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Abstract.  In the present study, deep drawing simulations were investigated using a recently developed mixed type finite 
element (FE): the BWD3D. The main formulation of the element is described, with particular focus on the shear locking 
treatment. Two hardening models used in the presented simulations are described: the isotropic Swift’s model and the 
physically based microstructural Teodosiu and Hu model. Finally, deep drawing results, in terms of earing profile, are 
compared to experiment. Special attention is paid to the effects of texture evolution and hardening models; the method 
used to implement Teodosiu and Hu hardening model is also discussed. 

 

INTRODUCTION 

An accurate description of the material’s behavior 
is required to obtain valuable FE predictions in sheet 
forming processes. From a numerical point of view, a 
key point is therefore the yield locus defining the 
plastic behavior of the material. The shape of the yield 
locus can be captured accurately thanks to micro-
mechanical models based on the crystallographic 
texture of the material. The size of the yield locus, i.e. 
the isotropic hardening is related to the dislocation 
density while the kinematic hardening defines the 
position of the yield locus in stress space and is 
associated to the process of dislocation pile-up. 
Furthermore, it is well-known that plastic 
deformations induce texture evolution which is 
responsible of an evolution of material’s mechanical 
behavior. This can be taken into account through an 
evolution of the yield locus shape. 

The effect of all these features, and their 
combination, on FE simulation results were analyzed 
in the present study thanks to deep drawing process 
[1]. “Minty” texture based yield locus [2] coupled with 
the microstructural Teodosiu and Hu hardening model 
[3,4,5] were investigated. A particular attention was 
paid to their implementation in the self-made FE code 

LAGAMINE (developed at the M&S department since 
1984; see [6,7] for some applications of this code). To 
allow comparison, the Hill 1948 yield locus and the 
Swift’s hardening model were also tested. 

Beside material’s model, element formulation also 
appeared to be very important to guaranty accuracy of 
FE results. Next section is devoted to the description 
of the element used in the present study; the shear 
locking treatment is mainly focused on. 

BWD3D ELEMENT 

A new finite element, named BWD3D, has recently 
been implemented in LAGAMINE. This element is 
based on the non-linear three-field (stress, strain and 
displacement) HU-WASHIZU variational principle 
[8]. A first feature of the BWD3D element is a new 
shear locking treatment based on the Wang-Wagoner 
method [9]. This method identifies the hourglass 
modes responsible of the shear locking and removes 
them. The second feature of this new element is the 
use of a corotational reference system. This is made 
necessary for the identification of the hourglass 
modes.  
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 Bending mode Torsion mode Warp mode The eight interpolation functions for eight-node 
solid element are: 
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with  and where �, � and � are the 
intrinsic coordinates of the element. Rewriting these 
interpolation functions in matrix form: 
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interpolation of the velocity can be obtained: 

 Tu N U�
��  (2) 

 with  
x

y

z

u
u
u

� �
� �� � �
� �� �

�

� �

�

u   and  
x

y

z

U
U

U

� �
� �

� �
� �
� �

�

� �

�

U  (3) �

U� [24×1] is a vector of the nodal velocities and u� [3×1] 
is the interpolated velocity field. Derivation of 
Equation (2) yields to the interpolation of the velocity 
gradient (expressed in vector form: L[9×1]). 
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where the velocity gradient interpolation matrix 
B[9×24] can be expressed in terms of the intrinsic 
coordinates: 
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with sub-matrices B0[9×24] and B
�[9×24] (�=�, �, �, 

��, ��, ��) having the form of Equation (6), where 
bi[8×1] (i=x,y,z) are vectors constructed from the nodal 
coordinates, while bi� [8×1] vectors depend on the nodal 
coordinates and are functions of the intrinsic 
coordinates �,�,�. 
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FIGURE 1. Hourglass mode types 

The BWD3D element is defined with only one 
integration point (IP). So, evaluation of the velocity 
gradient at the IP induces that the interpolation matrix 
B reduces to B0, because the IP is located at the center 
of the element (�=�=�=0). This consideration yields to 
the existence of twelve non-zero deformation modes 
U�  corresponding to a velocity gradient L equal to 
zero at the IP. These are the so-called hourglass 
modes: 6 bending modes, 3 torsion modes and 3 warp 
(non-physical) modes (see Fig. 1). 

Stress computed at the IP corresponding to 
hourglass modes is zero (because L=0). Without 
particular care, the deformation energy associated to 
hourglass modes would be zero. No stiffness of the 
element with respect to hourglass deformation modes 
would derive.  

