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Abstract

This paper focuses on the design of a stable Lagrange multiplier space dedicated to enforce

Dirichlet boundary conditions on embedded boundaries of any dimension. It follows a previous

paper in a series of two, on the topic of embedded solids of any dimension within the context

of the extended finite element method. While the first paper is devoted to the design of a

dedicated P1 function space to solve elliptic equations defined on manifolds of codimension

one or two (curves in 2D and surfaces in 3D, or curves in 3D), the general treatment of

Dirichlet boundary conditions, in such a setting, remains to be addressed. This is the aim of

this second paper. A new algorithm is introduced to build a stable Lagrange multiplier space

from the traces of the shape functions defined on the background mesh. It is general enough

to cover: (i) boundary value problems investigated in the first paper (with, for instance,

Dirichlet boundary conditions defined along a line in a 3D mismatching mesh); but also (ii)

those posed on manifolds of codimension zero (a domain embedded in a mesh of the same

dimension) and already considered in Béchet et al. 2009. In both cases, the compatibility

between the Lagrange multiplier space and that of the bulk approximation (the dedicated P1

function space used in (i), or classical shape functions used in (ii))— resulting in the inf–sup

condition— is investigate through the numerical Chapelle-Bath test. Numerical validations

are performed against analytical and finite element solutions on problems involving 1D or 2D

boundaries embedded in a 2D or 3D background mesh. Comparisons with Nitsche’s method

and the stable Lagrange multiplier space proposed in Hautefeuille et al. 2012, when they are

feasible, highlight good performance of the approach.
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1. Introduction

One of the basic principles common to most finite difference, Finite Element (FE) and

finite volume methods is the discretisation of the physical domain on which the problem to

solve is defined. The mesh—consisting of elements supporting the shape functions—must
2



1 INTRODUCTION

generally conform to the boundaries of the domain, thus forcing the geometric description to

be identical to the support of the function space. Although h- or p-refinement can increase

the accuracy of the results, this dependency leads to tedious mesh generation tasks that are

often done manually.

While interest in solving problems with complex and evolving geometry has seen a huge

momentum, the constraint of using a conforming mesh remains a critical issue. The physical

domain evolution may result in major changes in shape and topology during the simulation,

due to some physics that need to be described and solved on the discretisation. This highly

non-linear problem requires to remesh at each iteration before solving PDEs. In order to

address this, two families of methods have emerged. One can cite meshless and particle

methods based on lattice nodes alone [1, 2, 3], which quite substantially modify the FE

computational kernel. On the other hand, eXtended Finite Element Method (X-FEM)-like

approaches are improvements of the classical FEM. Thus, they are less intrusive and allow

to keep most of the qualities of the FEM approach, while allowing non-matching meshes. In

this paper, we will focus on the latter methods, for which the connectivities obtained with

the mesh give a straightforward way to satisfy the Kronecker delta property to the shape

functions.

In context of the FE method, this paradigm—to dissociate the field approximation and

the boundary representation—raises the following issues:

(i) Use a convenient representation of the geometry with regard to the FE method.

(ii) Find an appropriate function space built from the classical FE shape functions.

(iii) Enforce Boundary Conditions (BCs) on embedded boundaries, with a singular focus

on Dirichlet BCs. Neumann BCs cause no problems in this case.

The X-FEM has taken advantage of the flexibility offered by Partition of Unity Methods

(PUM) [4, 5] in the generation of meshes. Classically, the FE mesh discretisation has the

same dimension as the problem domain, but without having to conform to boundaries such

as those describing e.g. a crack.

Although this method can be combined equally well with an explicit or implicit geometric
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representation, the choice of appropriate tools such as Level Sets [6, 7] allows to describe

cracks [8, 9, 10, 11], or complex geometries [12] with great flexibility. It also allows to define

the possible enrichment functions (modelling the discontinuity and the solution at the crack

tip), to evolve and propagate the crack.

Then, the FE shape functions defined over the bulk mesh are simply used as function

space and the elements intersected by an interface—called parent elements—are partitioned

into sets of sub-elements for integration purposes (such as in Figure 1).

(a) Typical FEM conforming mesh. (b) Typical X-FEM mesh with embedded

boundaries.

(c) Parent element with one

associated shape function.

(d) Trace of the shape function

over a sub-element.

Figure 1: FEM and X-FEM discretisations of a domain with different types of interface.

Zoom over one parent element with its subdivision into sub-elements.

But the enforcement of boundary conditions on boundaries crossing the elements requires

special attention. Adding Neumann type BCs remains as straightforward as in the standard

finite element method, whereas the enforcement of Dirichlet type BCs is more tricky.

• With a Neumann BC enforced on an implicit boundary, or a traction-free condition, the

variational formulation of the X-FEM does not introduce additional terms. Only the
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integration over the sub-elements describing the interface differs from the conforming

case. Such an approach is not new, and optimal convergence rate is preserved even

with curved boundaries, despite the use of unfitted meshes as shown in [13].

• To impose a Dirichlet BC in the standard FE method consists in eliminating the

degrees of freedom (DOFs) associated with the nodes along the boundary, because

of interpolating shape functions. It is not suitable in case of a boundary not entirely

matched by the mesh, where shape functions are no more interpolating.

In this study, we will focus on the enforcement of Dirichlet type BCs—and more broadly,

stiff conditions used to accurately transfer fluxes between two domains glued together— in

the context of the X-FEM. Problems involving domains of a higher codimension will also be

investigated, as surfaces embedded in a 3D mesh, thanks to dedicated P1 function spaces

introduced in a preliminary paper [14]. A detailed review of such other techniques dealing

with embedded problem is also presented in that paper.

1.1. Background

There are different ways in which a boundary value problem along an embedded boundary

can be handled. We give an overview of approaches available in the literature and allowing

to impose Dirichlet BCs in this setting.

The naive approach is such that the physical domain is reduced to the elements identified

as being entirely within the boundaries and the narrow band of elements intersected by them

is lost. Although easy to implement, this approach leads to errors of order h, the size of

discretisation.

An alternative consists in locally modifying the mesh when the elements are cut by

the interface. This local boundary-fitting remeshing approach includes, for instance, the

Universal Meshes developed in two [15] and three dimensions [16] and local anisotropic mesh

adaptation [17]. However, although beneficial to the prescription of boundary conditions with

nodal collocation, remeshing—even just locally at the boundaries—causes drastic change in

topology, with higher computational cost to rebuild the mesh connectivity and to project

5



1 INTRODUCTION

the solution of a moving boundary problem between two time steps. This calls for other

alternatives based on non-conforming meshes independent of the geometry of the problem.

The simplest approach would be to choose a test function space already including the

boundary condition. Unfortunately, standard basis functions having a support crossed by the

interface do not necessarily satisfy the boundary condition. They must therefore be replaced.

Because only constant functions on the boundaries are optimally approximated with this

approach, the results are then sub-optimal, and not better than using the naive approach.

An illustration of this is presented in [18], showing a locking-type phenomenon. Most of the

approaches that are subsequently described relax the Dirichlet condition to avoid locking,

enforcing this BC in a weak sense.

