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Abstract—In this paper a novel adaptive sliding mode 
controller design is presented for robust control of nonlinear 
uncertain systems. A continuous control law to compensate for 
the uncertainties is first developed that is completely free from 
chattering. Focusing on the relation between the tried gain value 
and the resultant sliding variable, a new method for estimating 
the uncertainty bounds is then derived, leading to an adaptive 
law for gain-tuning by which the error eventually lies within a 
user-specified region in a finite time. Unlike other existing 
approaches, the new adaptive rule only requires the magnitude of 
the control input in the previous time step, which greatly eases 
the application of the proposed algorithm to real-world systems. 
An inverted pendulum system is simulated to demonstrate the 
accuracy and effectiveness of the proposed control strategy.  

Keywords—sliding mode control; gain adaptation; Lyapunov 
stability 

I. INTRODUCTION 
Control of nonlinear systems in the presence of uncertain 

parameters and disturbances is a main topic in the modern 
control theory. Sliding mode control (SMC) has attracted 
numerous researchers due to its high robustness, insensitivity 
to matched uncertainties, and computational efficiency. 
However, conventional SMC usually suffers from ‘chattering’, 
which results in high-frequency oscillations in the control input 
and/or in the state. The most common way to circumvent this 
problem is to use a boundary layer approach or a quasi-sliding 
mode approach [1,2]. However, these approaches sometimes 
do not completely remove chattering as noted in [3] and are not 
adequate for the stability proof of the controlled system. A 
more elegant method that alleviate chattering is to introduce 
high-order sliding mode control (HOSMC) [4-6]. However, the 
discontinuous structure is still used in the controller design of 
this approach, thereby causing a little chattering though it is 
considerably disappeared. 

One more drawback of HOSMC is the requirement of the a 
priori knowledge of the bounds on the uncertainties. In 
practice, it is pretty difficult to exactly estimate these bounds, 
and hence, the concept of adaptive sliding mode control 
(ASMC) was proposed. In ASMC, the gain, representing the 
bounds on the uncertainties, is updated at each time step so that 
it is as small as possible to reduce chattering but 
simultaneously sufficient enough to counteract the effects of 

the uncertainties. Huang et al. [7] proposed an adaptive law in 
which the gain increases until the sliding mode is achieved. 
However, in this approach the gain never decreases, sometimes 
yielding severe chattering. Also, only the asymptotic stability 
of the controlled system is proven so it is not guaranteed that 
the error converges to zero in a finite time. In [8] a novel 
approach in which the gain is dynamically updated so that it 
increases if the sliding mode is lost and decreases if the system 
is in the sliding mode. Also, a finite-time convergence of the 
controlled system is proven. This approach is extended to 
multi-input multi-output systems in [9]. In [10] a continuous 
control law with adaptive gain is newly proposed. Although the 
controller does not place the sliding variable exactly onto the 
sliding manifold, one can always force the sliding variable to 
be bounded within a user-specified small domain. Also, simple 
gain estimation and adaptation methods are proposed in which 
the gain is updated according to whether the controlled system 
is in the sliding mode or not. However, in this approach the 
gain always increases so if the initial estimate for the gain is 
larger than the real unknown value, the updated gain is 
overestimated. This gain overestimation can lead to excessive 
chattering especially if the saturation of the control input is 
considered. 

The main goal of this paper is to propose a new continuous 
control law with a simple gain adaptation method. An adaptive 
gain-tuning method that exploits the relation between the 
applied gain and the resultant sliding variable is developed. 
The approached adopted in this paper is similar to, but differs 
from, the one suggested in [10], in that the gain can now either 
increase or decrease while the adaptive gain is always greater 
than the upper bound on the uncertainties. The gain adaptation 
requires only the magnitude of the control input in the previous 
time step, which significantly eases its application to a real-life 
system. The robustness and the effectiveness of the proposed 
adaptive control scheme is verified by solving an inverted 
pendulum problem with uncertain parameters and disturbances. 