Gratefully, an estimation of the stress field inside 
the element can be obtained using the tangent stiffness 
matrix C[9×9] as shown by Equation (7), where �� [9×1] 
is the stress field expressed in vector form, 0��  is the 
stress at IP and 
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six so-called hourglass stresses. Note that, according to 
the FE time integration, the derivative of the stress 
with respect to time is actually computed. 

0

0

CL

C B B B B B B B U
� � � �� �� ��

� � � �� �� ��

�

� � � �� �� ��

� �� �� �� ��� ��� ���

�

� �� � � � � � �� �

� � � � � � �

�

�

� � � � � � �
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With this stress field and the velocity gradient 
inside the element (Equation (4)), a non-zero 
deformation energy can be attributed to hourglass 
modes. 

However, it is generally admitted that the energy 
computed thanks to the hourglass stresses is too high, 
depending on the deformation mode applied to the 
element. Consequently, the element is sometimes too 
stiff. This problem is known as locking phenomenon. 
A simple method used to avoid locking is to replace B 
matrix by B [9×24] matrix: 

0B B B B B B B B
� � � �� ��

� � � �� �� ��� � � � � � �
��

 (8) 
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Where B0 is identical as in Equation (5), while the 
B

� [9×24] (�=�, �, �, ��, ��, ��) matrices have the 
form of Equation (9), where e1, e2 and e3 are 
parameters used to avoid volumetric locking, i.e. 
locking problem occurring during volumetric 
deformation. Parameter � is introduced to reduce shear 
locking (linked to shear strains).  
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The volumetric locking can be completely 
eliminated by choosing e1=2/3 and e2=e3=-1/3. 
Unfortunately, the shear locking cannot be treated as 
simply. The value of � (�[0,1]) should be adapted to 
the deformation mode applied to the element: a value 
near 0 is recommended for bending dominated 
problems to avoid shear locking while a value around 
1 should be used during shearing of the element to 
avoid hourglass modes without deformation energy. 

The main drawbacks of the shear locking method 
proposed by Equations (8) and (9) are the dependence 
of the optimum �-value on the deformation undergone 
by the element. To facilitate the determination of �, 
some authors propose to approximate the deformation 
mode dependence by a dependence on the element 
shape [10,11]. A second drawback is the non-
objectivity of the B  matrix, i.e. dependence of the 
element behavior on the global reference axes. This 
second drawback can hardly be avoided. 

These considerations led us to the development of a 
new locking treatment method: the Wang-Wagoner 
method [9], implemented in the BWD3D element. To 
do so, Equations (4) and (5) are adapted in order to be 
expressed in term of hourglass modes: 
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In equation (10), the first term in parenthesis 
corresponds to uniform shear (if i�j) or uniform 
tension (if i=j), while �1[8×1], �2[8×1], �3[8×1], �4[8×1] are 
linked to four hourglass modes: two bending modes, 
one torsion mode and one warp mode (the twelve 
hourglass modes are recovered for i=1,2,3). 

According to [9], locking problems can be avoided 
by eliminating adequate hourglass modes. For shear 
locking, the uniform shear and the hourglass torsion 
modes must be kept while the two bending and the 
warp modes are identified to be at the origin of shear 
locking; therefore, they should be eliminated. Equation 
(10) is modified into Equation (11) for i�j: 
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To prevent volumetric locking, Equation (10) 
becomes Equation (12) in order to eliminate the 
dilatational strain caused by torsion, bending and warp 
hourglass modes.  
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In order to be able to identify the hourglass modes 
(which is a crucial point of the method), Equation (10) 
must be expressed in a corotational reference system 
[8], closely linked to the element coordinates. This 
reference system must have its origin at the center of 
the element and its reference axes are aligned (as much 
as possible, depending on the element shape) with 
element edges. A grateful consequence of this 
corotational reference system is a simple and accurate 
treatment of the hourglass stress objectivity, by using 
initial and final time step rotation matrices. 