A strategy to impose Dirichlet BCs on a non-conforming mesh consists in changing the

approximation close to the interfaces. The boundary-fitting interpolation can be achieved in

two different ways:

i) to modify the interpolation space. Codina and Baigues propose in [19, 20] to approx-

imate in a weak sense the boundary value problem, by the extrapolation of DOFs

near the boundaries. The sub-elements do not use the shape functions of the parent

element, but an extension of the shape functions of neighbouring elements interior to

the domain, which are not cut.

ii) to introduce a specific enrichment of the interpolation space by including new unknowns

along the boundary. A first attempt would be to enrich the elements intersected by the

interface, in the way of the Generalised Finite Element Method (GFEM) and X-FEM.

However, the necessity of blending elements to avoid pollution from higher order shape

function has been an issue. Indeed, by using local enrichment at the nodes of elements

crossed by the boundary, the neighbouring elements are also affected because of the

continuity of the shape functions across the interface between two elements.

To tackle this problem, one approach is to enrich only the points of intersection of

the boundary with the edges of the mesh. Thus, the enrichment functions vanish at

the vertices of the mesh. Their supports will be limited to the band of cut elements.
6
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This approach developed in [21, 22] for the case of multi-material and known as the

I-GFEM (Interface-GFEM), takes its name from the shift of the new DOFs—called

generalised DOFs—to the interfaces. The enforcement of a Dirichlet BC can be done

in the classical way of the FEM, using collocation technique thanks to the DOFs and/or

generalised DOFs on the interface [23]. However, it is still quite sophisticated to build

the enrichment functions, as it depends on interface/element configurations. In order

to overcome this difficulty, a hierarchical approach was recently used in the case of

multiple interfaces within a single element [24].

Another possibility of enrichment can be achieved by switching to discontinuous

interpolants in the cut elements. The discretisation is based on the Discontinuous

Galerkin technique [25, 26], but limited to the narrow band of elements that intersect

the boundary [27, 28]. In contrast with the weakly continuous approaches, the Dirichlet

conditions remain strongly enforced in this case.

More recently, a two-field approach [29] introduces also piecewise discontinuous functions

in the elements cut by the interface and vanishing elsewhere. It is based on the

mixed stress-displacement formulation in relation to the Hellinger-Reissner variational

principle. The additional stress unknowns are replaced by their expression in the

primary displacement field through a condensation technique applied at the discrete

level along the boundaries. Although the resulting system contains only the primary

unknowns, it leads to unsymmetric linear system, even for symmetric problems. To

preserve a symmetric elliptic problem, the formulation has been symmetrised in [30, 31]

and extended to high-order embedded domain discretisations [32].

One final strategy to enforce Dirichlet BCs is to change the formulation in the elements

crossed by the interface. Along an interface that is not conforming to the mesh, a stiff

boundary/interface condition can be taken into account through a force term. For instance,

in a fluid-structure interaction, such additional term appears in either the strong or the

weak form of the boundary value problem. Variety of methods have been proposed in the

literature and may be classified according to the way of prescribing the condition:
7
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i) to add point-wise spring forces using a Dirac-delta function along the interface. Peskin

had introduced this approach in its original form in [33], later known as the Immersed

Boundary Method (IBM). But difficulties arise in the transition of the continuous

problem to the discretised problem, only leading to a first-order accurate approach. In

the continuous case, the enforcement of the condition should require an unbounded

linear feedback control limited to the interface. But after discretisation, a thick

regularisation zone and a finite parameter must be used to prevent ill-conditioning. To

achieve optimal second-order accuracy, an Immersed Interface Method (IIM) has been

depicted in [34, 35, 36, 37] and defines the forcing term without the requirement of

Dirac-delta distribution.

ii) to define a purely numerical forcing term. A penalty term is introduced in [38] with

a mesh-dependent parameter and analysed for embedded boundaries in [39]. Penalty

methods are similar to Peskin’s methods by adding one term in the formulation; however

the latter remains localised on the thin interface. In tandem with the good approxima-

tion of the boundary condition, the contribution of the test functions associated to the

boundary nodes must be taken into account to obtain a good approximation of the

solution fields. To this end, Nitsche [40] proposed the introduction of another term to

improve the previous method. The symmetry of the problem can then be retrieved

thanks to additional terms in the formulation. Unfortunately, the formulation involves

a parameter that is also dependent on the physical problem. Although the proof of

the stability of Nitsche’s method for general boundary conditions is done in [41], this

parameter should be carefully selected in order to get a stable formulation. To avoid

choosing a parameter, efforts have been done in [19], but the resulting formulation

remains non-symmetric in every case. Another variant of Nitsche’s method [42, 43]

tends to the unconditional stability at the expense of higher regularity requirements

in comparison with the standard method. Moreover, these studies are limited to

two-dimensional problems. The application to three-dimensional problems has been

made in [44] with convergence studies. The parameter is computed with analytical

8
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expressions at the element level [45, 46]. Furthermore, if the physical domain exhibits

material non-linearities and/or evolving interface, Nitsche’s method may sometimes be

difficult to apply.

iii) Lagrange multipliers may be introduced to represent the fluxes on the boundary. The

solution of the boundary value problem is then obtained by moving to a dual formulation.

The design of the Lagrange multiplier space should be done with caution: a naive

attempt is to use the space built on the boundary with piecewise linear shape functions

at the intersections of the interface geometry with the edge of the bulk mesh. In two

dimensions, rebuilding a submesh defined from the intersection of the interface with

the bulk mesh is possible, it is however not suitable in a complex three-dimensional

case. A convenient choice for the Lagrange multipliers is to simply use the traces of the

primary shape functions defined on the mesh, restricted to the interface. Nevertheless,

it has been observed either with the naive space [47] or the trace space [48, 49], that

both cases lead to spurious oscillations of the Lagrange multipliers and locking. The

domain integral smoothing technique [47] significantly improves the accuracy of the

boundary flux by preventing the oscillations of Lagrange multipliers. But locking is

not precluded and convergence properties remain sub-optimal. To circumvent these

difficulties, the inf–sup condition and so-called Ladyzhenskaya-Babuška-Brezzi (LBB)

compatibility condition proposed in [50, 51, 52, 53] must be satisfied by the pair of

primal and dual finite element spaces.

Starting with an incompatible pair of spaces, a first solution consists in the stabilisation

of the Lagrange multipliers. To this end, bubble shape functions may be added in

order to build a stable approximation from an otherwise unstable Lagrange multiplier

space. Brezzi et al. [54] has initially suggested to use bubble shape functions for

domain decomposition. Introduced in [55] to enforce boundary conditions, this bubble-

stabilised method has been improved in [56] by replacing simple cubic bubble functions

by residual-free bubbles. Applications to adherence constraints are investigated in [57]

and a comparison between penalty, Nitsche, unstable and stabilised space techniques is

9
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made. This technique has the advantage of exhibiting no free parameters stabilisation

compared to Nitsche’s approaches, while preserving a positive-definite symmetric

system. However, this requires to solve before an additional linear system in order to

define the residual-free bubble functions. Instead of a stabilised space, the design of a

stabilisation operator allows circumventing the inf–sup condition with a modification of

the variational form, resulting in a stabilised formulation. A residual-based stabilisation

is obtained by Barbosa and Hughes in [58, 59], by penalising the difference between

the discrete normal derivative and the discrete Lagrange multiplier. Stenberg has

established in [60] the close relationship to Nitsche’s method. An optimal method

is developed in [49] with a specific treatment of DOFs having a very small support

intersection with the domain, for robustness purposes. Another operator is introduced

in an interior penalty stabilisation by Burman [61] to penalise the jump of the Lagrange

multipliers between elements. More recently, a local projection stabilisation is used

in [62, 63] with a coarsening operator. Only Lagrange multipliers are involved through

the operator, by penalising the distance between the full P1 space to an a priori stable

space. At the end, the number of independent DOFs will be reduced to that of the

stable space. This technique is more flexible to address non-linear problem than the

initial Barbosa-Hughes stabilised method. However, it requires the prior identification

of patches of elements for projection purposes, in order to have a coarse space satisfying

the inf–sup condition.