II. PROBLEM FORMULATION 
In this paper the following nonlinear uncertain system is 

considered: 
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   

where   nt Rx  is the state vector,  u t R  is the control 
input,  y t R  is the system output, and  h x  is the output 
function. It is assumed that functions  ,tf x  and  , 0t g x  
are smooth, uncertain, and bounded for x . Denoting the error 
vector  e t  as 


  
e t  = y t - yd t ,  

where 
 
yd t   is the desired output, then the sliding variable 

 s t  is defined as follows: 

   

where the constant coefficients  comprise a 
Hurwitz polynomial. In (3), the superscript ( 1)n -  denotes the 
( 1)n - th time derivative. Assume that  ( )ny t  can be 
represented by 


   
y(n) t  = x t, x + b t, x u t ,   

where 
   
x t,x   and 

   
b t, x   0  are smooth and unknown. It is 

noted that since the relative degree of the system (1) is equal to 
the system’s order, the system (1) does not have internal 
dynamics. From here on for brevity, the arguments of the 
various quantities will be suppressed unless required for 
clarity. The time derivative of the sliding variable (3) leads to 
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where  is defined. 

In this paper, the functions  ,z t x  and  ,b t x  are supposed 
to be bounded by 


   
z t, x  < Gr ,  0 < br < b t, x  < Br .  

It is noted that the positive constants  Gr ,  br , and  Br  exist, but 
are not known.  

III. CONTROLLER DESIGN 
This section proposes a chattering-free sliding mode 

controller with adaptive gain. The main feature of the approach 
concerns the fact that it does not require a priori knowledge of 
the uncertainty bounds (  Gr  and  br ). First, the continuous 
control law in the following form is considered: 


  
u = -

G r

ebr

s,   

where e  is a small positive. Then, the following theorem 
holds. 

Theorem 1 Given the nonlinear uncertain system (1) 
controlled by (7), the state trajectories of (1) are forced to move 
from initial conditions to the region  s t e  in a finite time 
and remain in the region thereafter. 

Proof. Let us define a Lyapunov function  L t  taking the 
form: 

 21 .
2

L s=   

Differentiating (8) with respect to time yields 

 ,L ss=    

and substituting (9) into (8), one gets 
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where 2 1r
r

b s
b


e

 
= G - 

 
 is a positive parameter in the 

region where  s t e  holds. Hence, the state trajectories of 
the nonlinear system (1) controlled by (7) converge to the 
region  s t e  in a finite time and remain in the region 
thereafter, which completes the proof.                            ■ 

Corollary 1 Let us consider an n th-order system described by 
(1) and suppose that the sliding variable s  given by (3) is 
bounded by s e . Then for a second-order system ( 2n = ), 
the actual error  e t  is eventually bounded by  
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e t e
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as time progresses. For a third-order system ( 3n = ), the actual 
error  e t  is eventually bounded by 
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Proof. For a second-order system, the sliding variable is given 
by (3) as follows: 

 1 ,s e e= +   

where 1  is a positive constant. Then, by the assumption 
s e , one has 

 1e ee  e-  +    

and let us first consider the following condition: 

 1 .e e e+    

Using the Grönwall’s inequality [11], (15) leads to 

  0 1 0
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exp ,e e t te e
 

 
 - - - +    
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  

where  0 0:e e t=  is defined. Next, consider the following 
condition: 

 1 ,e ee -  +   

then, following the same procedure one can obtain the 
following result. 
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Combining (16) and (18), the error is bounded by 
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Since 1  is positive, the exponential term decays rapidly as 
time progresses so that 


1 1

.ee e
 

-     

Next, let us consider a third-order system in which the 
sliding variable is described by 

 2 1 ,s e e e = + +    

where 1  and 2  are positive constants. In this case, the 
Grönwall’s inequality does not apply, and hence, another 
approach should be attempted. First, by the assumption, one 
has 

 2 1 .e e e  e+ +     

(22) can be thought of as a mass-springer-damper system 
driven by an external force whose maximum magnitude is e . 
According to the vibration theory, the maximum magnitude of 
e  is obtained when the system is at resonance. Resonance 

occurs only when 2
2 12 <  holds and the corresponding 

maximum resonant magnitude of e  is obtained as [12] 

