

Untangling natural variability of macrofaunal populations from protection effects

N Sturaro¹, G Lepoint¹, C Micha¹, P Panzalis², A Navone², S Gobert¹

> ¹ University of Liège Laboratory of Oceanology

² Marine Protected Area Tavolara-Punta Coda Cavallo

Amsterdam 9 Oct 2015

Decline of fish stocks

Loss of biodiversity

Degradation of habitats

Marine protected areas (MPAs)

« Areas in which human activities that cause habitat alteration or focus on population exploitation are eliminated or greatly reduced »

In the Mediterranean Sea,

more than 94 MPAs in 2008 and 170 MPAs in 2012

Marine protected areas (MPAs)

Multiple objectives

- Conservation of biodiversity & fisheries management
- Restoration of alterated areas or overexploited
- Increase knowledge...

Numerous potential ecological effects

Little research on species of the vagile macrofauna

Results...two possible models

Precaution... limited sampling designs

Protection effects vs natural variability

Precaution... limited sampling designs

The perception of features of an assemblage depend on the scale of observation

The seagrass Posidonia oceanica

Endemic to the Mediterranean Sea

Capable to cover large areas

Shelter high biomass & biodiversity of vagile invertebrates

General objective

Assess the potential responses of two groups, with different life histories, in *P. oceanica* meadows, to different protection levels.

- Examine spatial variability patterns of the populations
- Identify scales that contribute most to spatial variation
- Explore relationships between populations and habitat

Tavolara-Punta Coda Cavallo Marine Protected Area

- Creation 1997
- Effective protection 2003-04
- 3 protection zones

Spatial hierarchical sampling design

Spatial hierarchical sampling design

Spatial hierarchical sampling design

The air-lift to collect the vagile macrofauna

Delimitation of 0.185 m²

Minimize the escape of organisms

Sampling between 10 and 15m & between 10am and 3pm

Results & Discussion

General features of macrofaunal populations

Bittium reticulatum

Jujubinus gravinae

Rissoa variabilis

Density of frequent species (>10%)

	Zone > 1000m	Site ~100m	Sector ~10m
Gammaridea			
Apolochus neapolitanus			
Ampithoe helleri			
Aora spinicornis			
Apherusa chiereghinii			
Dexamine spiniventris			
Ericthonius punctatus			
Iphimedia minuta			
Liljeborgia dellavallei			
Orchomene humilis			
Peltocoxa marioni			
Caprellidea			
Caprella acanthifera			
Caprella sp. (armata-group)			
Caprella tavolarensis			
Phtisica marina			
Pseudoprotella phasma			

Zone A < Zones B et/ou C except for *C. tavolarensis*

Significant differences

Density of frequent species

	Zone	Site	Sector
	> 1000m	~100m	~10m
Gastropods			
Bittium reticulatum			
Jujubinus gravinae			
Pusillina sp.			
Rissoa variabilis			

High variability at the scale of one meter

Zone A = Zone B = Zone C

Significant differences

The structure of assemblages

Effects of the zone, site, sector & year on the structure of amphipod assemblages

The structure of assemblages Zone A Zone B Zone C

No effects of the zone, site and sector

In brief...

The difference among zones is observed for the density of certain species and the structure of amphipod assemblages, not for mollusc assemblages

Densities are generally lower in zone A at the specific level

Remote geographic localisation and isolate meadows

┛

Geograma, 2006

^b Zone C

Ƴ

Remote geographic localisation and isolate meadows

Habitat features

Density, biomass of leaves, epiphyte and litter are similar between zones.

The habitat explain 0-15% of the abundance variation.

Predation rate of fishes

Conclusions

- Patterns of responses to protection are different between the two groups with different life histories
- Research on the amphipod assemblage for detecting the potential effects of MPAs seems to be a stronger indicator
- Highlights the difficulties in properly assessing protection effects versus natural variability

Reasons for the patterns are multiple: ecological & behavioural traits of species to protection-dependent processes (fish predation)

Acknowledgments

For more info...

Contact: nicolas.sturaro@ulg.ac.be

Or see main reference:

Sturaro N, Lepoint G, Pérez-Perera A, Vermeulen S, Panzalis P, Navone A, Gobert S (2014) Seagrass amphipod assemblages in a Mediterranean marine protected area: a multiscale approach. Marine Ecology Progress Series 506: 175–192