A second solution requires a careful selection of a stable pair of spaces. To avoid an a

posteriori recovery of the stability, the Lagrange multiplier space may be appropriately

designed so as to pass the LBB condition. On the one hand, a separate interfacial mesh

for the Lagrange multipliers has been introduced by Glowinski et al. in the fictitious

domain method [64]. Optimal convergence is obtained in [65] with a uniform inf–sup

condition, thanks to a wise choice of the ratio between the mesh size in the domain

and the boundary mesh size. On the other hand, a stable Lagrange multiplier space

may be carefully designed on a single bulk mesh. Starting with a space made up of
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standard hat functions that is too rich, a first algorithm has been proposed in [18] to

deplete the Lagrange multiplier space. A second algorithm has been introduced in [66]

and extended for large sliding [67], improving the accuracy of the computed fields

at the expense of the resolution of a global problem. Finally, a third algorithm [48]

combines both a local construction of the Lagrange multiplier space and good accuracy.

A theoretical analysis of the stability is performed in two dimensions. It uses the

traces of primary shape functions to design the space and remains valid in 3D to

enforce Dirichlet boundary condition on a surface. Hautefeuille et al. [44] compares

a variant of this stable space with Nitsche’s method. The specificity of the Lagrange

multipliers in contrast to [48] lies in the local enforcement of the partition of unity at

the element level. Then, discontinuities into the basis are allowed, introducing piecewise

C0-continuous shape functions. An advantage of Lagrange multipliers is the possibility

to define precisely the coupling (contact or cohesive law), especially with non-linearities,

something that is not easy with other methods (using Nitsche’s and other stabilisation

terms).

For all these approaches, studies have been limited to the case of Dirichlet constraints

defined on submanifolds of codimension one. As we are going to see, this work continues the

development of stable Lagrange multiplier approach.

1.2. Objectives

While the development of non-conforming approaches has shown a growing interest in

last decades, solving problems posed on embedded surfaces has only been considered more

recently in such settings. Nevertheless, the imposition of Dirichlet boundary conditions have

not been yet addressed. In these cases, the embedding of a surface into the 3D ambient space

defines a problem of codimension one. Then, the Dirichlet boundary is a submanifold of

codimension two in 3D.

In the framework of stable Lagrange multipliers, the existing methods are not suitable

for this type of constraint on implicit lines in 3D. They detect only intersection points of

the boundary with edges of the mesh to design a suitable function space. Unfortunately,
11
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1D boundaries are running, in 3D, through faces of most of the elements. A new method is

therefore required. Furthermore, neither of the approaches presented before investigates this

problem.

The aims of this paper can be summarised as follows:

1. Introduce a new algorithm designing stable Lagrange multiplier spaces on boundaries

of arbitrary dimension in 2D and 3D, in order to address boundary value problems

defined on manifolds of codimension zero, one or two.

2. Perform numerical convergence analyses with all configurations of boundary dimension,

in order to show the accuracy, the optimality and the stability of the method.

3. Validate the results against classical FEM and compare with Nitsche’s method wherever

possible.

1.3. Outline

The outline of this paper is as follows. In the next section, we describe the governing

equations of the model problem and its discretised forms. Then, Sect. 3 presents a new

algorithm reducing the classical P1 Lagrange function space into a stable Lagrange multiplier

space for every combination of the mesh and boundary dimensions. Several numerical

examples and convergence studies are provided in Sect. 4 to investigate the performance of

the method. Particular attention is placed on the comparison between the current approach

and Nitsche’s method. Finally, a summary and concluding remarks are given in the last

section.

2. Model problem

Let T be a Cartesian domain of dimension n = 1, 2 or 3, we consider the embedding into

this ambient space of a bounded domain Ω ⊂ Rm , with 1 ≤ m ≤ n . As model problem, we

consider an elliptic equation with the same settings than in the preliminary paper [14].

If m = n , i.e. the codimension codimT (Ω) := dim T − dim Ω is equal to zero, then the

problem is simply a Poisson problem involving a Laplace operator and a source term f ,

otherwise a Laplace-Beltrami operator is introduced on Ω.
12
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To be succinct, we are combining both cases in a single formulation thereafter. To achieve

this, we define for g : T → R sufficiently smooth:

∇Ωg :=


∇g if codimT (Ω) = 0 ,

∇g −∇g · nΩ ⊗ nΩ if codimT (Ω) = 1 ,

∇g · tΩ ⊗ tΩ if codimT (Ω) = 2 .

(1)

Here, nΩ and tΩ are respectively the unit normal and tangent vectors to Ω.

Let the boundary ∂Ω be decomposed in two disjoint subsets ΓD 6= ∅ and ΓN . The

assumption on ΓD (of nonzero Lebesgue measure) is necessary for the uniqueness of the

solution. The model problem is given by the following strong form set of equations:

−∆Ωu = f in Ω ,

u = uD on ΓD ,

∇nu = tN on ΓN .

(2)

where the operator ∆Ω is defined as ∇Ω ·∇Ω and ∇nu is the outward flux through the

boundary ΓN of Ω . Notice that Dirichlet uD and Neumann tN boundary conditions are

enforced on boundaries of at least one codimension higher than that of the domain.

Thus, ΓD and ΓN may be points for embedded 1D-submanifolds, lines for 2D-submanifolds

or surface for the 3D case. Currently, imposing Dirichlet boundary conditions within the

X-FEM has only been studied with embedded submanifolds of codimension zero. In this

paper, we do not limit ourselves to these configurations and investigate any embedding as

depicted in Figure 2.

Figure 2: Embedded solids (from left to right) : 1D-submanifolds of codimension one or two,

2D-submanifolds of codimension zero or one, 3D-submanifold of codimension zero.

13
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2.1. Weak formulations

Let us introduce the setting in order to derive the weak form of the one-field problem

resulting from the above equations. Let U := H1(Ω) , we seek solutions in the subset

UD := {u ∈ U : u = uD on ΓD}, using test functions living in U0 := {u ∈ U : u = 0 on ΓD}.

The model problem given Equation (2) may be expressed as follows :

Find u ∈ UD :
∫

Ω
∇Ωu ·∇Ωv dΩ =

∫
Ω
fv dΩ +

∫
ΓN

tNv dΓ , ∀v ∈ U0 . (3)

To remove the constraint on the primal field u defined here in UD , a two-field formulation

may be constructed.

Considering u ΓD
defined in H1/2(ΓD) (the trace space of U restricted to ΓD), we introduce

λ, a Lagrange multiplier belonging to the dual space L :=
(
H1/2(ΓD)

)′
= H−1/2(ΓD) . To

enforce the Dirichlet BC on ΓD (now a saddle-point problem), the associated weak formulation

is :

Find (u, λ) ∈ U×L :∫
Ω
∇Ωu ·∇Ωv dΩ−

∫
ΓD

λv ΓD
dΓ =

∫
Ω
fv dΩ +

∫
ΓN

tNv dΓ , ∀v ∈ U ;

−
∫

ΓD

µu ΓD
dΓ = −

∫
ΓD

µuD dΓ , ∀µ ∈ L .