The shear locking and the volumetric locking 
method proposed by Equations (11) and (12) 
associated with the corotational reference system has 
been successfully implemented in the BWD3D 
element of LAGAMINE FE code. The Wang-Wagoner 
method, contrarily to the method using a � parameter 
(Equation (9)), has deep physical roots, which makes it 
very efficient for various FE analyses. Up to now, the 
BWD3D element has proved its superiority (compared 
with elements having a shear locking treatment using a 
� parameter) during deep drawing simulations, 
incremental forming and large strain torsion. 
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HARDENING MODELS 

Teodosiu and Hu’s hardening model is described 
by 13 material parameters: 

p R Sd SL X L P 0 Sat satC ,C ,C ,C ,C , f , n , n , r, Y , R ,S , X0  (13) 

and depends on four state variables: 

 P,S,X,R  (14) 

Variable P is a second order-tensor that depicts the 
polarity of the persistent dislocation structures (PDSs 
in [1]) and S is a fourth-order tensor that describes the 
directional strength of the PDSs. Scalar R represents 
the isotropic hardening due to randomly distributed 
dislocations and the second-order tensor X is the back 
stress. These state variables evolve with respect to the 
plastic strain rate p

�  and the equivalent plastic strain 
rate 

�

p�  with the form:  

 � �p
YY f Y, p��

� � �  (15) 

A precise description of these evolution equations 
can be found in [5,12]. It should however be noticed 
that the fourth-order tensor S must be decomposed into 
SD the strength of the dislocation structure associated 
with the currently active slip systems and SL, the part 
of S associated with the latent slip systems, according 
to Equation (16).  

 LDS S N N Sp p
� �

� � �� �  (16) 

where N p
��

 is the plastic strain rate direction. Two 
distinct evolution equations are applied to SD and SL. 

Yield condition is given by Equation (17). 

 y 0Y R f | S� �� � � � |  (17) 

where �  is the equivalent stress, function of 
dev( ) X� � ,  is the current elastic limit,  is the 
initial size of the yield locus and 

y� 0Y
R f | S� |  represents 

the evolution of the isotropic hardening. The 
expression of �  depends on the definition of the yield 
locus.  

The implementation of Teodosiu and Hu’s 
hardening model into one FE code is not 
straightforward [4]. Equation (15), describing the 
evolution of the state variables, must be adapted to be 
introduced in FE codes, due to the discretization of the 

time evolution. A particular attention has been paid to 
the evolution rule for S. During monotonic loading, 
N p

��
 is constant and the decomposition of S thanks to 

Equation (16) yields to a SL-value remaining equal to 
zero, if initially zero. For smooth strain path changes, 
N p

��
 evolves continuously and therefore SL should 

neither be activated (different opinions concerning this 
point can be found in literature). Contrarily, for an 
abrupt strain-path change, N p

��
 varies discontinuously 

and SL is activated. When implemented in FE codes, 
without particular care, during continuous evolution of 
N p

��
, SL would be activated due to the evolution of 

N p
��

-value from one time step to the next one. 
Different numerical solutions can be investigated. In 
this study, the method proposed by Alves [12,13] and 
Balan using the plastic strain rate direction at the end 
of the step for the decomposition of S was compared 
with Hoferlin’s method [1,14] using N p

��
 at the 

beginning of the step. 

Furthermore, the classical isotropic Swift 
hardening was also used. The formulation is: 

  (18) �y 0C p n
� �� � �

where p is the accumulated equivalent plastic strain, 
while C,  and n are material parameters. 0�

DEEP DRAWING SIMULATIONS 

The deep drawing process proposed by [1] was 
investigated in the present study. It consisted of an 
axisymmetric deep drawing process with a punch 
having a flat bottom. The diameter of the blank was 
100mm, the punch diameter was 50mm (the drawing 
ratio was then 2.0), the punch fillet radius was 5mm, 
the matrix opening was 52.5mm and the matrix fillet 
radius was 10mm. The blankholder force was 
prescribed to 12 kN. The Coulomb friction coefficient 
between the blank and the tools was �=0.10 according 
to experimental lubrication technique.  

 

TABLE 1. Hardening Parameters of the IF Steel. 
Model Parameters 

Swift C=530.4 MPa, �0=0.00159, n=0.2596 
Teodosiu CP=3.3, CR=26.94, CSD=5.35, CSL=13.45, 

CX=24.98, f=0.6, nL=1.88, nP=27.1, 
r=3.93, Y0=114.9 MPa, Rsat=78.4 MPa, 

Ssat=234.2 MPa, X0=13.7 MPa 
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FIGURE 2. Earing profile for Minty constitutive law, with 
and without texture evolution; experimental results from [1]. 
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FIGURE 3. Earing profile obtained by [1] and with Hill 
1948 law; experimental results from [1]. 