  
2

2 1 2

2max .
4

e e

  
=

-
  

If 2
2 12   holds, resonance does not occur and in this case the 

maximum magnitude of e  is independent of 2  and given by 

  
1

max ,e e


=   

and this completes the proof.                                                     ■ 

Up to now, it has been shown that if the control law (7) 
with the bounds  Gr  and  br  is applied to the nonlinear 
uncertain system (1), the sliding variable  s t  is eventually 
bounded in a finite time within a region where s e  holds. 
Since (7) consists of the continuous function  s t , it is 
inherently chattering free. Although one cannot exactly place 
the sliding variable onto the sliding manifold   0s t = , it is 
always possible to arbitrarily choose a small number e  so that 
the error is confined in a user-specified domain. 

In the use of the control law (7), however, the knowledge of 
the bounds  Gr  and  br  is prerequisite. In general, an accurate 
determination of these bounds is very difficult, so it is highly 



 

desirable to develop an adaptive rule by which the uncertain 
bounds are automatically tuned so that finite-time convergence 
described in Theorem 1 is guaranteed without a priori 
information about the bounds. 

Now, let us define a gain rK  as the ratio of  Gr  to  br , i.e., 
/r r rK b= G , and then (7) is rewritten as 

 .rKu s
e

= -   

Suppose that  Gr  and  br  are exactly determined, then the 
sliding variable will be eventually bounded by s e  as 
shown by Theorem 1. Provided that the gain is overestimated 
and 2 rK  is applied instead of rK , then the sliding variable 
would be bounded by / 2s e  because increasing the gain 
twice is equivalent to decreasing e  by half, that is, 


 

2 .
/ 2

r rK Ku s s
e e

= - = -   

More generally, if a gain guesstimate K̂  is tried, then the 
control law (7) becomes 


 

ˆ
,ˆ/

r

r

KKu s s
K Ke e

= - = -   

and one would observe that the sliding variable is bounded by 
ˆs e , where ˆˆ /rK Ke e= . In brief, in order to find the real 

unknown gain rK  one can try a rough guesstimate K̂  and 
observe the upper bound ê  on s  so that  ˆs e . Then, the 
real gain rK  can be found by 


ˆ ˆ ,rK Ke
e

=   

where e  is the desired upper bound on s . (27) reveals a very 
interesting result on the maximum magnitude of the control 
input  u t . From (27), one has 

    
ˆ ˆ

max max const.ˆ
r

r
KK Ku s K
K
e

e e
= =  = =   

The maximum magnitude of the control input,  max u , is 
equal to the unknown real gain /r r rK b= G , which is always 
constant and independent of the choice of the gain. This 

striking fact and the new method (28) for the estimation of the 
gain leads to an adaptive rule as follows. 

Consider the control law given by 

       ,K t
u t s t

e
= -   

and the gain  K t  is dynamically updated in real time by the 
following adaptive law:  

 ( 1) ( ) ,k k
mK u K+ = +   

where the superscript ( k ) denotes a quantity at the k th scan 
time and mK  is a positive constant. The adaptive rule (31) is 
based on the fact that s  should be always kept less than e . 
From (30), one has 

 ,
u s
K e
=   

In order to have s e , the following condition should be 
satisfied from (32): 

 ,K u   

which leads to the adaptive rule (31). Let us first prove the 
following lemma: 

Lemma 1. Given the nonlinear uncertain system (1) controlled 
by (30) and (31), then the gain  K t  has an upper bound, i.e., 
there exists a positive constant *K  so that   *K t K  for all 

0t  . 