(4)

Being in the framework of a mixed formulation, it is well established that the satisfaction

of a discrete inf–sup conditions is required for interpolation spaces. In Sect. 3, the stability

of this formulation will be preserved by carefully designing the Lagrange multipliers space,

regardless of the codimension of the domain Ω.

Instead of the previous technique using a dual space, the problem can be approximated

by substituting the Dirichlet BC with a purely numerical forcing term in a Nitsche-type

formulation. We briefly recall a symmetric version that will be used for comparison.

Find u ∈ U :
∫

Ω
∇Ωu ·∇Ωv dΩ−

∫
ΓD

∇nu v dΓ−
∫

ΓD

(u− uD)∇nv dΓ

+
∫

ΓD

α (u− uD) v dΓ =
∫

Ω
fv dΩ +

∫
ΓN

tNv dΓ , ∀v ∈ U . (5)

14
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Here, the additional terms are respectively introduced (i) to provide consistency with

regard to the boundary terms, (ii) to keep the symmetry of the equation and (iii) to ensure

that it converges to the same solution as the initial problem, according to the parameter α.

More details on the choice of this parameter are given in Sect. 4 for numerical validation

purpose.

2.2. Finite element discretisation

First of all, the geometry of the problem domain has to be approximated. The embedding

is made into the ambient domain T that is discretised quasi uniformly into shape-regular

linear elements (lines in 1D, triangles in 2D or tetrahedra in 3D) of characteristic length h.

The resulting mesh T h used for the field approximation is then independent of the geometry

of the problem. Only the domain of integration Ωh must be adapted in order to be body-fitted,

see Figure 3.

Active element

Ωh

Γh
N

Γh
D

Figure 3: 2D model problem embedded in a bulk mesh T h. The discretised domain Ωh is

subject to Dirichlet (resp. Neumann) type condition on the boundary ΓhD (resp. ΓhN).

As mentioned above, an explicit or implicit geometric representation may be used within

the X-FEM. It results in a linear approximation of the problem domain. Furthermore, the

strategy to describe the geometry is combined with specific integration rules over embedded

domains and boundaries involved in Equation (6). The level-set technique will be chosen in

the numerical validations, with a regular Gauss quadrature used on sub-elements.

15
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Definition of the discrete function space

The discretisation uh of the bulk field is directly obtained if codimT h

(
Ωh
)

= 0 , using the

function space Uh ⊂ U defined over the bulk mesh. In case of higher codimension, Ωh is not

suitable for the definition of a finite element function space without remeshing (especially in

3D with a surface), therefore the traces of the shape functions defined on T h must be used.

Analysis of the approximation properties of the linear trace spaces in codimension one is

available in [68] for closed domains. Without boundaries, the enforcement of BCs on edges

embedded in a 3D mesh is not addressed.

Nevertheless, the discretised problem becomes singular when the trace space is naively

built using all the shape functions. Due to the fact that inner shape functions do not vanish

on the boundary, it is not possible to directly use an L2-projection.

To illustrate it, we compare different spaces built from P1 Lagrange basis functions

in Figure 4. The problem is defined on a straight line, and we check if it is well-posed

thanks to the rank-nullity theorem. Starting with a P1-conforming space of polynomials of

degree one on a 1D mesh, the non-conforming case is investigated with the embedding of

the straight line in a 2D mesh. Considering the values at each intersecting points between

the line and the elements as the unknowns, the rank of the full P1 trace space is always

greater than the number of DOFs except if the boundary is conforming. The overdetermined

system is reducible and some shape functions may be joined together, yielding a depleted

function space. Specific treatments of the linear algebraic system of equations has been

proposed in [69]. We choose an approach taking advantage of the fixed topology of the mesh

introduced in [14]. The full P1 trace space may be reduced thanks to an algorithm—called

vertex space reducer—which identifies the shape functions that are in excess and defines

linear combinations for any codimension of the problem. This way, we extract a basis from

the P1 space defined on T h. The resulting space is able to represent any linear field, for

this reason it is called P1-equivalent. Of course, this approach leads to the classical finite

element discretisation in case of a boundary fitted mesh. For the sake of conciseness, a unique

notation for the discrete function space will be employed for any codimension of the problem.
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2 MODEL PROBLEM

Space Shape functions number of DOFs Rank

P1-conforming 3 3

Full P1 6 5

P1-equivalent 5 5

P0-equivalent 3 3

Figure 4: Comparison of various spaces built from the classical P1 Lagrange shape functions.

Definition of the discrete Lagrange multiplier space

By imposing the Dirichlet BCs in a two-field framework, the weak formulation given

Equation (4) leads to the following discrete problem:

Find (uh, λh) ∈ Uh×Lh :∫
Ωh

∇Ωhuh ·∇Ωhvh dΩ−
∫

Γh
D

λhvhΓh
D

dΓ =
∫

Ωh
fvh dΩ +

∫
Γh

N

tNv
h dΓ , ∀vh ∈ Uh ;

−
∫

Γh
D

µhuhΓh
D

dΓ = −
∫

Γh
D

µhuD dΓ , ∀µh ∈ Lh .

(6)

Here, the discrete Lagrange multiplier space Lh ⊂ L is build on the FE approximation.

A necessary condition to enforce weakly the Dirichlet BC on the primal field uh (linearly

approximated) is that any constant field must be reproduced by the Lagrange multiplier
17



2 MODEL PROBLEM

space. A P1-equivalent space is indeed not required for the dual field. Furthermore, the

inf–sup condition must be fulfilled by the duality pair of spaces Uh and Lh, as previously

discussed. This condition ensures the uniqueness and the stability of the numerical solution

and may be expressed as:

∃c > 0, ∀h > 0 : inf
λh∈Lh

sup
uh∈Uh

∫
Γh

D

λhuhΓh
D

dΓ

h1/2‖λh‖L2(Γh
D)‖uh‖H1(Ωh)

≥ c . (7)

In line with the definition of the primal field, we adopt an approach based on mesh topology,

leading to an a priori stable Lagrange multiplier space. It generalises the algorithm proposed

in [48] to the wide class of embedded problems, with boundaries defined as submanifolds of

codimension one or two in a 2D or 3D background mesh. Sect. 3 is devoted to detail the

new approach. Starting with P1 Lagrange basis functions defined on the background mesh

and used for the approximation of the dual field, linear combinations between their traces

are introduced in order to recover a shape function density similar to the conforming case.

We give, in Figure 4, an illustration of the resulting space, denoted P0-equivalent, on the

previous 1D example. For approximatively the same characteristic length of the elements,

between the meshes used with P1-conforming and P0-equivalent spaces, we highlights strong

similarities between their shape functions.

In order to measure the stability of the resulting formulation, the numerical Chapelle-

Bathe test—also called inf–sup test—has been proposed in [70, 71]. The solution of the

following eigenvalue problem will be computed through convergence studies conducted Sect. 4:

1
h

(BT
hM

−1
h Bh)Vh = βhAhVh . (8)

Here, Ah , Bh and Mh are respectively the energy matrix (on Ωh), the coupling and the

λh–mass matrices (on ΓhD) ; Vh being the vector of bulk unknowns. The square root of the first

non-zero eigenvalue in {βh} gives the inf–sup constant c associated with the discrete problem.

