGHT DESIGN UNDER A SET OF LOADING
MODES WITH CONSTRAINTS ON STRESSES AND DISPLACEMENTS.

1. PROBLEM DEFINITION.
The structure is in the linear elastic regime and idealized
by finite elements. Under all the specified loading distributions
certain constraints on stresses and nodal displacements must
be satisfied. The geometry and the material properties are
predetermined.
The functional to be minimized

W=T.i o5 Lihi ' i=1 ...ne ) (1)
is the structural weight, proportional in each element to the
material density p,, to the design variable A, (cross-section
of bars, thickness of membrane,...) and a geometrical parameter
L, (length of bar, area of membrane...).

2. DESCRIPTION OF THE CONSTRAINTS.
2.1. Procduction constraints.

hey place a lower and sometimes an upper lxmxt to the
design variables

Ai$A

i € Ai (2)

2.2. Stress limitations.

In bar-type elements the tensile stress limit is determined
by the elastic properties of the material, the compressive
limit may be reduced to take into consideration, in a simple
manner , a safeguard against buckling.
If 9 is the actual stress in the bar

(3)

In shear panels one assumes a maximum allowable shear stress,
usually governed by buckllng considerations

-9

B S ‘ ’ (4)
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In more general membrane elements, vhere the three stress
components ¢g_, ¢ and ¢ play ecually important roles, a
reference st¥ess Yelated t& an elastic limit criterion may be
introduced. For the VON MISES criteriom

N

2(624- - :Y)

T
] % oy + 3

%

73

ref

9% %
(5)

2.3. Displacement constraints.

They assign upper bounds to generalized displacements. To
determine analytical expressions for them in terms of the design
variables, the virtual work theorem is used.

If P denotes a vector (column matrix) of externally applied loads,

u the conjugate vector of zeneralized displacenents,
o the stress vector,

€ the conjugate strain vector,
the virtual work is given by 3

-r. u,. = ) & = T av
A5 T T T, ) W v ‘&) &)

{(6)

The subscripts between brackets refer to either a virtual or
a real vector, the superscript T denotes transposition.
Splitting the integral into the sum of contributions of each
finite element ) :

T
Co) € ) '3 Ny (n
A1

According to the finite element theory we have

T T . T
I Glyew) Y1V " i ¥ Iwi ™~ Ui wd

v
i (8)
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where q, is the vector of generalized displacements of element i
and g, its conjugate of generalized loads. K, is the stiffness
matri¥ of the element. 1

Let now u . denote a displacement component of the nodal displa-
cement vector of the structure. Applying a corresponding virtual
unit load to the structure, (7) and (8) give

T
Yy = f Ur)i 9i(5) (9

where the g, ,., are the corresponding virtual loads generated at
each elemené(J)level. In statically determinate structures the
loads g, ,., are uniquely determined by the unit load and (9)
turns o&éJLo be given in terms of the design variables by

[
iti (10)

(=
Y]

where the c,. are constants. In redundant structures those
coefficient5’are themselves implicit functions of the design
variables,

Remark :

It is sometimes of interest to consider more general displacement
constraints than local limitations. A good example is the requi-
rement of a straight-line configuration under load for a set of
nodes. This is expressible as a constraint on a linear combination
of local displacements and needs only consideration of the
corresponding linear combination of unit loads.

3. FORMULATION.
Let us begin with the statically determinate case
3.1. Analysis stage.
The structure is analyzed under
- the n_ real loading systems of the design specification
- the n_ virtual loading cases connected with each displa=-
cemen¥ constraint.

3.2. Redesign stage .
’ If the stress constraints are

o, €9y, i=1...n

it (11)

L= 1 ¢oen_-



where g, is the actual stress in element i under the loading
case &, theredesign is effected in a single step by

g .
E i
= A —
Ay i max { E'it} (12)

with, in addition, the minimum size requirement

A’: > A, . (13)

-1

This method provides a "fully stressed” design, each element
reaching its limiting stress (or having its minimal size) under
at least one of the loading cases.

If we have displacement constraints, the analysis stage will
provide the matrix of < coefficients appearing in (lV).

Taking the A% values appearidg in (12) as minimal, the problem with the
addition of éisplacement constraints can be stated as follows

= L
w Loy L!. Ai min
i
55 -
under T J ¢u, J=1l...n (14)
i A 3 3
B §
A A A% i=1l...n (15)
i >, i >, i e e e
where n_*"n_Xxn
t T v

Because of the assumption of statical determinacy the formulation
is rigorous, the solution unigue and only one stress analysis
is required.
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Real structures, however, are rarely statically determinate. If
subjected to different load distributions they are in fact both
stiffer and even lighter if w»roper use is made of the stress
cooperation pgxovided by redundancy. But in this case both the

c.. and the AT become implicit functions of the_design variables.
eddn chanqge ifi those will produce new c_,. and 2¥ that can cnly
be known exactly through a costly stresgl) reana{ysis.