Proof. First, it is noted from (27) that if the gain r mK K K= +  
is applied, the sliding variable is bounded by 

 1 ,  when .mr
r m

r m

KKs K K K
K K K

e e    = - = + +  
  

Next, the derivative of the gain K  is approximately 
represented by (31): 


1

,
m

s
K K

K
t

e
 

- + 
 


    

where t  is the step size, and (35) yields 
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Also, from (5), one has 
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0,  when .
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z
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Suppose that, at 0t t= ,     0 01 /ms t K K te -  and 

 0 0s t   (i.e., s  is increasing). It means that the gain  0K t  
is less than r mK K+  as indicated in (34). Then, K  starts to 
increase by (36). For 0t t , K  can either increase or decrease 
according to the conditions (36) and (37), however, as the 
“worst” case, let us assume that K  and s  are continuously 
increasing. If 

    
 
 

1
1

1 1

z t
K t

b t s t
e

   

holds at 1t t= , s  starts to decrease from (37). Here, K  can 
again either increase or decrease according to (36) and (37). If 
K  is continuously increasing as the worst case, it will 
eventually become greater than r mK K+ . Then, Theorem 1 
and (34) state that there exists a finite time 2t  so that 

    2
2

1 mKs t
K t

e
 

 -  
 

  

holds and K  starts to decrease according to (36). K  keeps 
decreasing until r mK K K< +  holds because if K  is greater 
than r mK K+ , then s  is always less than  1 /mK Ke -  and 
the second condition of (36) is satisfied. After that, K  and s  
can keep decreasing or again increase whether the conditions 
(36) or (37) are met or not. Again, if the worst case is assumed 
so that at 3t t= ,     3 31 /ms t K K te -  and K  starts to 
increase, then the analysis starts from the very beginning. In 
brief, the gain  K t  cannot increase unlimitedly because when 
it is greater than  r mK K+ , the sliding variable becomes less 
than  1 /mK Ke -  in a finite time as in (39) and   K t  starts 
to decrease and keeps decreasing until it becomes smaller than 

r mK K+ . In addition, from (29) and (31) one can readily 
deduce that the maximum  K t  is the sum of the maximum 

magnitude of  u t  and mK , which is constant and finite.  
Hence, Lemma 1 is proven.                                                       ■ 

Theorem 2. Given nonlinear uncertain system (1) with the 
sliding variable (3) controlled by (30) and (31), then there 
exists a finite time 0Ft   so that the condition  s t e  is 
satisfied for all Ft t .                                                                ■                                            

Proof. Let us define the following Lyapunov candidate 
function: 

  22 *1 1 ,
2 2

V s K K


= + -   

where   is a positive constant. It should be noted that the 
condition *K K  by Lemma 1. 

The time derivative of the Lyapunov function (40) yields 
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where rz < G  is used. 

First, the case when s e  is considered. Then, (41) 
satisfies 



   

   

*

* * *

*

1

1

1 ,

r

r

s

V s bK K K K

s bK K K K s bK s bK

s K K b s K








< G - + -

= G - + - + -

 
= - - - - + 

 

 





  

where  * / 1 0s m mb K b b = -   is defined and 
* *K K K K- = - -  is used because *K K . Now, a 

parameter 0K   is introduced in (42) as 


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where  * / KK K b s K  = - - + -  is defined. Finally, 
(43) leads to 
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where  2 min , 0.s K   =    

It is noted that it is always possible to make 0   by a 
proper selection of   that is not included in a design 
parameter of control. The condition 0   yields 
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With (35), (45) becomes 
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Now, with the condition s e ,   can be selected so that it is 
smaller than the right hand side of (46), or 
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where t  is the maximum step size and rB  is the upper bound 
for b  as noted in (6). 

Finally, from (27), one has 1/2 1/2V V V  < -  - < -  , 
and hence, finite time convergence to the region s e  is 

guaranteed from the time when s  starts to exceed e . The 
convergence time is calculated as 


 1/22 0

.F

V
t


   

Next, let us consider the case when s e  holds. In this 

case,   may not be positive so that V  is sign-indefinite and 
s  may exceed e . However, as soon as it becomes larger than 

e , 1/2V V< -   holds and s  will be again bounded by 

s e  in a finite time, as shown earlier. 
In brief, the adaptive rule (31) guarantees that the sliding 

variable will be bounded within the region s e  in a finite 

time Ft  from any initial condition and will remain in the 
region thereafter, which completes the proof.                          ■                  

IV. NUMERICAL EXAMPLE 
To demonstrate the effectiveness and the robustness of the 

adaptive control scheme proposed in this paper, an inverted 
pendulum problem with uncertain parameters and disturbances 
is introduced. The simulations in this example are carried out 
in the Matlab/Simulink environment, using the ode4 Runge-
Kutta integrator. 