In practice, this constant should be mesh-independent, otherwise the inf–sup condition is

not satisfied. This test has already been considered in [18, 48] within similar frameworks.
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3 DESIGN OF THE STABLE LAGRANGE MULTIPLIER SPACE

3. Design of the stable Lagrange multiplier space

To address the imposition of Dirichlet BCs on embedded boundaries for any configuration

of the model problem, some general concepts (available in 1D, 2D and 3D) will be introduced.

They allow to extend stable Lagrange multiplier methods [18, 66, 48, 44] to 1D boundaries

embedded in 3D (codimension two) in a single framework.

3.1. Terminology

The proposed solution deeply uses the terminology introduced in [14]. We briefly recall

the main ideas. We define the supports as the mesh components on which the embedded

domain discretisation—made of sub-components— is built. In this way, we get access to the

bulk shape functions of the mesh T h from the underlying discretisation of the embedded

geometry Ωh (or ΓhD here), using the mesh topology. One only have to select supports

properly to form a free basis of Lagrange multipliers defined on Ωh. This selection must

satisfy the following conditions to be consistent with FEM.

Definition 3.1. Vital support. A vital support results in one Lagrange multiplier (a linear

combination of the associated shape functions). Its define according to :

(i) a condition on the conformity: a support which conforms to ΓhD is denoted vital,

(ii) a condition on the linear independency: vital supports constitute disjoint sets,

(iii) a condition on the partition of unity: shape functions of a non-vital support must be

linked at least to one vital support.

Similar concepts have been introduced in [18, 66, 48], but only edges of the mesh were

used to identify the shape functions. Furthermore, the non-uniqueness in the choice of the

resulting Lagrange multiplier space was reported. The same applies with the graph of vital

supports.

To this end, deterministic criteria will be introduced in the proposed algorithm accordingly

to the following score.
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3 DESIGN OF THE STABLE LAGRANGE MULTIPLIER SPACE

Definition 3.2. Support score. Let S be a support of dimension ≤ codimT h

(
ΓhD
)
on which

a node of ΓhD (i.e. a 0D sub-component) is defined. We associate the number of supports of

dimension ≤ codimT h

(
ΓhD
)
connected to S.

We illustrate the computation of support scores on various configurations in Figure 5.

The scores are written next to the nodes of ΓhD for a better visualisation.

1 1 0 2

2

2

1
0

1
0

Figure 5: Support scores in two or three dimensions with embedded boundaries of

codimension one (left, middle) or two (right).

Assuming that one Lagrange multiplier is defined at each support of dimension≤ codimT h

(
ΓhD
)
,

the support score allows to detect how many Lagrange multipliers would be depleted if we

identify a support as vital. This corresponds to the number of connections in the support

graph. The detailed steps of the selection procedure are given in the sequel.

3.2. Description of the algorithm

The design of a stable Lagrange multiplier space must be a compromise between two

contradictory requirements. On the one hand, the number of shape functions must be reduced

to satisfy the inf–sup condition and preclude instabilities. On the other hand, the space of

Lagrange multipliers must be as large as possible in order to impose accurately the Dirichlet

constraint.

Let us consider an embedded line ΓD subjected to a Dirichlet boundary condition, with

extremities being arbitrarily defined inside elements (Figure 6). In order to obtain a better

approximation of the Lagrange multipliers and evaluate at the endpoints of the line the

scores previously introduced, we extend the discretised domain ΓhD into a larger domain ΓhD .

This is achieved by using a linear extension in the elements containing the endpoints.

Figure 7 illustrates this first step, as well as the following in the algorithm producing a

stable Lagrange multiplier space. Algorithm 1 details the pseudocode in an implementation

perspective.
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3 DESIGN OF THE STABLE LAGRANGE MULTIPLIER SPACE

Figure 6: An embedded line that is unfitted to the narrow band of elements.

linear extension

(a) Linear extension of the embedded line.

(b) Supports of the intersection points of the embedded line with the mesh.

2 3 3 2 1

2

2

2 1 1 4
3 3

4 3

3

5
4 4 5

3

2

0 0

(c) Vertex scores (italic) and support scores (bold) along the embedded line.

(d) Full_Shape_Functions (drawn in red) and Distributed_Shape_Functions (outlined in

orange) associated with vital supports.

(e) Set of Lagrange multiplier shape functions.

Figure 7: The four steps of the algorithm and the final P0-equivalent space.
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3 DESIGN OF THE STABLE LAGRANGE MULTIPLIER SPACE

Algorithm 1: Vital support reducer.
Input: (Figure 6)

A boundary set ΓhD of elements or sub-elements embedded in a background mesh.
Output: Identification of vital supports.

Characterisation of the vertex shape functions: Full_Shape_Function (resp.
Distributed_Shape_Function) associated with its unique vital support (resp.
distributed on the vital supports which are connected to the vertex through its
connected supports of dimension < codimT h

(
ΓhD
)
).

1: (Figure 7a)
if ∂Ω 6= ∅ then

Build Ωh the linear extension of Ωh,
else

Define Ωh := Ωh.
2: (Figure 7b)

Build connectivities and supports of the group ΓhD.
3: (Figure 7c)

Compute scores of vertices and supports.
4: (Figure 7d)

Flag every supports of dimension zero as being vital.
Sort the other supports of dimension < codimT h

(
ΓhD
)
by increasing scores in a set.

Supports with the same score should be ordered in a deterministic way (e.g. using a
unique key obtained from those vertices).
for each support S in this set do

if S has no flag then
for each vertex v ∈ S do

v is flagged as Full_Shape_Function

Flag every support of dimension < codimT h

(
ΓhD
)
and connected to v as

non_vital.
S is flagged as vital.

for each vertex v connected to the boundary do
if v has no flag then

v is flagged as Distributed_Shape_Function
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Note that, in the case of a boundary of codimension one, the resulting Lagrange multiplier

space exactly matches the one obtained through the procedure introduced in [48]. Conse-

quently, the mathematical proof (in 2D) of a uniform inf–sup given in that paper holds in our

setting. Furthermore, its validity is independent of how the Distributed_Shape_Functions

are distributed over vital supports. The partition of unity may be satisfied locally, as

proposed by Hautefeuille et al. [44], with a uniform distribution over Lagrange multipliers

at the element level (the resulting shape functions are only piecewise C0-continuous, with

potentially inter-element discontinuities). In line with [48], we arbitrarily choose to enforce

the partition of unity globally, using a single distribution independent of the element, in

order to build C0-continuous shape functions. This distribution is considered uniform over

associated vital supports in the numerical applications presented next. Any other choice

satisfying the partition of the unity is still valid, e.g. shape functions weighted according to

the relative distance between the associated vertex and intersection points of vital supports

with Ωh. Further investigations on the numerical stability of these alternatives would be of

interest in the perspective of solving problems with moving interfaces.

