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Pulsations in DB white dwarfs 
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Pulsating DB white dwarfs 

Empirical V777 Her instability strip (2011 view) 

 
 

•  Black: DB (pure He atmosphere) 
•  Red: DBA (traces of H) 
 
•  Reliable atmospheric parameters: 

work of Bergeron et al. (2011), 
including strong constraints on H 
abundance (H-alpha line) 

 
•  with ML2/α=1.25 

•  Bergeron et al. (2011) suggests two 
shifted (DB and DBA), pure instability 
strips  

 
 

       

Observed pulsator ;      non-variable DB white dwarf ! 

 
Figure from Bergeron et al. (2011) 
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Pulsating DB white dwarfs 

Empirical V777 Her instability strip (2016 view) 
 

  

Homogeneous spectroscopic analysis 
by G. Fontaine 

•  Model atmospheres of P. Bergeron (incl. 
for the 16 non-variable DB/DBA) 

•  New spectra from Bergeron, Kilkenny 
(2009 & 2016), SDSS (Nitta+2009), 
Kepler telescope (J1929):  

14 DBV with reliable atmospheric 
parameters 

•  J1929 is the most contaminated DBA 
pulsator and the hottest V777 Her 

•  Still consistent with a pure strip 

 

 

 

 
 

       

non variable (<10mmag); pulsator 

Fontaine et al., in prep. 
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Excitation mechanism of V777 Her stars (general picture) 

 
 

•  Don Winget (1982): 
He recombination around Teff~30,000 K 
 ⇒ envelope opacity increase   
⇒  strangle the flow of radiation  
⇒  modes instabilities 

•  Pulsations are destabilized at the 
base of the convection zone 

  
       

“convective driving” 

Pulsations are driven when the convection zone is sufficiently deep and developed   

Pulsating DA white dwarfs 
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•  Cooling DB White Dwarf Models  

The theoretical instability strip 
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Evolutionary DB models 

•  Simplified DB white dwarf cooling models with detailed He envelopes  

•  Cooling tracks computed for 0.5Ms to 0.8Ms (0.1Ms step) 
•  Tracks of DB and DBA with N(H)/N(He)=0.001 (i.e. X(H)=0.0025)  
•  with ML2 version (a=1,b=2,c=16); α = 1.25 
•  “convective feedback” on the global atmosphere structure (same T gradients 

as complete 1D model atmospheres – non grey atmospheres) 
 
 

 

C core 
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•  Cooling DB White Dwarf Models 
•  Stability analysis tools 

•  Time-Dependent Convection (TDC) Approach 
•  Energy leakage argument  

The theoretical instability strip 
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Why a Time-Dependent Convection approach ? 
 
 

•  Typical observed periods in V777 Her stars: 150-1100 s (log: 2.17-3.04) 
•  Frozen convection (FC), i.e. τconv >> σ: not justified in the V777 Her Teff regime 

•  For V777 Her stars: instantaneous adaptation of convection (blue edge; τconv << σ) and 
full TDC (red edge; τconv <~ σ)       
 

 (FC is the usual assumption to study the theoretical instability strip) 

0.6Ms S
te

lla
r e

nv
el

op
e 

Teff (K) 



Valerie Van Grootel -  EUROWD16, Warwick 10 

The Time-Dependent Convection theory 

 

•   The Liege nonadiabatic pulsation code MAD (Dupret 2002) is the only one to implement 
convenient TDC treatment  
•  Full development in Grigahcène et al. (2005), following the theory of M. Gabriel (1974,1996) 
 
 

•  The timescales of pulsations and convection are both taken into account. Perturbation of the 
convective flux: 
 

  
 
 
•  Built within the mixing-length theory (MLT), with the adopted perturbation of the mixing-length: 
 
 
 
 

 if σ >> τconv (instantaneous adaption):  
 

 if σ << τconv (frozen convection): 
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Energy leakage argument 