The material used was an interstitial-free (IF) steel 
with a thickness of 0.8mm. Thanks to X-ray 
measurements, it appeared that the initial texture of 
this IF steel presented a strong �-fiber, typical of rolled 
steel sheets. The hardening parameters of this steel are 
summarized in Table 1. Due to the orthotropy of the IF 
steel, only a quarter of the process was studied. The 
steel sheet was meshed with one layer of 531 BWD3D 
elements. The tools were meshed with triangular 
foundation facets. 

As the whole steel sheet was swallowed during the 
punch travel, the earing profile was measured as the 
cup height versus the angle from rolling direction 
(RD). Figure 2 presents the earing profile computed 
with the micro-macro Minty constitutive law [2]. The 
computation of texture evolution has been activated 
(curves called “Evol”) or not, i.e. the initial texture 
was used throughout the simulation (curves “Minty”). 
The influence of the hardening behavior was also 
analyzed. Swift type isotropic hardening was used 
(curves “Swift”) and the mixed hardening of Teodosiu 

presented above was also tested (curves “Teo”). The 
Hill 1948 yield locus was also investigated for the 
deep drawing simulation. Figure 3 presents the earing 
profile obtained with the Hill law coupled with Swift 
and Teodosiu hardening models. Experimental values 
and results obtained by [1] (with a texture based law 
and isotropic and kinematic hardening models) are 
also plotted for comparison purpose. 
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According to Fig. 2, it appears that the influence of 
the hardening behavior on the earing profile was 
negligible when texture was not updated. This is 
consistent with the results of [1]. These models are 
indeed very similar: they are both based on Taylor’s 
model using initial texture, coupled with identical 
Swift (isotropic) and Teodosiu (mixed) hardening 
models. The main difference is the definition of the 
yield locus (see [2] and [1]). 
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from [1] 

When texture evolution was computed throughout 
the simulation, a large effect of the hardening model 
was noticed. A shift of the minimum value from 45° to 
40° and a significant asymmetry of the earing profile 
appeared when Teodosiu’s hardening model was used, 
which was confirmed experimentally. The results 
obtained with Hill law show a too large amplitude of 
the earing profile. The influence of the hardening 
model is almost not existent in these curves.  
According to the earing profile prediction, the micro-
macro constitutive law with computation of texture 
evolution coupled with Teodosiu’s hardening model 
yielded best results. 

The evolutions of particular Teodosiu’s hardening 
variables are shown on Figs. 4 and 5 for the two tested 
methods used to implement Teodosiu’s hardening 
model in the FE code: Hoferlin’s one and Alves-
Balan’s one. One particular element along RD was 
chosen such that it underwent completely the bending 
and unbending linked to the deep drawing process. 
Even if we have checked it had negligible effects on 
the earing profile, the implementation method 
appeared to have significant influence on the evolution 
of the directional strength of the PDSs, described by 
fourth-order tensor S. Evolution of the norm of SL, the 
latent part of S, began soon in the simulation with 
Alves-Balan’s method: the first maximum around 
punch displacement 14mm corresponds to the bending 
of the steel sheet, while the second maximum around 
27mm appeared during the unbending. Contrarily, 
Hoferlin’s method required elastic-plastic transition 
for the activation of SL, which only appeared after the 
unbending. The end of the simulation was 
characterized, for the selected element, by a translation 
with low strains; this elastic state yielded to constant 
hardening values. 
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FIGURE 4. Evolution of Teodosiu’s hardening variables 
with Hoferlin’s method. 
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FIGURE 5. Evolution of Teodosiu’s hardening variables 
with Alves-Balan’s method. 

CONCLUSIONS 

The new BWD3D element with its improved shear 
locking treatment allowed to obtain accurate FE 
results, as shown by the deep drawing process 
investigated in the present study. The effect of texture 
evolution and hardening model were assessed through 
earing profile prediction. The hardening model used 
(Swift and Teodosiu) appeared to have almost no 
effect on earing profile if the yield locus shape 
remained constant during the simulation. Contrarily, 
when texture evolution was computed, a large effect of 
hardening model was noticed. The combination of 
Teodosiu’s hardening model and texture evolution 
yielded very good results. The method used to 
implement Teodosiu’s model in FE code was also 
analyzed. It had no effect on the earing profile 

prediction while very different hardening variable 
evolutions were observed. The question about which 
implementation method is preferable is still open. 
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