4. Numerical validations

In this section, we present some numerical results illustrating how the proposed approach

is suitably efficient and versatile. Boundary value problems involving a Dirichlet constraint

on a boundary of dimension one (a line in 2D and 3D), and of dimension two (a surface in 3D)

are solved. Due to the simplicity of imposing a boundary condition on an embedded point

in 1D, 2D and 3D—by using a linear combination or a Lagrange multiplier— these trivial

cases will not be included in the numerical tests. Convergence studies are performed on

non-matching meshes and classical FE counterparts. We check numerically the compatibility

between the primal field and the dual field of Lagrange multipliers by means of inf–sup

tests. The accuracy of the results is compared with those obtained by Nitsche’s method,

when an analytical expression of the associated parameter is available at the element level.
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4 NUMERICAL VALIDATIONS

We summarised in the sequel some implementation details used through the numerical

validations.

Selection of Nitsche’s parameter

Nitsche’s formulation given in Equation (5) is discretised as follows:

Find uh ∈ Uh :∫
Ωh

∇Ωhuh ·∇Ωhvh dΩ−
∫

Γh
D

∇nu
h vh dΓ−

∫
Γh

D

(
uh − uD

)
∇nv

h dΓ

+
∫

Γh
D

α
(
uh − uD

)
vh dΓ =

∫
Ωh
fvh dΩ +

∫
Γh

N

tNv
h dΓ , ∀vh ∈ Uh . (9)

Here, the parameter α dictates the performance of the resulting formulation. Its choice

must be a compromise between: (i) a sufficiently large value to ensure the coercivity of the

formulation, and (ii) a reasonable small value to preserve good matrix conditioning of the

problem.

Instead of a unique parameter defined over the whole boundary ΓhD as in [57], we choose

a local definition introduced in [45] and used in [44]. We just recall the analytical expression

that will be exploited in the numerical validations, and refer the interested reader to the

mentioned references for more details. In each element e ∈ T h crossed by ΓhD , we consider a

local parameter given by the analytical expression:

αe := 2 meas(ΓhD ∩ e)
meas(Ωh ∩ e) . (10)

Flux approximation using a domain integral post-processing technique

Several ways may be investigated in order to evaluate the interfacial flux. In a mixed

formulation, the fluxes can be represented as unknowns of the system, by using the Lagrange

multipliers introduced for the BCs enforcement for instance. In other cases, the normal gradi-

ent operator may be simply applied on the bulk solution along the boundary. Unfortunately,

this approach results in a poor evaluation of the interfacial flux. A flux projection operator

introduced in the Domain Integral (DI) method [47] is a good alternative for this purpose.

Using the P1 Lagrange shape functions Ni defined on the bulk mesh, we approximate the
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interfacial flux at the vicinity of the interface by interpolating the nodal field defined as:

DI(∇nu)i := 1∫
Γh

D

Ni dΓ

∑
e

∫
Ωh∩e

∇Ni∇uh −Nif dΓ . (11)

Conditioning of the linear system

Some consideration about ill-conditioning caused by small intersections of the domain

with the mesh have to be given. In line with the previous paper [14], we consider the approach

modifying the geometry to address conditioning issues of the resulting linear system, in a

preliminary step to the Algorithm 1. In such a way, Ωh is locally modified into Ω̃h before

constructing the linear extension Ω̃h. Of course, an alternative approach modifying the

function space may also be suitable, as long as the resulting P1 space defined over Ωh

preserves a certain accuracy of the approximation (see [14]).

4.1. Dirichlet constraints on an embedded line in 2D

Imposing Dirichlet BCs using a stable Lagrange multiplier space in 2D has already been

discussed in the literature, with convergence studies and a proof of stability [48]. Despite

that, this validation aims to:

(i) check that our approach is conservative within this setting,

(ii) compare its accuracy with Nitsche’s method in a convergence study.

We perform a 2D-numerical test proposed in [63], with a star-shaped curved boundary

defined as the iso-zero of the distance function:

ψ(x, y) = −5
(
0.474 − ρ4 [2.5 + 1.5sin(8θ + 2π/9)]

)
, (12)

where (ρ, θ) are the polar coordinates associated with (x, y) .

The strong form set of equations is given as follows:

−∆Ωu = 0 in Ω := {(x, y) ∈ R2 : ψ(x, y) < 0} ,

u = uD on ΓD := {(x, y) ∈ ∂Ω : y < 0} ,

∇nu = tN on ΓN := ∂Ω\ΓD .

(13)
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Here, the Dirichlet uD and Neumann tN boundary conditions are defined thanks to the

exact solution of this 2D Laplace problem given by u(x, y) = ψ(x, y) .

Illustrations of the first discretisation used in a convergence study and the exact solution

are shown in Figure 8.

ΓD

ΓN

Ω

Figure 8: Geometry of the computational domain and exact solution of the star-shaped

Laplace problem with an embedded line as Dirichlet boundary.

We perform a comparative study between three different approaches imposing the Dirichlet

boundary condition:

• by using Lagrange multipliers defined on P1-conforming elements as reference,

• by constructing a stable Lagrange multiplier space introduced in this paper as a

P0-equivalent space,

• or by means of Nitsche’s method.

For the two latter approaches based on non-conforming meshes, several ways to calculate the

normal flux along the interface ΓD are considered. Each one’s notation is given in Table 1,

followed by its description.

Table 1: Three different ways to evaluate the flux, with associated notations.

Notation Description

λ The flux is already calculated via the Lagrange multipliers.

∇nu The flux is obtained directly from the gradient of the solution.

DI(∇nu) The flux is post-treated using the domain integral method.

Figure 9 shows the results of convergence obtained on a sequence of meshes with increasing

(uniform) density.
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Figure 9: Convergence study for the Laplace problem solved on a star-shaped domain of

codimension zero, with a Dirichlet condition defined on a boundary of codimension one.
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The errors in the H1- and L2-norms decay optimally with all procedures as shown in

Figures 9a and 9b. Figure 9c presents the error in the L2-norm on the interfacial flux. The

direct estimation of the normal flux gives a less accurate result for both non-conforming

methods. The proposed approach gives comparable results with the conforming case (also

using Lagrange multipliers). A better approximation of the flux is achieved with domain

integrals, and the results obtained with the P0-equivalent space show the smallest error.

P0-equivalent and P1-conforming spaces lead to similar inf–sup constants, see Figure 9d,

whereas the naive choice of a P1-equivalent space introduced in [14] does not satisfy the

inf–sup condition. An analysis of Figure 9e highlights a prohibitive number of Lagrange

multipliers induces by this space with respect to the classical FEM. The P0-equivalent space

allows to reduce this density to be similar to the P1-conforming one.

4.2. Dirichlet constraints on an embedded line in 3D

We now consider configurations of the model problem with a Dirichlet constraint enforced

on a boundary of codimension two in 3D. This setting has not yet been investigated on

non-conforming meshes in the literature (but only on boundary-fitted meshes, e.g. in [72]),

thereby no expression of the stability parameter is available for Nitsche’s method. For this

reason, comparative studies will be exempted from this method.

4.2.1. Unit-square of codimension one

Let us start solving a unit-square Laplace problem of codimension one defined over an

embedded flat surface in a 3D bulk mesh. It has already been considered in a previous

paper [14] with 1D boundaries fitted with faces of the discretisation. In the sequel, the

geometry is strictly included in the ambient mesh and the boundaries may cross the elements.

The problem is posed as follows:

−∆Ωu = 0 in Ω := ]0, 1[× ]0, 1[×{0} ,

u = uD on ΓD := {0}× ]0, 1[×{0} ,

∇nu = tN on ΓN := ∂Ω\ΓD .