The following approach is suggested. The problem as defined by
e;uations (14) and (15) is solved by considering the C4s and
A, as constants. The evolved solution for the design vitiable
is inserted in a new stress analysis to provide new Cy s and Ai
values vith which to reinitiate problem (14) , (15) uAtill
close to convergence.

4. SOLUTION OF THE LINEARIZED PROZLEM (14),(15).

In order to solve this problem, in vhich the c¢,. and AT

are assumed to be given, it is beneficial to take thé“reci- *
procals of sizing varialiles as design variables :
1
x, = < (16)
i Ai
The problem can now be recast as follows )
Minimize the non linear objective function
L,
P17y
W= I
X X,
i i
Subject to the linear constraints
. < u, j = 1l...n
F c13 X< 3 . 3 1 t
i
un
g Xy i-=1l,n,
-x,8 =X i=1,n,
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and fi = 1/1\i

Even if there are no upper bounds on the element sizes, the
latter constraints have to be taken into account (in the form
-x, € - €, € being a very small positive number) in order to
infure that the new design space, corresponding to the x, vari-
ables, be a bounded convex region. *

The recast problem (17) may then be solved by means of the
gradient projection method for linear constraints (ref. [6])
adapted to the problem under consideration.

This method uses as feasible directions projections of the
objective function gradient into the subspace satisfying constraints
which are currentlty active.

This linear intersection subspace may be altered only in the
tvo following cases : either to add a new active constraint or
to crop an idle constraint. Thus each point succesivcly ob-
tained Satisfies exactly some of the constraints without vio-
lating any of the other prescribed constraints . Moreover a
continuous decrease of the objective function is obtained after
each step.

As required by the gradient projection method, the initial
point must be a feasible point, a point lying in the convex
region formed by the prescribed constraints.

In any given case, such a point can readily be found by linear
scaling of all member sizes, so that a feasible bounded design is
generated (one constraint at its critical value, others subcriti-
cal) .

This scaling of all the design variables does not introduce
stress redistribution : each stress and each Jdisplacement are
simply divided by the same scaling factor.

5. APPLICATION OF THE METHOD.

Amongst knovn optimization programs we can mention:
- GELLATLY and BERKE (refi [ 2] )
- TAIG and KERR (ref.[3]).
As mentioned previously a structural optimization program
performs iterative cycling between a structural analysis stage
and a redesign stage. The programs under study at the Aerospace
Laboratory of the University of Lidge are coupled to the
extensively developped ASEF code as the analysis module. The
structural idealization consists up to now of axial force
members and triangular or gquadrilateral merbrane elements. The
degree of displacement polynomials within the elements is al-
lowed to vary from 1 to 3.
A symmetry option has been introduced, that constrains members
of any specified group to be identical ; in this case, the
number of design variables is reduced to the number of element
groups.
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6. EXAMPLES.

The method proposed in section 3 has been tested against ’
solutions to classical problems found in the literature.
The two first examples show clearly that the rate of convergence
of the redesign procedure is not directly related to the size
of the problem under consideration.

6.1. Four-Bar Pyramid (fig. 1.).

This very simple structure is subjected to the single
loading case given table I(a). Constraints arezplaced on
maximum stress (25000 psi), minimum area (0,1 in”) and node
displacement in.z-direction (0,3 in).

The present results (table II-b,c) duplicate those of Taig and
Kerr (ref. [3]) and of Gellatly and Berke (ref.[2] ). Fig. 4
shows the strange patteru followed by the iteration procedure :
the design seens to converge after 2 cycles and only after several
more cycles does the rate of weight reduction accelerate till the final
design (after 20 iterations) is gemerated.

6.2. = _72- Bar Four-Level Tower (fig.2). '
This doubly symmetric tower is subjected to two loading

cases (table II-a) . Symmetry is achieved by use of the ipput

option, vhich reduces the number of design variables from_72

to. 16. The stress limits are again 25000 psi with 0,1 in2

minimum area. The displacements of thefour uppermost nodes

are limited to 0,25 in. in the x and y directions,

In spite of the larger size of the problem, convergence is very

rapid and optimal design is. reached in only five iterations

(see fig. 4.b). The results ( table II-b-c) are the same as those

of Taig and Kerr (ref. [3]) '

For comparison, results obtained by Gellatly and Berke (ref.[z])

and Venkayya (ref. [lJJ) are also presented.