•  For the red edge (long-standing problem): 
based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when 

 
τth ~ Pcrit     α (l(l+1))-0.5 

(τth : thermal timescale at the base of the convection zone), 

which means the mode is no longer reflected back by star’s atmosphere  

•  For ZZ Ceti pulsators: accounts remarkably well for the empirical red edge 
(Van Grootel et al. 2013) 
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Theoretical instability strip (g-modes l=1) 

12 

TDC blue edge 

Red edge  
(energy leakage) 

non variable (<10mmag); pulsator 

1.2 Ms 

0.20 Ms 

0.15 Ms 

Homogeneous atmospheric 
parameters (here ML2/α = 0.6) 

 

Structure and atmospheric MLT 
calibrations are dependent 

Van Grootel et al. (2013) 



Valerie Van Grootel -  EUROWD16, Warwick 13 

•  Cooling DB White Dwarf Models 
•  Stability analysis tools 

•  Time-Dependent Convection (TDC) Approach 
•  Energy leakage argument  

•  Results 

The theoretical instability strip 
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Results: computing the theoretical instability strip 

0.6 Ms DB cooling sequence, ML2/α = 1.25, l=1, detailed atmosphere, TDC 
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Results: computing the theoretical instability strip 

0.6 Ms DBA cooling sequence, ML2/α = 1.25, l=1, detailed atmosphere, TDC 
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•  Only few differences, way cooler compared to the empirical red edge 
•  TDC red edge too cool compared to the empirical one (// ZZ Ceti) 
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Results: computing the theoretical instability strip 

Red edge leakage 
slightly too cool (?) 

Red edge by energy leakage argument 

NB: negligible offset (~100K) for DBA sequence 
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Results: computing the theoretical instability strip 

•  TDC with turbulent pressure perturbations 
 
•  Dupret et al. (2008): hotter red edge if δPt=4…but still ~3000 K too cool 
•  But with δPt=3: 

Teff (K) 
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Results: computing the theoretical instability strip 

~500 K hotter than red edge leakage 

But 3δPt is not physically realistic. Mimic other components of the Reynolds 
stress tensor (Pt = rr component), i.e. turbulent viscosity ? 
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•  Cooling DB White Dwarf Models 
•  Stability analysis tools 

•  Time-Dependent Convection (TDC) Approach 
•  Energy leakage argument  

•  Results 
•  Conclusions 

The theoretical instability strip 



Valerie Van Grootel -  EUROWD16, Warwick 20 

Conclusion and Prospects 

•  Turbulent viscosity perturbations to include in MAD 
•  Variable αMLT as a function of Teff/logg from 3D simulations 
•  Patched 1D models with nonlocal αMLT  

•  Non-local treatment of TDC (already included in MAD) 
•  New V777 Her pulsators (especially close to the blue edge) needed! 

 

Conclusions:  

Prospects:  

•  No fuziness on the V777 Her instability strip due to the DB/DBA flavor 
•  Our TDC treatment 

•  very well reproduced the empirical blue edge 
•  produced a far too cool red edge in its standard version, 
•  but satisfyingly reproduced the empirical red edge if δPt included and 
enhanced by a factor 3 

•  Energy leakage red edge appears slightly too cool 
•  Our results suggest turbulent viscosity plays a key role in the red edge 

emergence (// Brickhill 1990) 
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Preliminary calibrations from 3D simulations (P.E. Tremblay) 

21 
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Supp. Slides 
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Superficial 
convection 
zone 

Detailed modeling of the 
superficial layers 

Our cooling models have the same T gradients as the 
complete (1D) model atmospheres (upper BCs) 
⇒”feedback” of the convection on the global 

atmosphere structure 

Base of the atmosphere 
(τ=100) 

•  Standard grey atmosphere 
•  Detailed atmosphere 

Cooling DB models 
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Comparison DB and DBA cooling sequences 

24 