(14)
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The boundary conditions are enforced according to the analytical solution given in the 3D

Cartesian coordinates by :

u(x, y, z) = [cosh(πx)− coth(π)sinh(πx)] sin(πy) . (15)

The geometry of the domain within a non-matching unstructured mesh of tetrahedral

elements and the bulk solution are illustrated in Figure 10.

Ω
ΓD

ΓN

Figure 10: Geometry of the computational domain and exact solution of the unit-square

Laplace problem with an embedded line as Dirichlet boundary.

Using the FEM on a boundary-fitted mesh as a reference, we investigate the non-

conforming case with two different Lagrange multiplier spaces:

• a P1-equivalent space of Lagrange multipliers, dedicated to model linear fields as

proposed in [14],

• a P0-equivalent space, newly introduced in this paper, defining Lagrange shape functions

on vital supports along the embedded line in 3D.

The results of a convergence study are given in Figure 11.
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Figure 11: Convergence study for the Laplace problem solved on a unit-square of

codimension one, with a Dirichlet condition defined on a boundary of codimension two.
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Figures 11a and 11b show the errors in the H1- and L2-norms on the bulk field as a

function of the mesh size h. As expected, the results obtained with the P1-equivalent space

of Lagrange multipliers do not converge at all, with very high error in the L2-norm on the

interfacial flux as reported in Figure 11c. This choice fails due to locking that occurs as shown

in Figure 11d with a non-uniform inf–sup estimate. The errors for the P0-equivalent space

decay optimally when compared to a P1-conforming mesh. Furthermore, this new Lagrange

multiplier space is stable and passes the numerical patch test on boundaries of codimension

two. The relevant number of DOFs involved is then equivalent to the P1-conforming space,

which is far from being the case with the P1-equivalent space.

Although the geometry presented here is straight, we contend that the proposed approach

behaves analogously with a curved boundary which is linearly approximated, since it is based

solely on the topology of the mesh.

4.2.2. Unit-cube of codimension zero

The enforcement of boundary conditions on a point in 2D, on a point in 3D and on

an edge in 3D, is in practice frequently used by engineers in FE packages. However, these

are borderline cases where the associated problems may be singular. Indeed, the physical

problem corresponding to the model depends on the size of the elements. This amounts to

distribute the loadings on the elements that are around the point or the edge.

In order to present a convergence study for which theoretical convergence rates in the

errors in H1 and L2-norms may be achieved, we choose a case involving a smooth analytical

solution with no singularity. It will be sufficient to show that the FE space built upon the

background mesh must be reduced.

We consider the following Laplace problem of codimension zero defined on a unit-cube

embedded in a bulk mesh:

−∆Ωu = 0 in Ω := ]0, 1[× ]0, 1[× ]0, 1[ ,

u = uD on ΓD := {0}×{0}× ]0, 1[ ,

∇nu = tN on ΓN := ∂Ω\ΓD .

(16)
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We define the boundary conditions in such a way as to satisfy the following analytical

solution:

u(x, y, z) = [cosh(πx)− coth(π)sinh(πx)] [cosh(πy)− coth(π)sinh(πy)] sin(
√

2πz) . (17)

Figure 12 shows the embedding of the domain problem in an unstructured mesh and the

bulk solution.

Ω

ΓD

⊂ΓN

Figure 12: Geometry of the computational domain and exact solution of the unit-cube

Laplace problem with an embedded line as Dirichlet boundary.

A convergence study is performed for the three approaches previously introduced (P1-

conforming, P1-equivalent and P0-equivalent) . The results are given in Figure 13.
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Figure 13: Convergence study for the Laplace problem solved on a unit-cube of codimension

zero, with a Dirichlet condition defined on a boundary of codimension two.

The errors on the bulk field in the H1- and L2-norms are shown in Figures 13a – 13b.

A similar behaviour of the P1-conforming approach and the one using P0-equivalent space

is observed. As depicted in Figure 13c, Lagrange multipliers are as good for both cases,

whereas the approach based on the P1-equivalent space does not converge. Unlike previous

cases, the existence of an inf–sup condition has not been treated in the literature when a

gap of two dimensions appears between ΓD and the domain Ω, the theoretical developments

being limited to the codimension one, see [73].
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However, Lagrange multipliers must tend to zero through mesh refinement without

spurious oscillations, since the constraint forces to impose Dirichlet condition are spread over

the neighbouring elements of the edge whose size decreases. To check that, the distribution of

the Lagrange multipliers along the edge is shown in Figure 14 for a sequence of unstructured

meshes (the first, third and fifth mesh of the convergence study).
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Figure 14: Distribution of the Lagrange multipliers for the Laplace problem solved on a

unit-cube of codimension zero, with a Dirichlet condition defined on a boundary of

codimension two.

Results obtained with our new stable Lagrange multiplier space and with a boundary-
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fitted approach are compared in Figures 14a – 14c. They show that moderate oscillations

obtained with the coarsest meshes vanish with the increase of the mesh density. This is not

the case with the P1-equivalent space, for which ubiquitous oscillations appear with strong

magnitudes as depicted in Figure 14d.

4.3. Dirichlet constraints on an embedded surface in 3D

Let us now examine the case of embedded solids of codimension zero in 3D. To enforce

the Dirichlet constraints, a comparison is made between four different methods. Three are

based on Lagrange multipliers:

• The first introduces Lagrange multipliers on a boundary-fitted mesh,

• The second is the one presented here, noted P0-equivalent and building continuous

shape functions, ensuring the partition of unity at global level over the entire interface.

• The third, denoted P0∗-equivalent, was introduced in [44] and defines piecewise contin-

uous shape functions, only locally ensuring the partition of unity.

Finally, the fourth approach uses Nitsche’s method.

• It corresponds to the method used in [44].

As previously introduced in Sect. 4.1, the interfacial flux through embedded boundaries

is evaluate using different ways (direct evaluation, Lagrange multipliers, or domain integrals),

cf. Table 1.

By means of several three-dimensional benchmark problems, the relative performances of

the P0∗-equivalent stable Lagrange multiplier method and of Nitsche’s method are investigated

by Hautefeuille et al. in [44]. Based on their results and following discussions with the authors,

some missteps in the mesh generation process make an analysis of the results very difficult

(flat elements, negative jacobian). They drastically affect the accuracy of the results obtained

with an approach based on mesh topology as is the case for stable Lagrange multiplier spaces.

So the primary motivations of this part is to correct these results and to compare them with
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solutions obtained with the P0-equivalent space designed through the new reducer algorithm.

We also check numerically that both P0- and P0∗-equivalent approaches satisfy a uniform

inf–sup condition.

Considering unstructured meshes defined over T :=]0, 1[×]0, 1[×]0, 1[ , two problems

are presented. For each of them, an embedded surface Γ of different geometric shape is

introduced in the bulk mesh, dividing the latter into two disjoint sets. The problem domain

Ω is then defined on one of these sets of codimension zero. We systematically analyse the

approximations of the bulk and interfacial fields by means of convergence studies.