Let us consider the following inverted pendulum system: 

      cos ,x c t x a x bu d t+ + = +    

where x  and t  are normalized displacement and time, 
respectively. The (unknown) parameters of the actual system 
are 2.3a = ,    1 0.3sinc t t= + , 0.9b = , and the disturbance 
is    3sin 0.25d t t= . Suppose that the output y  is y x=  
and the desired trajectory is  sin 0.5dy t= . Since (49) is a 
second-order system, the sliding variable is given by 

      1 ,s t e t e t= +   

where 1 2 =  is assumed. Also, the control law (30) with 
0.01e =  and the adaptive rule (31) with 0.5mK =  are used 

for the simulation so that the resultant error is bounded by 
1/ 0.005e e  = by Corollary 1. The initial conditions are 

 0 0x =  and  0 0.5x =  so that  0 0e =  and  0 0e =  are 
assumed. 

The result is shown in Fig. 1. In the very initial phase, s  
exceeds e , but it becomes bounded by s e  in a very short 
time and remains within the bounded region thereafter. Also, 
the error is always less than 1/e   as noted in Corollary 1. 

In Fig. 2, the control input  u t  and the adaptive gain 

 K t  are depicted, being compared with the uncertainty 

  /z t b , where   

            1cos d dz t c t x a x d t y t x y t= - - + - + -       

is obtained from (5). It is obvious that the control input does 
not suffer from chattering and the gain  K t  is always greater 

than the uncertainty   /z t b , which clearly shows that the 
proposed adaptive algorithm successfully updates the gain 
without knowledge of the bounds on the uncertainties. 
Furthermore, the only parameter needed for the adaptation is 

mK  and it follows that the controller design is greatly 



 

simplified while the prominent robustness and the high 
accuracy are achieved. 

In order to see the effect of the parameter mK , its value is 
now reduced to 0.001. The sliding variable  s t  and the error 

 e t  are plotted in Fig. 3. Compared with Fig. 1, they are 
exactly bounded by s e  and 1/e e  , respectively. 
However, in the very initial phase the overshoot is larger than 
the one in Fig. 1 and the convergence time of s  into the 
region s e  takes longer than in Fig. 1 because the initial 
gain  0 0.001mK K= =  is much smaller. Figure 4 displays 
the control input and the adaptive gain that are compared with 
the uncertainty   /z t b . Since mK  is very small, it is 
observed that the gain follows the uncertainty with little 
difference, resulting in the exact boundedness of s  on e  as 
depicted in Fig. 3. To sum up, mK  should be not selected as a 
very small number so as to guarantee a short convergence time 
and a small error. 

V. CONCLUSIONS 
A novel adaptive sliding mode controller is proposed for a 

class of nonlinear systems with bounded uncertainties whose 
bounds are not known. Focusing on the relation between the 
applied gain and the resultant bound magnitude of the sliding 
variable, a simple adaptive law is derived. Since the gain-
tuning is implemented by just the sum of the magnitude of the 
control input in the previous time step and a positive constant, 
the suggested algorithm can be readily applied to real-world 
systems. The effectiveness of the proposed control scheme is 
verified by solving the inverted pendulum problem. 

 

 
Fig. 1 Sliding variable  s t  and error  e t  when 0.5mK =  

 
Fig. 2 Control input  u t , adaptive gain  K t , and uncertainty   /z t b  

when 0.5mK =  

 
Fig. 3 Sliding variable  s t  and error  e t  when 0.001mK =  

 
Fig. 4 Control input  u t , adaptive gain  K t , and uncertainty   /z t b  

when 0.001mK =  
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