6.3.Cantilever Frame (fig. 3). .

The 10 bar-truss is-subjected to the single loading case
indicated on fig. 3. The stress limit in all nembexs is 25000
psi, with o,1 in2. minimum area. The node displacementsin y -
direction are prescribed to be ‘less than 0,2 in. Table III
shows the results obtained from the present method and, for
comparison, from other methods (ref.-[1], [2] , [3]) . :
In addition, stress constraints -have béen formulated in a similaxr
way than for displacement constraints : each member stress ia
linearly expressed in terms of the inverses of the cdesign varia-
‘bles. Corresponrnding results are given in table IIIX under the
title " Experimental Method". This srmethod generates a design
weighting 5060,8 1lb. vhich exhibits the following particular
characteristics. Member 6 is fully stressed, while being atits
minimum area. Furthermore only one displacement constraint is
exactly satisfied (node 1) vhile another prescribed displacement
-is close to its limiting value (node 3).
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For the other designs, shown on table III, these two displa=-
cements reach simultaneously their limiting values.

7. CONCLUSION.

¥hile using a mathematical programming algorithm, the
method that was presented has the convergence characteristics of
an optimality criterion approach. Except for the last example
(cantilever frame), the same results as those of Taig and Kerr
(ref. [3] ) have been obtained for each analysis and redesign
step. In addition, when there is only one active displacement
constraint, the results of Gellatly and Berke (ref. [ 2] ) are
also identical to ours. In fact, all these methods are based
on the same technique : by means of the virtual work theorem
each limited displacement (or linear combination of displa-
cements) is expressed in terms of the design variables. The
resulting relations remain exact only in the case of a stati-
cally determinate structure; for a redundant structure, they
become approximated. The redesign procedures are characterized
by the algorithm used in order to resolve the ensuing linearized
problem (14) (15).
The present method has the advantage of using a particularl
suggestive algorithm : each path up to an "approached" optimum
readily shows vhether a constraint becomes active or not.
Futhermore each point of this path is a feasible bounded point,
That important feature allows the algorithm to be eventually
stopped before reaching the optimum, in order to avoid a final
divergence due to a too strong internal redundancy.
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TABLE I FOUR = BAR PYRAMID

(a) LOADING SYSTEM

NODE . X - DIRECTION Y -~ DIRECTION Z - DIRECTION
5 10 000 20 000 - 60 000
(p) ITERATION HISTORY
Iteration Weight Iteration Weight Iteration Weight
No. No, No.
1 163.43 8 142.21 15 134.75
2 143.63 9 141.32 16 128.73 |
3 143.46 10 141,34 7 120,80
4 143.27 1 140.75 18 120,75
5 143.02 12 139,97 19 120.73
6 142,82 13 133.92 20 120,73
7 142,54 14 137.37 21 120,73
(c) Final Design
Weignt Ménbet 1 Member 2 Member 3 iHember 4
120.73 0.100 3.893 0.747 2.510
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TABLE II 72 - DAR TOWER

(a) LOADING SYSTEMS (1b)

LOAD CASE NODE X=DIRECTION Y-DIRECTION Z-DIRECTION-
1 17. 5 000-- 5 000 - ~ 5 000
2 17 o o - 5 000
18 , [} o - 5 000
19 (o] [+ - 5 000
20 [o] o - 5 000
(5) ITERATION HISTORY
WEIGHT
ITERATION
No. * GELLATLY VENKAYYA 'PRESENT METHOD +
and BERKE TAIG and KERR
1 656,77 656.8 656.77
2 . 416.07 478.6 387.31
3 406,21 455.0 379.77°
4 399.06 446.9 379.63
.5 396.32 445.5 379.66
8 395,97 391.5
1 381.2
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(c) FINAL DESIGN

GROUP | MEMBERS | GELLATLY and BERKE | VENKAYYA | PRESENT METHOD +
TAIG and KERR
1 1-4 1.464 1.818 1.897
2 5-12 0.521 10,523 0.516
3 13-16 0.100 0.100 0,100
4 17,18 0.100 0.100 0.100
s 19-12 1.024 1.2646 1.280
6 23-30 0.542 0.524 0.515
7 31-34 0.100 0.100 0.100
8 35,36 0.100 0.100 0.100
9 37-40 0.552 0.611 0.507
10 41-43 0.608 0.532 " 0,520
1 49-52 0.100 0.100 0.100
12 53,54 0.100 0.100 0.100
13 55-53 0.149 0.161 0.157
i4 59-66, 0.773 0.557 0.536
15 67-70 0.453 0.377 0.410
16 71,72 0.342 0.506 0.654
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