4.3.1. Sinusoidal field with a Dirichlet constraint on an embedded planar surface

We first consider an embedded planar surface Γ defined as the iso-zero of the distance

function ψ(x, y, z) = 0.2x− 0.2y + z − 0.4856 . The boundary value problem consists in the

following Poisson equation:

−∆Ωu = −3π2cos(πx)cos(πy)cos(πz) in Ω := {(x, y, z) ∈ T : ψ(x, y, z) > 0} ,

u = cos(πx)cos(πy)cos(πz) on ΓD := Γ ∪ {(x, y, z) ∈ ∂Ω : z = 1} ,

∇nu = 0 on ΓN := ∂Ω\ΓD .

(18)

The problem has an analytical solution given by u(x, y, z) = cos(πx)cos(πy)cos(πz) . The

boundary conditions are defined according to this expression. The embedded Dirichlet BC

is limited to Γ, other parts being subject to constraints enforced in classical FE way. We

illustrate the first unstructured mesh with the embedding of the manifold Ω used in this

study and the exact solution of the problem in Figure 15.
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Ω

Γ

⊂ ΓD

⊂ ΓN

Figure 15: Geometry of the computational domain and exact solution of the Poisson

problem, with an embedded planar surface as Dirichlet boundary.

The results of convergence are given in Figure 16.
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Figure 16: Convergence study for the Poisson problem with a Dirichlet boundary condition

defined on an embedded planar surface.
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Figures 16a and 16b show the optimal rate of convergence achieved with all procedures,

in the H1- and L2-norms on the bulk field. The convergence results for the L2-norm are

given in Figures 16c and 16d, respectively on the flux and the field over the boundary Γ. The

approximation of the normal flux is optimal. But as it might be expected, using the direct

evaluation of the flux yields a much lower accuracy. Lagrange multipliers obtained with the

P0∗-equivalent space proposed by Hautefeuille et al. are less accurate than ours, discontinuous

bases being suspected to deteriorate the solution. The accuracy of the constraint enforcement

is slightly better with Lagrange multipliers, cf. Figure 16d. In addition, Figure 16e presents

the results in the sup–norm for the interfacial flux. We note that the maximum nodal error

on the flux obtained directly with Nitsche’s method does not converge. This poor result

is due to the lack of robustness when the flux is estimated in elements with a very small

intersection with the surface. The use of domain integrals over the three non-conforming

approaches significantly improved the interfacial flux. As shown in Figure 16f, the inf–sup

condition is violated by the P1-equivalent space, but the other Lagrange multipliers spaces

are stable. These results are in good agreement with the number of Lagrange multipliers

given in Figure 17, both P0- and P0*-equivalent spaces acting as classical FEs.
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Figure 17: Number of Lagrange multipliers involved in the convergence study.
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4.3.2. Logarithmic field with a Dirichlet constraint on an embedded spherical surface

We now examine a Poisson problem involving an embedded spherical boundary. The

governing equations and the boundary conditions are detailed below:

−∆Ωu = −1/r2 in Ω := {(r, θ, ϕ) ∈ T : ψ(r, θ, ϕ) > 0} ,

u = log r on ΓD := Γ ∪ {(x, y, z) ∈ ∂Ω : ‖(x, y, z)‖∞ = 1} ,

∇nu = 0 on ΓN := ∂Ω\ΓD .

(19)

Here, ‖·‖∞ is the classical infinity norm defined on R3, its iso-values delimit a cubic domain.

The iso-zero of the distance function ψ(r, θ, ϕ) = r − 0.41 defines the embedded Dirichlet

boundary Γ, but only one-eighth of a sphere is modelled, thanks to the spherical symmetry

of the problem about the origin. The analytical solution is known to be u(r, θ, ϕ) = log r in

spherical coordinates. We illustrate this problem in Figure 18.

Ω

Γ

⊂ ΓD

⊂ΓN

Figure 18: Geometry of the computational domain and exact solution of the Poisson

problem, with an embedded spherical surface as Dirichlet boundary.

We carry out a convergence study and report its results in Figure 19.
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Figure 19: Convergence study for the Poisson problem with a Dirichlet boundary condition

defined on an embedded spherical surface.
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Optimal rates of convergence in the H1- and L2-norms on the bulk field are once again

preserved, see Figures 19a and 19b. We find the same behaviour as the previous problem

for the interfacial flux in Figure 19c, except using the domain integrals, for which the post-

treatment of the Lagrange multipliers is more accurate than with Nitsche’s method. Dual

approaches lead again to better results on non-conforming mesh for the interfacial field as

shown in Figure 19d. Both P0- and P0∗-equivalent spaces achieve a constant inf–sup estimate,

which is not the case of the P1-equivalent space, see Figure 19e. This space generates an

excessive number of Lagrange multipliers comparing to the P1-conforming space, as shown

in Figure 19f. Stable spaces allow to recover FE shape function density.

5. Conclusion

A general stable Lagrange multiplier method is proposed in this paper to impose Dirichlet

boundary conditions on any embedded boundaries within the context of the extended finite

element. The main contributions are the following:

1. A new algorithm is introduced to reduce the Lagrange multiplier space for any codimen-

sion of the boundary embedded in a mismatching mesh. One improvement with respect

to existing algorithms [18, 66, 48, 44] is its ability to build stable Lagrange multiplier

spaces along embedded lines in 3D (codimension two). To our best knowledge, the

present work is the first study investigating Dirichlet boundary conditions on this

setting within non-conforming meshes. Furthermore, the algorithm is consistent with

that proposed in Béchet et al. [48] on boundary of codimension one, and benefits of its

theoretical proof relating to the inf–sup condition in 2D.

2. Convergence studies are performed on boundary value problems posed on submanifolds

of codimension zero or one embedded in 2D or 3D meshes and involving Dirichlet

boundary conditions on boundaries of codimension one or two. Using analytical

solutions of the problems to determine the errors, the proposed approach shows good

accuracy with regard to classical finite element. Optimal rates of convergence are

achieved on both the interfacial flux and the primary field on the Dirichlet boundaries.
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For each configuration of the space and boundary dimensions, the numerical inf–sup

test gives a mesh-independent constant, necessary to the stability of the resulting

Lagrange multipliers.

3. Comparisons are presented between our approach and two others introduced in Haute-

feuille et al. [44] (a Nitsche-type method and a stable Lagrange multiplier method), on

problems defined on domains embedded in a mesh of same dimension (codimension zero).

Although not essential to the Lagrange multipliers, a domain integral post-processing

technique is used to compute accurately the interfacial flux. Results highlight good

performance of the newly proposed approach.

In this way, we are able to build a stable Lagrange multiplier space, which is a priori

compatible with the primal field approximation defined either by using classical P1 shape

functions (codimension zero for the model problem) or the P1-equivalent function space

introduced in a preliminary paper [14] (codimension one and two).

We obtained a single framework taking advantage of fixed meshes to solve any embedded

boundary value problem, without tunable parameter and additional stabilisation term.

Even though the stable Lagrange multiplier method was only applied for Dirichlet

boundary conditions in this paper, other problems involving stiff interface conditions may be

addressed, e.g. bimaterial interface defined on a membrane in codimension one. Moreover,

the large range of configurations supported by the proposed algorithm opens new perspectives

in mixed-dimensional coupling with embedded manifolds.

Finally, while the combination of P1- and P0-equivalent spaces allows to handle any

boundary value problems of codimension one and two, current efforts are focused on general-

ising the framework to higher order approximations, e.g. involved in embedded beams or

shells with kinematic boundary conditions. This issue will be the subject of a forthcoming

paper based on a presentation given at the ECCOMAS Congress 2016.
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